COMPUTER ORGANIZATION (ECS 409)

HARDWARE DESCRIPTION LANGUAGE AND VERILOG

Dr. Sukarn Agarwal

EECS
Indian Institute of Science Education and Research Bhopal

Agenda for Today and Next Lecture

» Hardware Description Languages

* Implementing Combinational Logic (in Verilog)

* Implementing Sequential Logic (in Verilog)

Required Readings

» Hardware Description Languages and Verilog
» H&H Chapter 4 in full

Grading Policy

Marks
Distribution:

Assignment
Type:

* Assignment: For Practise
» Mid Sem: 40%
* End Sem: 60%

« Implementing Combinational Circuit in Verilog

« Using Structural Verilog Module Coding
« Using Behavioral Verilog Module Coding

* Implementing Sequential Circuit in Verilog

« Latches, Counters and Registers
« State Digram

Hardware Description
Languages & Verilog

2017: Intel Kaby Lake

64-bit processor
4 cores, 8 threads

14-19 stage pipeline
3.9 GHz clock freq.

1.75B transistors

In ~47 years, about

| 1,000,000-fold growth
https:/fen.wikichip.org/wiki/intel/microarchitectures/kaby_lake in tranSiStOI' count al’ld
performance!

2021: Apple M1

4 High-Perf GP Cores
4 Efficient GP Cores
8-Core GPU

16-Core Neural Engine
Lots of Cache

Many Caches

i

8

S 'PDDRAX
CGhannels

8x Memory Channels

16B transistors

Source: https://www.anandtech.com/show/16252/mac-mini-
apple-m1-tested

2022: Apple M1 Ultra

16 High-Perf GP Cores
4 Efficient GP Cores
64-Core GPU

32-Core Neural Engine
Lots of Cache

Many Caches

32x Memory Channels
128 GB DRAM

114B transistors

https://lwww.theverge.conv2022/3/9/22968611/apple-m1-ultra-gpu-nvidia-rtx-3090-comparison

2019: Cerebras Wafer Scale Engine

= 7

= The largest ML
accelerator chip (2019)

= 400,000 cores

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm? 815 mm?2

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

2021: Cerebras Wafer Scale Engine 2

» The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE- Largest GPU
2.6 Trillion transistors 54.2 Billion transistors
46,225 mm? 826 mm?2

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Transistor Counts Are Growing

Number of MOSFETs
Year | Component Name R
(in billions)
2022 | Flash memory | Micron's V-NAND chip | 5,333 (stacked package of sixteen 232-layer 3D NAND dies)
2020 | any processor | Wafer Scale Engine 2 | 2,600 (wafer-scale design consisting of 84 exposed fields (dies))

microprocessor

2022 . M1 Ultra 114 (dual-die SoC; entire M1 Ultra is a multi-chip module)
(commercial)

2022 GPU Nvidia H100 80

2020 DLP Colossus Mk2 GC200 59.4

In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of
2016 is the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the
processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the
transistors."l®] To compare, the smallest computer, as of 2018 dwarfed by a grain of rice, has on the order of 100,000 transistors.

Memory chips have orders of magnitude more transistors than computation chips

Source: https://en.wikipedia.org/wiki/ Transistor_count

How to Deal with this Complexity?

m Hardware Description Languages

= What we need for hardware design:
o Ability to describe (specify) complex designs
o ... and to simulate their behavior (functional & timing)

0 ... and to synthesize (automatically design) portions of it

= have an error-free path to implementation

m Hardware Description Languages enable all of the above
o Languages designed to describe hardware
o There are similarly-featured HDLs (e.g., Verilog, VHDL, ...)
m if you learn one, it is not hard to learn another

= mapping between languages is typically mechanical, especially for the
commonly used subset

Hardware Description Languages

= Two well-known hardware description languages

= Verilog
= Developed in 1984 by Gateway Design Automation
» Became an IEEE standard (1364) in 1995
= More popular in US

= VHDL (VHSIC Hardware Description Language)
= Developed in 1981 by the US Department of Defense
= Became an IEEE standard (1076) in 1987
* More popular in Europe

= We will use Verilog in this course

Why Specialized
Languages for Hardware?

= HDLs enable easy description of hardware structures
= Wires, gates, registers, flip-flops, clock, rising/falling edge, ...
= Combinational and sequential logic elements

@} = HDLs cnable scamless expression of parallelism inherent
o> in hardware

= All hardware logic operates concurrently

O

= Both of the above ease specification, simulation
& synthesis

Hardware Design Using HDL

Key Design Principle: Hierarchical Design

= Design a hierarchy of modules
= Predefined “primitive” gates (AND, OR, ...)

= Simple modules are built by instantiating these
gates (e.g., components like MUXes)

= Complex modules are built by instantiating simple
modules, ...

= Hierarchy controls complexity

» Analogous to the use of
function/method abstraction in programming

Memory, Controller iz

= Complexity is a BIG deal

» In real world, how big is the size of a module (that
is described in HDL and then synthesized to
gates)?

How many?

https://techreport.com/review/21987/i
ntel-core-i7-3960x-processor

Top Down Design Methodology

» We define the top-level module and identify the sub-modules necessary to build
the top-level module

= Subdivide the sub-modules until we come to leaf cells

= [eaf cell: circuit components that cannot further be divided (e.g., logic gates,
primitive cell library elements)

Top-level
Module

v

Sub-module Sub-module Sub-module

W S

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Bottom Up Design Methodology

B We first identify the building blocks that are available to us
B Build bigger modules, using these building blocks

B These modules are then used for higher-level modules until we build the top-
level module in the design

Top-level
Module
/ Y \
Sub-module Sub-module Sub-module

Leaf-cell Leaf-cell Leaf-cell Leaf-cell

Defining a Module in Verilog

= A module is the main building block in Verilog
= We first need to define:

= Name of the module

= Directions of its ports (e.g., input, output)

= Names of its ports
= Then:

= Describe the functionality of the module

example —

inputs output

Implementing a Module in Verilog

—p
e example —
—p
inputs output
name of Port list

module example (a, b, c,
input a;

output y;

endmodule

/ module
y;;

// here comes the circuit description

(inputs and outputs)

ports have a

input b;
input c; V declared type

a module
definition

A Question of Style (and Consistency)

m The following two codes are functionally identical

module test (a, b, y);
input a;
input b;
output y;

endmodule

port name and direction declaration
can be combined

What If We Have Multi-bit Input/Output?

* You can also define multi-bit Input/Output (Bus)

= [range end : range start]

= Number of bits: range end —range start + 1
= Example:
input [31:0] a; // a[31], a[3@0] .. a[@]
output [15:8] bl; // bi[15], bl[14] .. b1[8]
output [7:0] b2; // b2[7], b2[6] .. b2[0]
input C; // single signal

= a represents a 32-bit value, so we prefer to define it as: [31:0] a
= [t is preferred over [0:31] a which resembles array definition

= [t is good practice to be consistent with the representation of multi-bit signals,
1.e., always [31:0] or always [0:31]

Manipulating Bits

m Bit Slicing

m Concatenation

m Duplication

//

//

//

You can assign partial buses
wire [15:0] longbus;

wire [7:0] shortbus;

assign shortbus = longbus[12:5];

Concatenating is by {}
assign y = {a[2],a[1],a[@],a[0]};

Possible to define multiple copies
assign x = {a[@], a[e], a[e@], a[@]}
assign y = { 4{a[@]} }

Basic Syntax

= Verilog is case sensitive

= SomeName and somename are not the same!
» Names cannot start with numbers:

= 2good is not a valid name

= Whitespaces are ignored

// Single line comments start with a //

/* Multiline comments
are defined like this */

Two Main Style of HDL Implementation

= Structural (Gate-Level)
» The module body contains gate-level description of the circuit
= Describe how modules are interconnected
= Each module contains other modules (instances)
= ... and interconnections between those modules
= Describes a hierarchy of modules defined as gates

= Behavioral
* The module body contains functional description of the circuit
* Contains logical and mathematical operators

= Level of abstraction is higher than gate-level
= Many possible gate-level realizations of a behavioral description

= Many practical designs use a combination of both

Structural (Gate-Level) HDL

Structural HDL: Instantiating a Module

i_first

AT
A
Y n A
SEL- B Y
small B
small
C

top

Schematic of module “top” that is built from

two instances of module “small”

Structural HDL Example

m Module Definitions in Verilog

input
output Y;
wire nil;

endmodule

i_first

AJ

A

all

ni

i_second

A

B
‘mall

top

Structural HDL Example

s Defining wires (module interconnections)

module top (A, SEL, C, Y); i_first

input A, SEL, C; Ad— i_second
A

output Y; v n1 A
wire nij SEL- B \
small B

small
(¢}

top

endmodule

Structural HDL Example

m The first instantiation of the “small” module

)
module top (A, SEL, C, Y); i_first '
input A, SEL, C; A / \ Lpzeen
output Y; Ay nt A
wire nl; B / 5 Y
/ . \ small ,_—
/ instantiate small once

small i_first (.A(A),
.B(SEL),

\ .Y(n1)

endmodule

Structural HDL Example

m The second instantiation of the “small” module

module top (A, SEL, C, Y);
input A, SEL, C;
output Y;
wire ni;

// instantiate small once

small i_first (.A(A),
.B(SEL),
.Y(nl))

,#f—;:;:;;;;ate small second tI

small i_second (.A(nl),
.B(C),
Y(Y))5

endmodule

i_first

ni

@

small

top

Structural HDL Example

= Short form of module instantiation

module top (A, SEL, C, Y); i_first '

input A, SEL, C; A i_second

output Y; [v n A

wire ni; SEL- B . % Y

1l
= ,_— small

// alternative short form ¢
small i_first (A, SEL, n1); top

/* In the short form above,
pin order very important */

// safer choice; any pin order
small i_second (.B(C),

-Y(Y),

A(N1));

endmodule

Short form is not good practice
as it reduces code maintainability

Structural HDL Example (II)

m Verilog supports basic logic gates as predefined primitives

o These primitives are instantiated like modules except that they are
predefined in Verilog and do not need a module definition

module mux2(input do, di, do d1
input s,
output y);
wire ns, yl, y2;

not g1 (ns, s);

and g2 (yl, do, ns);
and g3 (y2, di, s);
or g4 (y, y1, y2);

endmodule

