INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE
 Mid-Semester Examination, 2023 August Semester

Course Name: Mathematics of
Network Algorithms

Date of Exam: 25 September 2023
Instructor: Prafullkumar Tale

Course Code: DS4114/DS6144 and MT4154/MT6174

Duration: 2 hours
Total Score: 30

Instructions: All 5 questions are compulsory. No queries will be entertained during the mid-term exam. Use your judgment about any possible doubts.

Questions:

Q.I. (a) (2 pts) Suppose u_{1} and u_{2} are eigenvectors of A with eigenvalues λ_{1} and λ_{2}, respectively. Prove that if $\lambda_{1}=\lambda_{2}$, then $u=\alpha \cdot u_{1}+\beta \cdot u_{2}$ is also an eigenvector with the same eigenvalue. Here, α, β are some scalars.
(b) (4 pts) Define probability space and illustrate it with an example where we toss an unfair coin (which turns head with probability p) n-times. Define an appropriate random variable and write an expression to compute its values if we are interested in the number of heads.
Q.II. (a) (2 pts) Define learning in the context of Machine Learning and describe supervised learning and unsupervised learning.
(b) (4 pts) Write short description on four types of tasks (in the context of Machine Learning).
Q.III. (a) (2 pts) Prove the following:

$$
\partial\left(\mathbf{x}^{\top} \mathbf{x}\right) / \partial \mathbf{x}=2 \mathbf{x}^{\top}, \partial\left(\mathbf{x}^{\top} \mathbf{a}\right) / \partial \mathbf{x}=\mathbf{a}^{\top}, \partial\left(\mathbf{a}^{\top} \mathbf{x}\right) / \partial \mathbf{x}=\mathbf{a}^{\top}
$$

(b) (4 pts) Prove that a function $f(\mathbf{x}): \mathbb{R}^{n} \mapsto \mathbb{R}$ decreases fastest in the direction opposite to its gradient (assuming gradient exists everywhere).
Q.IV. (6 pts) Consider a set of samples $\left\{x^{(1)}, \ldots, x^{(m)}\right\}$ that are independently and identically distributed according to a Bernoulli distribution with mean θ. Consider the following estimator $\hat{\theta}_{m}=\frac{1}{m} \sum_{i=1}^{m} x^{(i)}$. Compute bias and variance of the estimator.
Q.V. (a) (2 pts) Construct a neural network for logical AND, logical OR, and logical NOT function.
(b) (4 pts) Construct a neural network that fits all the following points, i.e., given $[x, y]$ as input, it should output the corresponding color.

$$
\langle[0,0] ; \text { red }\rangle,\langle[0.5,0.5] ; \text { red }\rangle,\langle[1,0] ; \text { blue }\rangle,\langle[0,1] ; \text { blue }\rangle,\langle[1,1] ; \text { red }\rangle
$$

