2023-August-Mathematics of Network Algorithms

Problem Set

(Last Updated: November 6, 2023)

Linear Algebra

- Define the following terms (and every term used to define them) with an illustrative example:
 - (a) Linear dependence and span of vectors (b) Norm of a vector
 - (c) Eigenvalue, eigenvector and eigendecomposition
- Prove that ℓ_1 , ℓ_2 , and ℓ_{∞} norm satisfies the properties mentioned while answering 1 (b).
- Write a 3×3 matrix **A** that is *not* identity, nor symmetric nor orthogonal. Also, write $\mathbf{A} \times \mathbf{A}$ and its transpose, inverse, determinant, eigenvalues, and eigenvectors.
- Write a (non-trivial) system of linear equations with at least 4 variables and 5 constraints both in equation form and matrix form.
- Consider a function $f : \mathbb{R}^2 \mapsto \mathbb{R}^2$ defined as $f((x_1, x_2)) = (-2x_2, -3x_1 + x_2)$. Describe geometrical interpretation of the above function in terms translation matrix, mention how a random point is shifted, and special points that may be only stretched.
- Consider a $n \times n$ matrix A. Prove that $||A||_{F}^{2} = Tr(A \cdot A^{T})$.
- Prove that any symmetric matrix has real eigen values and the corresponding eigen vectors are orthogonal to each other.

Probability and Stastictics

- Describe the following terms with an illustrative examples:
 - (a) Probability Space

- (b) Random variables
- (c) Frequentist probability and Bayesian probability
- (d) Mean, Variance, Covariance, & Correlation
- We flip a fair coin ten times. Find the probability of the following events: (i) Nr of heads and talks are equal. (ii) Nr of heads is more than nr of tails. (iii) The ith flip and $(11-i)^{th}$ flip are same for every $i \in [5]$.
- We roll two fair dice. What is the probability space? What is the expectation of random variable representing the sum of two dice?
- Define the following distributions:
 - (a) Bernoulli Distribution (b) Gaussian Distribution
 - (c) Laplace Distributions (d) Multinoulli Distribution
 - (e) Uniform Distribution
- Select your favourite distribution and derive expressions for its (i) expectation, (ii) variance, and (iii) standard deviation.

Numerical Optimization

- Consider the univariate function $f(x) = x^3 + 6x^2 3x 5$. Find its stationary points and indicate whether they are maximum, minimum, or saddle points.
- Describe overflow, underlow, and poor conditioning with examples.
- Define gradient and directional derivative.
- Computer $\partial(f)/\partial x$ when (i) $f = \sin(x_1)\cos(x_2)$, (ii) $f = 4x_1^2x_3 + 4x_1x^2x_3 + 5x_3^4$, and (iii) $f = x_1x_2x_4 + 2x_3^2x_4 + \sin(x_1x_2x_3)$.
- Prove the following identities:
 - $\partial(\mathbf{x}^{\top}\mathbf{x})/\partial\mathbf{x} = 2\mathbf{x}^{\top}, \ \partial(\mathbf{x}^{\top}\mathbf{a})/\partial\mathbf{x} = \mathbf{a}^{\top} \ \text{and} \ \partial(\mathbf{a}^{\top}\mathbf{x})/\partial\mathbf{x} = \mathbf{a}^{\top}$
 - $\partial (\mathbf{a}^{\top} \mathbf{B} \mathbf{x}) / \partial \mathbf{x} = \mathbf{B}^{\top} \mathbf{a}$, and $\partial (\mathbf{x}^{\top} \mathbf{B} \mathbf{x}) / \partial \mathbf{x} = \mathbf{x}^{\top} (\mathbf{B} + \mathbf{B}^{\top})$
 - For symmetric matrix W, $\partial((\mathbf{x} \mathbf{As})^\top \mathbf{W}(\mathbf{x} \mathbf{As}))/\partial \mathbf{s} = -2(\mathbf{x} \mathbf{As})^\top \mathbf{WA}$.
- Prove that a function $f(\mathbf{x}) : \mathbb{R}^n \mapsto \mathbb{R}$ decreases fastest in the direction opposite to its gradient (assume that the gradient exists everywhere).
- Consider the optimization problem min{¹/₂w^Tw} over all w ∈ ℝⁿ subjected to w^Tw ≥ 1. Convert it into an unconstrained optimization problem by introducing Lagrange multiplier λ.
- Use gradient based optimisation to find x that minimizes $f(x) = 1/2 \cdot ||Ax b||_2^2$.

Machine Learning Basics

- Describe the following terms with an illustrative examples:
 - (a) Artificial Intelligence
 - (c) Deep Learning
 - (e) Neural Network
 - (g) Loss Function
 - (i) Parameters and Hyperparameters
- (f) Activation function(h) Optimisers

(d) Perceptron

(b) Machine Learning

- (j) Underfitting and Overfitting
- (k) Hypothesis space of a function
- Write steps in Principal Component Analysis to reduce 2-dimension data to 1dimension data.
- Define *learning* in the context of Machine Learning.
- Write short description on five types of tasks (in the context of Machine Learning).
- What is supervised learning and unsupervised learning?
- Consider a learner regression problem where the objective is determine the value of $\mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{w}^\top \mathbf{x}$ is as close to y as possible for vector $\mathbf{x}_i \in \mathbb{R}^n$ and scalar y_i for all $i \in [m]$. Derive an analytical expression to compute w if the difference between actual and computed values is determined using mean squared error.
- Describe *regularizer* with an example.

- Consider a set of samples $\{x^{(1)}, \ldots, x^{(m)}\}$ that are independently and indentically distributed according to a Bernoulli distribution with mean θ . Consider the following estimator $\hat{\theta}_m = \frac{1}{m} \sum_{i=1}^m x^{(i)}$. Compute bias and variance of the estimator.
- Consider a set of samples $\{x^{(1)}, \ldots, x^{(m)}\}$ that are independently and indentically distributed according to a Gaussian distribution with mean μ and variance σ^2 . Compute bias and variance of the following estimators.

$$\begin{aligned} &- \hat{\mu}_{m} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}, \\ &- \hat{\sigma}_{m}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \hat{\mu}_{m})^{2} \\ &- \hat{\sigma}_{m}^{2} = \frac{1}{m-1} \sum_{i=1}^{m} (x^{(i)} - \hat{\mu}_{m})^{2} \end{aligned}$$

- Describe the following terms.
 - Cross-validation Consistency of parameter estimation
- Compute maximum likelihood estimation of the relevant parameters for each of the following distribution.
 - \circ Gaussian Distribution $~~\circ$ Exponential Distribution
 - Geometric Distribution Binomial Distribution
 - Poisson Distribution Uniform Distribution
- Describe linear regression as maximum likelihood procedure.
- Describe (i) Artificial Intelligence, Machine Learning, and Deep Learning; (ii) Parameters and Hyperparameters; (iii) Underfitting and Overfitting; (iv) Hypothesis space of a function.
- Compute maximum likelihood estimation of the relevant parameters for Bernoulli Distribution.
- Design a Multilayer Perceptrons that determines if a list of length 4 is in sorted order, i.e, it receive four inputs x_1, x_2, x_3, x_4 , where $x_i \in \mathbb{R}$, and outputs 1 if $x_1 < x_2 < x_3 < x_4$, and 0 otherwise. Only activation functions allowed are: Sigmoid, Step-Function, or ReLU.
- Let variable x can have values 1, 2 and 3 with probabilities P(1) = 1/5, P(2) = 3/5, and P(3) = 1/5. What is the expected value of x? Compare it with mean value of (1, 2, 2, 2, 3)?
- Explain stochastic gradient descent method and justify its use.
- We use wl_k^j to denote the weight for the connection from the k^{th} neuron in the $(\ell 1)^{th}$ layer to the jth neuron in the ℓ^{th} layer, b_j^ℓ for the bias of the jth neuron in the ℓ^{th} layer, and a_j^ℓ for the activation of the jth neuron in the ℓ^{th} layer. Also, define

$$z_j^{\ell} := \sum_k w_{jk}^{\ell} a_k^{\ell-1} + b_k^{\ell}; \qquad \qquad a_j^{\ell} := \sigma(z_j^{\ell}); \qquad \qquad \delta_j^{\ell} := \frac{\partial C}{\partial z_j^{\ell}},$$

where σ is a sigmoid function. Prove the following equations:

(1)
$$\delta_j^{L} = \frac{\partial C}{\partial a_j^{L}} \sigma'(z_j^{L}),$$
 (2) $\delta^{\ell} = [[w^{\ell+1}]^{\mathsf{T}} \delta^{\ell+1}] \odot \sigma'(z^{\ell}),$ (3) $\frac{\partial C}{\partial b_j^{\ell}} = \delta_j^{\ell},$ (4) $\frac{\partial C}{\partial w_{jk}^{\ell}} = a_k^{\ell-1} \delta_j^{\ell}.$

For (1), L is the index of the output layer.

- Write a back-propagation algorithm with stochastic gradient descent when the activation function is sigmoid and the cost function is mean squared error.
- Write back-propagation algorithm when the activation function is a linear function $\sigma(z) = 2z$, and the cost function is mean squared error.
- Write the two assumptions we make about the cost function and justify them.
- Define *cross-entropy cost function* and demonstrate that it is useful in the case of binary classification.
- Justify why cross-entroy cost function might be more useful than quadratic cost function.
- Consider the sigmoid function $\sigma(z)$. Prove that $\sigma'(z) = \sigma(z)(1 \sigma(z))$.
- Define *soft-max activation function*. Mention the cases in which this activation function is useful. Justify the usefulness over sigmoid activation function.
- Define *regularisation*. Briefly explained at least three techniques for it.
- Consider a cost function C_0 . Define C as a cost function obtained by adding a weighted decay term for the regularisation. Derive terms to modify weights and biases with this modification.
- Derive expressions to update weights and biases while using stochastic gradient descent when cost function is modified with L_2 -regularization.
- Explain, with an illustrative example, use of regularization to reduce overfitting.
- Define *dropouts* and justify its use.
- Define *weighted initialization* and justify its use when the activation function is a sigmoid.
- Consider a continious function $f : \mathbb{R}^d \mapsto \mathbb{R}$. Justify that there is artificial neural network that approximates the function f.
- What is the *vanishing gradient problem* and why it occur? Explain it using simple artificial neural network.
- Define *convolution neural networks*. Specify a toy example that highlights shared weights and biases, and pooling layer.
- Define following terms: \circ Vectorization, \circ k-fold Validation, \circ Iterated k-fold validation, \circ Hold-out validation, and \circ Feature engineering
- Describe a flow of designing ML/DL algorithm to the best of your abilities.