
Implementing Sequential Logic 

Using Verilog
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Sequential Logic in Verilog

◼ Define blocks that have memory

❑ Flip-Flops, Latches, Finite State Machines

◼ Sequential Logic state transition is triggered by a “CLOCK” signal

❑ Latches are sensitive to level of the signal

❑ Flip-flops are sensitive to the transitioning of signal

◼ Combinational HDL constructs are not sufficient to express 

sequential logic

❑ We need new constructs:

◼ always

◼ posedge/negedge



The "always' Block

always @ (sensitivity list)

statement;

Whenever the event in the sensitivity list occurs, 
the statement is executed



Recall: The D Flip Flop

◼ 1) state change on clock edge, 2) data available for full cycle

◼ At the rising edge of clock (clock going from 0->1), Q gets assigned D

◼ At all other times, Q is unchanged
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Recall: The D Flip Flop

◼ 1) state change on clock edge, 2) data available for full cycle

◼ At the rising edge of clock (clock going from 0->1), Q gets assigned D

◼ At all other times, Q is unchanged

CLK:
0

1

We can use D Flip-Flops

to implement the state register



Example: D Flip Flop

module flop(input  clk,

 input  [3:0] d,

 output reg [3:0] q);

 always @ (posedge clk)

 q <= d;  // pronounced “q gets d”

endmodule

◼ posedge defines a rising edge (transition from 0 to 1).

◼ Statement executed when the clk signal rises (posedge of clk)

◼ Once the clk signal rises: the value of d is copied to q



Example: D Flip Flop

module flop(input  clk,

 input  [3:0] d,

 output reg [3:0] q);

 always @ (posedge clk)

 q <= d;  // pronounced “q gets d”

endmodule

◼ assign statement is not used within an always block

◼ <= describes a non-blocking assignment

❑ We will see the difference between blocking assignment and non-

blocking assignment soon



Example: D Flip Flop

module flop(input  clk,

 input  [3:0] d,

 output reg [3:0] q);

 always @ (posedge clk)

 q <= d;  // pronounced “q gets d”

endmodule

◼ Assigned variables need to be declared as reg

◼ The name reg does not necessarily mean that the value is a 

register (It could be, but it does not have to be)

◼ We will see examples later



Asynchronous and Synchronous Reset

◼ Reset signals are used to initialize the hardware to a known state

❑ Usually activated at system start (on power up)

◼ Asynchronous Reset

❑ The reset signal is sampled independent of the clock

❑ Reset gets the highest priority

❑ Sensitive to glitches, may have metastability issues

◼ Synchronous Reset

❑ The reset signal is sampled with respect to the clock

❑ The reset should be active long enough to get sampled at the clock edge

❑ Results in completely synchronous circuit



Recall: Asynchronous vs. Synchronous State Change

◼ Sequential lock we saw is an asynchronous “machine”

❑ State transitions occur when they occur

❑ There is nothing that synchronizes when each state transition must occur

◼ Most modern computers are synchronous “machines”

❑ State transitions take place after fixed units of time

❑ Controlled in part by a clock, as we will see soon

◼ These are two different design paradigms, with tradeoffs

❑ Synchronous control can be easier to get correct when the system consists of 

many components and many states

❑ Asynchronous control can be more efficient (no clock overheads)

We will assume synchronous systems in most of this course



D Flip Flop with Asynchronous Reset

module flop_ar (input            clk,
                input            reset, 
                input      [3:0] d, 
                output reg [3:0] q);

  always @ (posedge clk, negedge reset)
    begin
       if (reset == 0) q <= 0;   // when reset
       else            q <= d;   // when clk
    end
endmodule

◼ In this example: two events can trigger the process:

❑ A rising edge on clk

❑ A falling edge on reset



D Flip Flop with Asynchronous Reset

module flop_ar (input            clk,
                input            reset, 
                input      [3:0] d, 
                output reg [3:0] q);

  always @ (posedge clk, negedge reset)
    begin
       if (reset == 0) q <= 0;   // when reset
       else            q <= d;   // when clk
    end
endmodule

◼ For longer statements, a begin-end pair can be used

❑ To improve readability

❑ In this example, it was not necessary, but it is a good idea



D Flip Flop with Asynchronous Reset

module flop_ar (input            clk,
                input            reset, 
                input      [3:0] d, 
                output reg [3:0] q);

  always @ (posedge clk, negedge reset)
    begin
       if (reset == 0) q <= 0;   // when reset
       else            q <= d;   // when clk
    end
endmodule

◼ First reset is checked: if reset is 0, q is set to 0.

❑ This is an asynchronous reset as the reset can happen independently of 

the clock (on the negative edge of reset signal)

◼ If there is no reset, then regular assignment takes effect



D Flip Flop with Synchronous Reset

module flop_sr (input            clk,
                input            reset, 
                input      [3:0] d, 
                output reg [3:0] q);

  always @ (posedge clk)
    begin
       if (reset == ‘0’) q <= 0;   // when reset
       else              q <= d;   // when clk
    end
endmodule

The process is sensitive to only clock

❑ Reset happens only when the clock rises. This is a synchronous reset



D Flip Flop with Enable and Reset

module flop_en_ar (input            clk,
                   input            reset,
                   input            en,
                   input      [3:0] d, 
                   output reg [3:0] q);

  always @ (posedge clk, negedge reset)
    begin
       if (reset == ‘0’) q <= 0;   // when reset
       else if (en)      q <= d;   // when en AND clk
    end
endmodule

◼ A flip-flop with enable and reset

❑ Note that the en signal is not in the sensitivity list

◼ q gets d only when clk is rising and en is 1



Example: D Latch

module latch (input            clk, 

              input      [3:0] d, 

              output reg [3:0] q);

  always @ (clk, d)

    if (clk) q <= d;      // latch is transparent when

                          // clock is 1

endmodule



Summary: Sequential Statement So Far

◼ Sequential statements are within an always block

◼ The sequential block is triggered with a change in the sensitivity list

◼ Signals assigned within an always must be declared as reg

◼ We use <= for (non-blocking) assignments and do not use assign 
within the always block.



Basics of always block

module example (input            clk, 
                input      [3:0] d, 
                output reg [3:0] q);

  wire [3:0] normal;         // standard wire
  reg  [3:0] special;        // assigned in always

  always @ (posedge clk)
    special <= d;            // first FF array

  assign normal = ~special; // simple assignment

  always @ (posedge clk)
    q <= normal;             // second FF array
endmodule

You can have as many always blocks as needed

Assignment to the same signal in different always blocks is not allowed!



Why Does an always Block Remember?

module flop (input            clk,
             input      [3:0] d, 
             output reg [3:0] q);

  always @ (posedge clk)
    begin
        q <= d;   // when clk rises copy d to q
    end
endmodule

◼ This statement describes what happens to signal q

◼ … but what happens when the clock is not rising?

◼ The value of q is preserved (remembered)



An always Block Does Not Always Remember

module comb (input            inv,
             input      [3:0] data, 
             output reg [3:0] result);

  always @ (inv, data)       // trigger with inv, data
    if (inv) result <= ~data;// result is inverted data
    else     result <= data; // result is data

endmodule

◼ This statement describes what happens to signal result

❑ When inv is 1, result is ~data

❑ When inv is not 1, result is data

◼ The circuit is combinational (no memory)

❑ result is assigned a value whenever an input value changes & in all cases of 

the if .. else block



Always Blocks for Combinational Circuit

◼ An always block defines combinational logic if:

❑ All outputs are always (continuously) updated

1. All right-hand side signals are in the sensitivity list

◼ You can use always @* for short

2. All left-hand side signals get assigned in every possible condition of if .. else 

and case blocks

◼ It is easy to make mistakes and unintentionally describe memorizing 

elements (latches)

❑ Vivado will most likely warn you. Make sure you check the warning 

messages

◼ Always blocks allow powerful combinational logic statements
❑ if .. else

❑ case



Sequential or Combinational ?

wire enable, data;
reg out_a, out_b; 

always @ (*) begin
 out_a = 1’b0;
 if(enable) begin
  out_a = data;
  out_b = data;
 end
end

No assignment for ~enable

Sequential

wire enable, data;
reg out_a, out_b; 

always @ (data) begin
 out_a = 1’b0;
 out_b = 1’b0;
 if(enable) begin
  out_a = data;
  out_b = data;
 end
end Not in the sensitivity list

Sequential



The always Block is not Always Practical/Nice

reg  [31:0] result;
 wire [31:0] a, b, comb;
 wire        sel,

 always @ (a, b, sel)    // trigger with a, b, sel
    if (sel) result <= a; // result is a
    else     result <= b; // result is b
  
 assign comb = sel ? a : b;

◼ Both statements describe the same multiplexer

◼ In this case, the always block is more work



Always Block for Case Statements (Handy!)

module sevensegment (input [3:0] data,

output reg [6:0] segments);

always @ ( * ) // * is short for all signals

case (data) // case statement

4'd0: segments = 7'b111_1110; // when data is 0

4'd1: segments = 7'b011_0000; // when data is 1

4'd2: segments = 7'b110_1101;

4'd3: segments = 7'b111_1001;

4'd4: segments = 7'b011_0011;

4'd5: segments = 7'b101_1011;

// etc etc

default: segments = 7'b000_0000; // required

endcase

endmodule



Summary: always Block

◼ if .. else can only be used in always blocks

◼ The always block is combinational only if all regs within the 

block are always assigned to a signal

❑ Use the default case to make sure you do not forget an 

unimplemented case, which may otherwise result in a latch

◼ Use casex statement to be able to check for don’t cares



Non-Blocking and Blocking Assignments

always @ (a)

begin

   a <= 2’b01;

   b <= a;

// all assignments are made here

// b is not (yet) 2’b01

end

Non-blocking (<=)

◼ All assignments are made at 

the end of the block

◼ All assignments are made in 

parallel, process flow is

not-blocked

always @ (a)

begin

   a = 2’b01;

// a is 2’b01

   b = a;

// b is now 2’b01 as well

end

Blocking (=)

◼ Each assignment is made 

immediately

◼ Process waits until the first 

assignment is complete, it blocks 

progress

◼ Similar to sequential programs



Why Use (Non)-Blocking Assignments

◼ Non-blocking statements allow operating on “old” values

❑ Enable easy sequential logic descriptions

◼ Blocking statements allow a sequence of operations

❑ Allow operating on immediately updated values

❑ More like a “software” programming language

◼ If the sensitivity list is correct, a block with non-blocking statements 

will eventually evaluate to the same result as the same block with 

blocking statements

❑ This may require some additional iterations



Example: Blocking Assignment

always @ ( * )
  begin
    p    = a ^ b ;         // p    = 0 
    g    = a & b ;         // g    = 0
    s    = p ^ cin ;       // s    = 0 
    cout = g | (p & cin) ; // cout = 0
  end

◼ Assume all inputs are initially ‘0’

◼ If a changes to ‘1’

❑ All values are updated in order

1

0
1

0



The Same Example: Non-Blocking Assignment

always @ ( * )
  begin
    p    <= a ^ b ;         // p    = 0 
    g    <= a & b ;         // g    = 0
    s    <= p ^ cin ;       // s    = 0 
    cout <= g | (p & cin) ; // cout = 0
  end

◼ Assume all inputs are initially ‘0’

◼ If a changes to ‘1’

❑ All assignments are concurrent

❑ When s is being assigned, p is still 0

1

0
0

0



The Same Example: Non-Blocking Assignment

◼ After the first iteration, p has changed to ‘1’ as well

always @ ( * )
  begin
    p    <= a ^ b ;         // p    = 1 
    g    <= a & b ;         // g    = 0
    s    <= p ^ cin ;       // s    = 0 
    cout <= g | (p & cin) ; // cout = 0
  end

◼ Since there is a change in p, the process triggers again

◼ This time s is calculated with p=1

1

0
1

0



Rules for Signal Assignment

◼ Use always @(posedge clk) and non-blocking assignments (<=) to 

model synchronous sequential logic

◼ Use continuous assignments (assign) to model simple combinational 

logic

      

always @ (posedge clk)

   q <= d; // non-blocking

assign y = a & b;



Rules for Signal Assignment (Cont.)

◼ Use always @ (*) and blocking assignments (=) to model more 

complicated combinational logic

◼ You cannot make assignments to the same signal in more than one always 

block or in a continuous assignment

always @ (*)

   a = b;

always @ (*)

   a = c;

always @ (*)

   a = b;

assign a = c;



Finite State Machines (FSMs)

◼ Each FSM consists of three separate parts:

❑ next state logic

❑ state register

❑ output logic

At the beginning of the clock cycle, next state is latched into the state register



Finite State Machine (FSMs) Consist of:

◼ Sequential Circuits

❑ State register(s)

◼ Store the current state and

◼ Load the next state at the clock edge

◼ Combinational Circuits

❑ Next state logic

◼ Determines what the next state will be

❑ Output logic

◼ Generates the outputs



FSM Example 1: Divide the Clock Frequency by 3

The output Y is HIGH for one clock cycle out of every 3. In other 

words, the output divides the frequency of the clock by 3.



Implementing FSM Example 1: Definitions

module divideby3FSM (input clk,

 input reset,

 output q);

 reg  [1:0] state, nextstate;

 parameter S0 = 2'b00;

 parameter S1 = 2'b01;

 parameter S2 = 2'b10;

◼ We define state and nextstate as 2-bit reg

◼ The parameter descriptions are optional, it makes reading easier



Implementing FSM Example 1: State Register

// state register

 always @ (posedge clk, posedge reset)

 if (reset) state <= S0;

 else  state <= nextstate;

◼ This part defines the state register (memorizing process)

◼ Sensitive to only clk, reset

◼ In this example, reset is active when it is ‘1’ (active-high)



Implementing FSM Example 1: Next State Logic

// next state logic

   always @ (*)

      case (state)

         S0:      nextstate = S1;

         S1:      nextstate = S2;

         S2:      nextstate = S0;

         default: nextstate = S0;

      endcase
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Implementing FSM Example 1: Output Logic

// output logic

   assign q = (state == S0);

◼ In this example, output depends only on state

❑ Moore type FSM



Implementation of FSM Example 1

module divideby3FSM (input clk, input reset, output q);

   reg  [1:0] state, nextstate;

   

   parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10;

   

   always @ (posedge clk, posedge reset) // state register

      if (reset) state <= S0;

      else       state <= nextstate;

   

   always @ (*)                          // next state logic

      case (state)

         S0:      nextstate = S1;

         S1:      nextstate = S2;

         S2:      nextstate = S0;

         default: nextstate = S0;

      endcase

   assign q = (state == S0);            // output logic

endmodule 



FSM Example 2: The Smiling Snail

Moore

Mealy

◼ Alyssa P. Hacker has a snail that crawls down a paper tape with 1’s and 

0’s on it

◼ The snail smiles whenever the last four digits it has crawled over are 

1101

◼ Design Moore and Mealy FSMs of the snail’s brain



Implementing FSM Example 2: Definitions

module SmilingSnail (input clk, 

                     input reset,

                     input number,  

                     output smile);

   reg  [1:0] state, nextstate;

   

   parameter S0 = 2'b00;

   parameter S1 = 2'b01;

   parameter S2 = 2'b10;

   parameter S3 = 2’b11;
   

digit/smile



Implementing FSM Example 2: State Register

// state register

   always @ (posedge clk, posedge reset)

      if (reset) state <= S0;

      else       state <= nextstate;

◼ This part defines the state register (memorizing process)

◼ Sensitive to only clk, reset

◼ In this example reset is active when ‘1’ (active-high)



Implementing FSM Example 2: Next State Logic

// next state logic

   always @ (*)

      case (state)

         S0: if (number) nextstate = S1;

             else   nextstate = S0;

         S1: if (number) nextstate = S2;

             else   nextstate = S0;

         S2: if (number) nextstate = S2;

             else   nextstate = S3;

         S3: if (number) nextstate = S1;

             else   nextstate = S0;

         default:   nextstate = S0;

      endcase



Implementing FSM Example 2: Output Logic

// output logic

   assign smile = (number & state == S3);

◼ In this example, output depends on state and input

❑ Mealy type FSM

◼ We used a simple combinational assignment



Implementation of FSM Example 2

module SmilingSnail (input clk, 

                     input reset,

                     input number,

                     output smile);

   reg  [1:0] state, nextstate;

   

   parameter S0 = 2'b00;

   parameter S1 = 2'b01;

   parameter S2 = 2'b10;

   parameter S3 = 2’b11;

   // state register

   always @ (posedge clk, posedge 
reset)

      if (reset) state <= S0;

      else      state <= nextstate;   

always @ (*) // next state logic

      case (state)

         S0: if (number)

                  nextstate = S1;

             else nextstate = S0; 

         S1: if (number)

                  nextstate = S2;

             else nextstate = S0;

         S2: if (number)

                  nextstate = S2;

             else nextstate = S3;

         S3: if (number)

                  nextstate = S1;

             else nextstate = S0;

         default: nextstate = S0;

      endcase

   // output logic

assign smile = (number & state==S3);

endmodule



What did We Learn?

◼ Basics of describing sequential circuits in Verilog

◼ The always statement

❑ Needed for describing memorizing elements (flip-flops, latches)

❑ Can also be used to describe combinational circuits

◼ Blocking vs Non-blocking statements

❑ = assigns the value immediately

❑ <= assigns the value at the end of the block

◼ Describing FSMs in Verilog

❑ Next state logic

❑ State assignment

❑ Output logic



Questions?

Contact me at

sukarn@iiserb.ac.in


