2023-August-Mathematics of Network Algorithms

Assignment 3
(Last Updated September 7, 2023)

- Deadline: 5 pm on $11^{\text {th }}$ September, 2023. Please submit your assignment in the specified format here (The form will close at the mentioned time.)
- You can only use numpy python library for math related functions.
- You must submit python file named as: enrolment-nr-assignment-nr-question-nr-student-name.py
For example, for the student XYZ with enrolment number 20251010, a solution for the first question should be in the file 20251010-03-01-XYZ.py.
- Your code will be evaluated with the command \$ python3 20251010-03-01-XYZ.py.
- Any deviation from these instructions related to submission will adversely affect the number of test cases your algorithm can solve.
- The points for each question will be determined by the quality of the output.
- Some test cases for the problem are available on the web-page.

1. (5 pts) [Cleaning Data] We have two files viz asst-3-Q1.txt that describes the data and asst-3-Q1.xlsx file that contains actual data. The first line of file asst-3-Q1.txt contains two integers m (denoting the number of data points), and n (denoting dimension of each data point). The next n lines has three entries: type of data (int or float), lower range, upper range. The file asst-3-Q1.xlsx contains m many rows, each containing n entries.
Write a python program that reads these two files and cleans the data. Your program should be able to do the following cleaning:

- Fix wrong types of values if they are fixable (i.e. covert float to int is such conversion is valid. For example, it should convert 4.0000 to 4 but it should not convert 4.0001 to 4)
- Omit the data point (i.e. the row) if it contains missing values, wrong types of values (which are not fixable), or values that are outside the range.
- Remove duplicate rows.

The output should be a single line containing your roll number and the nr of useful rows. For example, the output for the asst-3-Q1.txt is as follows:
202510102

New Deadline is 5 pm on $11^{\text {th }}$ September, 2023.
2. (10 pts) File asst-3-Q2.xlsx contains matrix A of dimension $m \times n$ where each row corresponds to a data point. Write a program to compress A to another matrix B of dimension $m \times 2^{1}$. Your program should also be able to recover the data and store it as matrix A^{\prime} (of the dimension $m \times n$).
The output should be a single line containing your roll number, followed by $\| \mathcal{A}-$ $A^{\prime} \|_{F} /(m * n)$ and then $\|B\|_{F}$. For example, the output for the asst-3-Q1.txt is as follows:
202510100.02185 .9326
3. (15 pts) File asst-3-Q3.xlsx contains details of a bank's customers. All of these fields are self-explanatory except the last field called 'churn'. This is the target variable that takes a binary value reflecting the fact whether the customer has closed his/her account (denoted by 0) or he/she continues to be a customer (denoted by 1).
Write a python code that creates a neural network and fits the above data. It should be able to predict the values of churn for data in asst-3-Q3-test.xlsx. ${ }^{2}$ Please submit your code after it had learned all the values to your satisfaction. Also, modify your code so that it does not re-learn the network when it is run on my machine but only evaluates values of churn for data in asst-3-Q3-test.xlsx.
The output should be a single line containing your roll number, the number of perceptrons in each layer, the number of data points in asst-3-Q3-test.xlsx on which the neural network correctly predicts the churn value, total number of data points in asst-3-Q3-test.xlsx
For example, if your neural network uses four layers with $20,5,10$, and 1 perceptrons in these layers, and it solves 955 out of 1000 cases, then the output should be 202510102051019551000

It will be good idea to keep building your code based on the program we discussed in Lecture-12. You are allowed to use the same dependencies required to run that program.

New Deadline is 5 pm on $11^{\text {th }}$ September, 2023.

[^0]
[^0]: ${ }^{1}$ Here, you can hardcode 2 in your program
 ${ }^{2}$ Since you do not have this file, you need to split data in asst-3-Q3.xlsx into training set and test set.

