
COMPUTER ORGANIZATION (ECS 409)
HARDWARE DESCRIPTION LANGUAGE AND VERILOG

Dr. Sukarn Agarwal

EECS
Indian Institute of Science Education and Research Bhopal

Agenda for Today and Next Lecture
▪ Hardware Description Languages

▪ Implementing Combinational Logic (in Verilog)

▪ Implementing Sequential Logic (in Verilog)

Required Readings
▪ Hardware Description Languages and Verilog

▪ H&H Chapter 4 in full

Grading Policy

• Assignment: For Practise
• Mid Sem: 40%​
• End Sem: 60%​

Marks
Distribution:​

• Implementing Combinational Circuit in Verilog
• Using Structural Verilog Module Coding
• Using Behavioral Verilog Module Coding

• Implementing Sequential Circuit in Verilog
• Latches, Counters and Registers
• State Digram

Assignment
Type:​

Hardware Description
Languages & Verilog

2017: Intel Kaby Lake
• 64-bit processor
• 4 cores, 8 threads
• 14-19 stage pipeline
• 3.9 GHz clock freq.

• 1.75B transistors

• In ~47 years, about
1,000,000-fold growth
in transistor count and
performance!

https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake

2021: Apple M1

Source: https://www.anandtech.com/show/16252/mac-mini-
apple-m1-tested

• 4 High-Perf GP Cores
• 4 Efficient GP Cores
• 8-Core GPU
• 16-Core Neural Engine
• Lots of Cache
• Many Caches
• 8x Memory Channels

• 16B transistors

2022: Apple M1 Ultra

https://www.theverge.com/2022/3/9/22968611/apple-m1-ultra-gpu-nvidia-rtx-3090-comparison

• 16 High-Perf GP Cores
• 4 Efficient GP Cores
• 64-Core GPU
• 32-Core Neural Engine
• Lots of Cache
• Many Caches
• 32x Memory Channels
• 128 GB DRAM

• 114B transistors

2019: Cerebras Wafer Scale Engine

Cerebras WSE
1.2 Trillion transistors

46,225 mm2

Largest GPU
21.1 Billion transistors

815 mm2

◼ The largest ML
 accelerator chip (2019)

◼ 400,000 cores

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

2021: Cerebras Wafer Scale Engine 2

Cerebras WSE-2
2.6 Trillion transistors

46,225 mm2

Largest GPU
54.2 Billion transistors

826 mm2

◼ The largest ML
 accelerator chip (2021)

◼ 850,000 cores

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Transistor Counts Are Growing

Memory chips have orders of magnitude more transistors than computation chips

Source: https://en.wikipedia.org/wiki/Transistor_count

How to Deal with this Complexity?
◼ Hardware Description Languages

◼ What we need for hardware design:
❑ Ability to describe (specify) complex designs
❑ … and to simulate their behavior (functional & timing)
❑ … and to synthesize (automatically design) portions of it

◼ have an error-free path to implementation

◼ Hardware Description Languages enable all of the above
❑ Languages designed to describe hardware
❑ There are similarly-featured HDLs (e.g., Verilog, VHDL, ...)

◼ if you learn one, it is not hard to learn another
◼ mapping between languages is typically mechanical, especially for the

commonly used subset

Hardware Description Languages
▪ Two well-known hardware description languages

▪ Verilog
▪ Developed in 1984 by Gateway Design Automation
▪ Became an IEEE standard (1364) in 1995
▪ More popular in US

▪ VHDL (VHSIC Hardware Description Language)
▪ Developed in 1981 by the US Department of Defense
▪ Became an IEEE standard (1076) in 1987
▪ More popular in Europe

▪ We will use Verilog in this course

Why Specialized
Languages for Hardware?

▪ HDLs enable easy description of hardware structures
▪ Wires, gates, registers, flip-flops, clock, rising/falling edge, …
▪ Combinational and sequential logic elements

▪ HDLs enable seamless expression of parallelism inherent
in hardware
▪ All hardware logic operates concurrently

▪ Both of the above ease specification, simulation
& synthesis

Hardware Design Using HDL

Key Design Principle: Hierarchical Design
▪ Design a hierarchy of modules

▪ Predefined “primitive” gates (AND, OR, …)
▪ Simple modules are built by instantiating these

gates (e.g., components like MUXes)
▪ Complex modules are built by instantiating simple

modules, …

▪ Hierarchy controls complexity
▪ Analogous to the use of

function/method abstraction in programming

▪ Complexity is a BIG deal
▪ In real world, how big is the size of a module (that

is described in HDL and then synthesized to
gates)?

How many?

https://techreport.com/review/21987/i
ntel-core-i7-3960x-processor

Top Down Design Methodology
▪ We define the top-level module and identify the sub-modules necessary to build

the top-level module
▪ Subdivide the sub-modules until we come to leaf cells

▪ Leaf cell: circuit components that cannot further be divided (e.g., logic gates,
primitive cell library elements)

Top-level
Module

Sub-module Sub-module Sub-module

… … ……
Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Bottom Up Design Methodology
◼ We first identify the building blocks that are available to us
◼ Build bigger modules, using these building blocks
◼ These modules are then used for higher-level modules until we build the top-

level module in the design
Top-level
Module

Sub-module Sub-module Sub-module
… … ……

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Defining a Module in Verilog
▪ A module is the main building block in Verilog
▪ We first need to define:

▪ Name of the module
▪ Directions of its ports (e.g., input, output)
▪ Names of its ports

▪ Then:
▪ Describe the functionality of the module

inputs output

example

Implementing a Module in Verilog

module example (a, b, c, y);
 input a;
 input b;
 input c;
 output y;

// here comes the circuit description

endmodule

inputs output

example

a module
definition

name of
module

Port list
(inputs and outputs)

ports have a
declared type

A Question of Style (and Consistency)

◼ The following two codes are functionally identical

module test (a, b, y);
 input a;
 input b;
 output y;

endmodule

module test (input a,
 input b,
 output y);

endmodule

port name and direction declaration
can be combined

What If We Have Multi-bit Input/Output?
▪ You can also define multi-bit Input/Output (Bus)

▪ [range_end : range_start]
▪ Number of bits: range_end – range_start + 1

▪ Example:

▪ a represents a 32-bit value, so we prefer to define it as: [31:0] a

▪ It is preferred over [0:31] a which resembles array definition
▪ It is good practice to be consistent with the representation of multi-bit signals,

i.e., always [31:0] or always [0:31]

input [31:0] a; // a[31], a[30] .. a[0]
output [15:8] b1; // b1[15], b1[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b2[0]
input c; // single signal

Manipulating Bits

// You can assign partial buses
 wire [15:0] longbus;
 wire [7:0] shortbus;
 assign shortbus = longbus[12:5];

// Concatenating is by {}
 assign y = {a[2],a[1],a[0],a[0]};

// Possible to define multiple copies
 assign x = {a[0], a[0], a[0], a[0]}
 assign y = { 4{a[0]} }

◼ Bit Slicing
◼ Concatenation
◼ Duplication

Basic Syntax
▪ Verilog is case sensitive

▪ SomeName and somename are not the same!
▪ Names cannot start with numbers:

▪ 2good is not a valid name
▪ Whitespaces are ignored

// Single line comments start with a //

/* Multiline comments
 are defined like this */

Two Main Style of HDL Implementation
▪ Structural (Gate-Level)

▪ The module body contains gate-level description of the circuit
▪ Describe how modules are interconnected
▪ Each module contains other modules (instances)
▪ … and interconnections between those modules
▪ Describes a hierarchy of modules defined as gates

▪ Behavioral
▪ The module body contains functional description of the circuit
▪ Contains logical and mathematical operators
▪ Level of abstraction is higher than gate-level

▪ Many possible gate-level realizations of a behavioral description

▪ Many practical designs use a combination of both

Structural (Gate-Level) HDL

Structural HDL: Instantiating a Module

Schematic of module “top” that is built from
two instances of module “small”

module top (A, SEL, C, Y);
 input A, SEL, C;
 output Y;
 wire n1;

endmodule

Structural HDL Example
◼ Module Definitions in Verilog

module small (A, B, Y);
 input A;
 input B;
 output Y;

// description of small

endmodule

i_first
i_second

Structural HDL Example

module top (A, SEL, C, Y);
 input A, SEL, C;
 output Y;
 wire n1;

endmodule

module small (A, B, Y);
 input A;
 input B;
 output Y;

// description of small

endmodule

◼ Defining wires (module interconnections)

i_first
i_second

Structural HDL Example
◼ The first instantiation of the “small” module

module top (A, SEL, C, Y);
 input A, SEL, C;
 output Y;
 wire n1;

// instantiate small once
small i_first (.A(A),
 .B(SEL),
 .Y(n1));

endmodule

module small (A, B, Y);
 input A;
 input B;
 output Y;

// description of small

endmodule

i_first
i_second

Structural HDL Example
◼ The second instantiation of the “small” module

module top (A, SEL, C, Y);
 input A, SEL, C;
 output Y;
 wire n1;

// instantiate small once
small i_first (.A(A),
 .B(SEL),
 .Y(n1));

// instantiate small second time
small i_second (.A(n1),
 .B(C),
 .Y(Y));

endmodule

module small (A, B, Y);
 input A;
 input B;
 output Y;

// description of small

endmodule

i_first
i_second

Structural HDL Example
◼ Short form of module instantiation

module top (A, SEL, C, Y);
 input A, SEL, C;
 output Y;
 wire n1;

// alternative short form
small i_first (A, SEL, n1);

/* In the short form above,
 pin order very important */

// safer choice; any pin order
small i_second (.B(C),
 .Y(Y),
 .A(n1));

endmodule

module small (A, B, Y);
 input A;
 input B;
 output Y;

// description of small

endmodule

i_first
i_second

Short form is not good practice
as it reduces code maintainability

Structural HDL Example ​(II)
◼ Verilog supports basic logic gates as predefined primitives

❑ These primitives are instantiated like modules except that they are
predefined in Verilog and do not need a module definition

module mux2(input d0, d1,
 input s,
 output y);
 wire ns, y1, y2;

 not g1 (ns, s);
 and g2 (y1, d0, ns);
 and g3 (y2, d1, s);
 or g4 (y, y1, y2);

endmodule

A B

S

C

ba

d0 d1

s

y

y1 y2

