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Problem Set
( Last Updated: November 6, 2023 )

Linear Algebra
• Define the following terms (and every term used to define them) with an illustrative
example:
(a) Linear dependence and span of vectors (b) Norm of a vector
(c) Eigenvalue, eigenvector and eigendecomposition

• Prove that ℓ1, ℓ2, and ℓ∞ norm satisfies the properties mentioned while answering
1 (b).

• Write a 3 × 3 matrix A that is not identity, nor symmetric nor orthogonal. Also,
write A×A and its transpose, inverse, determinant, eigenvalues, and eigenvectors.

• Write a (non-trivial) system of linear equations with at least 4 variables and 5
constraints both in equation form and matrix form.

• Consider a function f : R2 7→ R2 defined as f((x1, x2)) = (−2x2,−3x1 + x2). Describe
geometrical interpretation of the above function in terms translation matrix, mention
how a random point is shifted, and special points that may be only stretched.

• Consider a n× n matrix A. Prove that ||A||2F = Tr(A ·AT).

• Prove that any symmetric matrix has real eigen values and the corresponding eigen
vectors are orthogonal to each other.

Probability and Stastictics
• Describe the following terms with an illustrative examples:

(a) Probability Space (b) Random variables
(c) Frequentist probability and Bayesian probability
(d) Mean, Variance, Covariance, & Correlation

• We flip a fair coin ten times. Find the probability of the following events: (i) Nr of
heads and talks are equal. (ii) Nr of heads is more than nr of tails. (iii) The ith flip
and (11− i)th flip are same for every i ∈ [5].

• We roll two fair dice. What is the probability space? What is the expectation of
random variable representing the sum of two dice?

• Define the following distributions:
(a) Bernoulli Distribution (b) Gaussian Distribution
(c) Laplace Distributions (d) Multinoulli Distribution
(e) Uniform Distribution

• Select your favourite distribution and derive expressions for its (i) expectation, (ii)
variance, and (iii) standard deviation.
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Numerical Optimization
• Consider the univariate function f(x) = x3 + 6x2 − 3x− 5. Find its stationary points
and indicate whether they are maximum, minimum, or saddle points.

• Describe overflow, underlow, and poor conditioning with examples.

• Define gradient and directional derivative.

• Computer ∂(f)/∂x when (i) f = sin(x1) cos(x2), (ii) f = 4x21x3 + 4x1x2x3 + 5x43, and
(iii) f = x1x2x4 + 2x23x4 + sin(x1x2x3).

• Prove the following identities:

– ∂(x⊤x)/∂x = 2x⊤, ∂(x⊤a)/∂x = a⊤ and ∂(a⊤x)/∂x = a⊤

– ∂(a⊤Bx)/∂x = B⊤a, and ∂(x⊤Bx)/∂x = xT(B+ B⊤)

– For symmetric matrix W, ∂((x−As)⊤W(x−As))/∂s = −2(x−As)⊤WA.

• Prove that a function f(x) : Rn 7→ R decreases fastest in the direction opposite to its
gradient (assume that the gradient exists everywhere).

• Consider the optimization problem min{ 12w
⊤w} over all w ∈ Rn subjected to w⊤w ≥

1. Convert it into an unconstrained optimization problem by introducing Lagrange
multiplier λ.

• Use gradient based optimisation to find x that minimizes f(x) = 1/2 · ||Ax - b||22.

Machine Learning Basics
• Describe the following terms with an illustrative examples:

(a) Artificial Intelligence (b) Machine Learning
(c) Deep Learning (d) Perceptron
(e) Neural Network (f) Activation function
(g) Loss Function (h) Optimisers
(i) Parameters and Hyperparameters (j) Underfitting and Overfitting
(k) Hypothesis space of a function

• Write steps in Principal Component Analysis to reduce 2-dimension data to 1-
dimension data.

• Define learning in the context of Machine Learning.

• Write short description on five types of tasks (in the context of Machine Learning).

• What is supervised learning and unsupervised learning?

• Consider a learner regression problem where the objective is determine the value of
w ∈ Rn such that w⊤x is as close to y as possible for vector xi ∈ Rn and scalar yi for
all i ∈ [m]. Derive an analytical expression to compute w if the difference between
actual and computed values is determined using mean squared error.

• Describe regularizer with an example.
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• Consider a set of samples {x(1), . . . , x(m)} that are independently and indentically
distributed according to a Bernoulli distribution with mean θ. Consider the following
estimator θ̂m = 1

m

∑m
i=1 x

(i). Compute bias and variance of the estimator.

• Consider a set of samples {x(1), . . . , x(m)} that are independently and indentically dis-
tributed according to a Gaussian distribution with mean µ and variance σ2. Compute
bias and variance of the following estimators.

– µ̂m = 1
m

∑m
i=1 x

(i),
– σ̂2

m = 1
m

∑m
i=1(x

(i) − µ̂m)
2

– σ̂2
m = 1

m−1
∑m

i=1(x
(i) − µ̂m)
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• Describe the following terms.
◦ Cross-validation ◦ Consistency of parameter estimation

• Compute maximum likelihood estimation of the relevant parameters for each of the
following distribution.
◦ Gaussian Distribution ◦ Exponential Distribution
◦ Geometric Distribution ◦ Binomial Distribution
◦ Poisson Distribution ◦ Uniform Distribution

• Describe linear regression as maximum likelihood procedure.

• Describe (i) Artificial Intelligence, Machine Learning, and Deep Learning; (ii) Pa-
rameters and Hyperparameters; (iii) Underfitting and Overfitting; (iv) Hypothesis
space of a function.

• Compute maximum likelihood estimation of the relevant parameters for Bernoulli
Distribution.

• Design a Multilayer Perceptrons that determines if a list of length 4 is in sorted order,
i.e, it receive four inputs x1, x2, x3, x4, where xi ∈ R, and outputs 1 if x1 < x2 < x3 < x4,
and 0 otherwise. Only activation functions allowed are: Sigmoid, Step-Function, or
ReLU.

• Let variable x can have values 1, 2 and 3 with probabilities P(1) = 1/5, P(2) = 3/5,
and P(3) = 1/5. What is the expected value of x? Compare it with mean value of
(1, 2, 2, 2, 3)?

• Explain stochastic gradient descent method and justify its use.

• We use wljk to denote the weight for the connection from the kth neuron in the
(ℓ − 1)th layer to the jth neuron in the ℓth layer, bℓ

j for the bias of the jth neuron in
the ℓth layer, and aℓ

j for the activation of the jth neuron in the ℓth layer. Also, define

zℓj :=
∑
k

wℓ
jka

ℓ−1
k + bℓ

k; aℓ
j := σ(zℓj); δℓj :=

∂C

∂zℓj
,

where σ is a sigmoid function. Prove the following equations:

(1) δLj =
∂C

∂aL
j

σ ′(zLj ), (2) δℓ = [[wℓ+1]Tδℓ+1]⊙σ ′(zℓ), (3) ∂C

∂bℓ
j

= δℓj, (4) ∂C

∂wℓ
jk

= aℓ−1
k δℓj.

For (1), L is the index of the output layer.
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• Write a back-propagation algorithm with stochastic gradient descent when the acti-
vation function is sigmoid and the cost function is mean squared error.

• Write back-propagation algorithm when the activation function is a linear function
σ(z) = 2z, and the cost function is mean squared error.

• Write the two assumptions we make about the cost function and justify them.

• Define cross-entropy cost function and demonstrate that it is useful in the case of
binary classification.

• Justify why cross-entroy cost function might be more useful than quadratic cost
function.

• Consider the sigmoid function σ(z). Prove that σ ′(z) = σ(z)(1− σ(z)).

• Define soft-max activation function. Mention the cases in which this activation
function is useful. Justify the usefulness over sigmoid activation function.

• Define regularisation. Briefly explained at least three techniques for it.

• Consider a cost function C0. Define C as a cost function obtained by adding a
weighted decay term for the regularisation. Derive terms to modify weights and
biases with this modification.

• Derive expressions to update weights and biases while using stochastic gradient
descent when cost function is modified with L2-regularization.

• Explain, with an illustrative example, use of regularization to reduce overfitting.

• Define dropouts and justify its use.

• Define weighted initialization and justify its use when the activation function is a
sigmoid.

• Consider a continious function f : Rd 7→ R. Justify that there is artificial neural
network that approximates the function f.

• What is the vanishing gradient problem and why it occur? Explain it using simple
artificial neural network.

• Define convolution neural networks. Specify a toy example that highlights shared
weights and biases, and pooling layer.

• Define following terms: ◦ Vectorization, ◦ k-fold Validation, ◦ Iterated k-fold vali-
dation, ◦ Hold-out validation, and ◦ Feature engineering

• Describe a flow of designing ML/DL algorithm to the best of your abilities.
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