
COMPUTER ORGANIZATION (ECS 409/609)
VON NEUMANN, ISA, LC-3 AND MIPS

Dr. Sukarn Agarwal

EECS
Indian Institute of Science Education and Research Bhopal

Course Outline for Today and Next Few Lecture

➢ The von Neumann model

➢ LC-3: An example of von Neumann machine

➢ LC-3 and MIPS Instruction Set Architectures

➢ Introduction to microarchitecture and single-cycle microarchitecture

➢ Multi-cycle microarchitecture

➢Microprogramming

Required Readings

◼This week

▪ Von Neumann Model, LC-3, and MIPS

▪ P&P, Chapters 4, 5

▪ H&H, Chapter 6

▪ P&P, Appendices A and C (ISA and microarchitecture of LC-3)

▪ H&H, Appendix B (MIPS instructions)

▪ Recommended: H&H Chapter 5, especially 5.1, 5.2, 5.4, 5.5

What We learn today

▪ The von Neumann model

▪ LC-3: An example von Neumann machine

▪ Instruction Set Architectures: Collection of Instructions

▪ Example LC-3 and MIPS

▪ Operate instructions

▪ Data movement instructions

▪ Control instructions

▪ Instruction formats

▪ Addressing modes

Basic Elements of a Computer

▪ In Digital Design and Computer Organization you learned

▪ Combinational Elements

▪ Sequential Elements

▪ With them, we can build

▪ Decision Units (e.g.: Finite State Machine)

▪ Storage Units (e.g.: Register and Memory)

▪ Execution Units (e.g. ALU)

▪ Communication Units

▪ Basic elements of a computer

▪ We raise our abstraction level today

▪ Using logic structures to construct basic computing model

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic

Devices

System Software

Electrons

Basic Elements of a Computer

▪ To get a task done by a (general-purpose) computer, we need

▪ A computer program

▪ That specifies what the computer must do

▪ The computer itself

▪ To carry out the specified task

▪ Program: A set of instructions

▪ Each instruction specifies a well-defined piece of work for the computer to carry out

▪ Instruction: the smallest piece of specified work in a program

▪ Instruction set: All possible instructions that a computer is designed to be able to carry

out

The Von Neumann Model

Von Neumann Model

◼Let’s start building the computer

◼ In order to build a computer we need a plan/model or Specifications.

◼ John von Neumann proposed a fundamental model or Specifications in 1946

◼ It consists of 5 parts

❑Memory: stores the program and data

❑Processing unit: does the execution

❑ Input: To feed the information

❑Output: To return the result

❑Control unit: Orchestrate the components or control the order in which the instructions are carried
out.

◼Throughout this lecture, we consider two isa examples of the von Neumann model

❑LC-3 (or LC3-b, P&P)

❑MIPS (H&H)

Burks, Goldstein, von Neumann,

“Preliminary discussion of the logical design

of an electronic computing instrument,” 1946.

Von Neumann Model

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

To Send Data

To Send Control

Von Neumann Model

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

To Send Data

To Send Control

Recall: Memory Array (4 locations x 3 Bits) Underneath

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder

Multiplexer
(together w/ decoder)

Memory

◼The memory stores

❑Data

❑Programs

◼ The memory contains bits

❑Bits are grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

◼How the bits are accessed (for reading and writing) determines the addressability

❑E.g., word-addressable: With one address, we access one word.

❑E.g., 8-bit addressable (or byte-addressable): With one address, we access one byte.

◼The total number of addresses (or total size of memory) is the address space

❑ In LC-3, the address space is 216 (Word Addressable)

◼ 16-bit addresses

❑ In MIPS, the address space is 232 (Word Addressable)

◼ 32-bit addresses

❑ In x86-64, the address space is (up to) 248

◼ 48-bit addresses

A Simple Example

▪ A representation of memory with 8 locations

▪ Each location contains 8 bits (one byte)

▪ Byte addressable memory; address space of 8

▪ Value 6 is stored in address 4 & value 4 is stored in address 6

Address Data Value

Question:
How can we make
same-size memory
bit addressable?

Answer:
64 locations
Each location stores 1 bit

Word Addressable Memory

▪ Each data word has a unique address

▪ In MIPS (Let suppose that), a unique address for each 32-bit data word

▪ In LC-3, a unique address for each 16-bit data word

00000000

00000001

00000002

00000003
.
 .

.

Word Address

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C Word 3

Word 2

Word 1

Word 0
.

 .

.

.
 .

.

Data
MIPS memory

Byte Addressable Memory

▪ Each byte has a unique address
▪ Actually, MIPS is byte-addressable

▪ LC-3b (updated version of LC-3) is byte-addressable, too

Word 3

Word 2

Word 1

Word 0
.
 .

.

.
 .

.

Data

8 9 A B C D E F

F 2 F 1 F 0 F 7

1 3 C 8 1 7 5 5

D 1 6 1 7 A 1 C

MIPS memory

00000000

00000004

00000008

0000000C

.
 .

.

Byte Address

of the Word

How are these four bytes
addressed?

Which of the four
byte is most or least
significant

Big Endian vs Little Endian

▪ Jonathan Swift’s Gulliver’s Travels

▪ Little Endians broke their eggs on the little end of the egg

▪ Big Endians broke their eggs on the big end of the egg

Memory Types: Big Endian vs Little Endian

17

0

4

8

C

.
 .

.

Word

Address

.
 .

.

Byte

Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C
.

 .

.

Byte

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSBLSB
(Least Significant Byte)

LSB in higher byte address LSB in lower byte address

MSB
(Most Significant Byte)

Memory Types: Big Endian vs Little Endian

18

0

4

8

C

.
 .

.

Word

Address

.
 .

.

Byte

Address

3 2 1 0

7 6 5 4

B A 9 8

F E D C

.
 .

.

Byte

Address

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Big Endian Little Endian

MSB LSB

Does this really matter?

Answer: No, it is a convention

Qualified answer: No, except when one big-endian

system (SPARC) and one little-endian system (X86)

have to share data. Need to keep in mind about these

issues.

MSB
(Most Significant Byte)

LSB
(Least Significant Byte)

Accessing Memory: MAR and MDR

◼There are two ways of accessing memory

❑Reading or loading

❑Writing or storing

◼Two registers are necessary to access memory

❑Memory Address Register (MAR)

❑Memory Data Register (MDR)

◼To read

❑Step 1: Load the MAR with the address

❑Step 2: Data is placed in MDR

◼To write

❑Step 1: Load the MAR with the address and the MDR with the data

❑Step 2: Activate Write Enable signal

The Von Neumann Model

To Send Data

To Send Control

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Processing Unit

▪ Perform the actual computation.

▪ The processing unit can consist of many functional units like integer, floating
point, vector processing units, etc.

▪ We start with a simple Arithmetic and Logic Unit (ALU), which executes
computations

▪ LC-3: ADD, AND, NOT (XOR in LC-3b)

▪ MIPS: add, sub, mult, and, nor, sll, slr, slt…

▪ The ALU processes quantities that are referred to as words

▪ Word length in LC-3 is 16 bits (word length is of same size that of address)

▪ In MIPS it is 32 bits

Recall: Arithmetic and Logic Unit (ALU)

◼ Combines a variety of arithmetic and logical operations into a

single unit (that performs only one function at a time)

◼ Usually denoted with this symbol:

Recall: Example ALU

Processing Unit: Fast Temporary Storage

◼ It is almost always the case that a computer provides a small amount of

storage very close to ALU

❑ Purpose: to store temporary values (visible to programmer) and quickly access

them later

◼ E.g., to calculate ((A+B)*C)/D, the intermediate result of A+B can be

stored in temporary storage

❑ Why? It is too slow to store each ALU result in memory & then retrieve it

again for future use

◼ A memory access is much slower than an addition, multiplication or

division

❑ Ditto for the intermediate result of ((A+B)*C)

◼ This temporary storage is usually a set of registers

❑ Called Register File (programmer visible, saw, address or manipulate)

Registers: Why we use it?

▪ Memory is big but slow

▪ Registers in the processing unit (small in Number)

▪ Ensure fast access to value to processed in the ALU

▪ Typically one register contains one word (same as the word length)

▪ ALU opreate on word length

▪ Register set or file: Collection or Set of registers that the processing unit
has or set of register that is manipulated by instructions

▪ LC-3 has 8 general purpose registers (GPR)

▪ R0 to R7: 3-bit register number

▪ Register size = Word length = 16 bits

▪ MIPS has 32 registers

▪ Register size = Word length = 32 bits

Recall: The Registers

D

Q

How can we use D latches to store more data?

• Use more D latches!

• A single WE signal for all latches for

simultaneous writes

D2

Q2

D1

Q1

D0

Q0

3

3

Write
Enable

Here we have a

register, or a

structure that stores

more than one bit and

can be read from and

written to

This register holds 4

bits, and its data is

referenced as Q[3:0]

Recall: The Register

How can we use D latches to store more data?

• Use more D latches!

• A single WE signal for all latches for

simultaneous writes

Register x (Rx)

D3:0

Q3:0

WE

4

4

Here we have a

register, or a

structure that stores

more than one bit and

can be read from and

written to

This register holds 4

bits, and its data is

referenced as Q[3:0]

Recall: D Flip Flop Based Register

◼ Multiple parallel D flip-flops, each of which storing 1 bit

CLK

D Q

D Q

D Q

D Q

D
0

D
1

D
2

D
3

Q
0

Q
1

Q
2

Q
3

D
3:0

4 4

CLK

Q
3:0

This register stores 4 bits

This line represents 4 wires

Recall: A 4-Bit D-Flip-Flop-Based Register (Internally)

Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., tentative page 95.

MIPS Register File

Name Register Number Usage

$0 0 the constant value 0

$at 1 assembler temporary

$v0-$v1 2-3 function return value

$a0-$a3 4-7 function arguments

$t0-$t7 8-15 temporary variables

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 temporary variables

$k0-$k1 26-27 OS temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 function return address

The Von Neumann Model

To Send Data

To Send Control

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Input and Output

◼Interface through which we interact with the computer

◼They are also called as peripherals

◼Many devices can be used for input and output.

◼ Input

◼ Keyboard

◼ Mouse

◼ Scanner

◼ Disks

◼ Etc.

❑Output

◼ Monitor

◼ Printer

◼ Disks

◼ Etc.

❑In LC-3, we consider keyboard and monitor to understand the basic principles

The Von Neumann Model

To Send Data

To Send Control

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Control Unit

▪ The control unit is similar to the conductor of an orchestra (like the brain in the
computer)

▪ It conducts the step-by-step process of executing (every instruction in) a program

▪ It keeps track of the instruction being executed with an Instruction Register (IR),
which contains the bit encoding of instruction

▪ It also keeps track of which instruction to process next, via

▪ Program Counter (PC) or Instruction Pointer (IP), another register that contains the address of
the (next) instruction to process

Program Visible (Architectural) State

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current or next instruction

Registers

- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

The Von Neumann Model

To Send Data

To Send Control

CONTROL UNIT

PC or IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT

Keyboard,

Mouse,
Disk…

OUTPUT

Monitor,

Printer,
Disk…

Von Neumann Model: Two Key Properties

▪ Von Neumann model is also called stored program computer (instructions in
memory). It has two key properties:

▪ Stored program

▪ Instructions stored in a linear memory array

▪ Memory is unified between instructions and data

▪ The interpretation of a stored values (both instruction and data) depends on the control signals

▪ Sequential instruction processing

▪ One instruction processed (fetched, executed, completed) at a time

▪ Program counter (instruction pointer) identifies the current instruction

▪ Program counter is advanced sequentially except for control transfer instructions

LC-3: The Von Neumann Machine

Tri State Buffer

A tri-state buffer enables gating of different signals onto a wire

Floating signal (Z): Signal that is not driven by any circuit Open circuit, floating wire

A tri-state buffer

acts like a switch

Example: Use of Tri-State Buffer

◼ Imagine a wire connecting the CPU and memory

❑ At any time only the CPU or the memory can place a value on the wire,

both not both

❑ You can have two tri-state buffers: one driven by CPU, the other

memory; and ensure at most one is enabled at any time

Scanned by CamScanner

Control signals

Data

ALU: 2 inputs, 1 output

Memory Data

Register

Memory Address

Register
16-bit

addressable

Keyboard

KBDR (data), KBSR (status)

Monitor

DDR (data), DSR (status)

8 General Purpose

Registers (GPR)

Finite State Machine

(for Generating Control Signals)

Instruction

Register

Program

Counter

ALU operation

GateALU

Stored Program and Sequential Execution

◼Instructions and data are stored in memory

❑Typically the instruction length is the word length

◼The processor fetches instructions from memory sequentially

❑Fetches one instruction

❑Decodes and executes the instruction and write back the result

❑Continues with the next instruction

(called as Instruction cycle)

◼The address of the current instruction is stored in the program counter (PC)

❑ If word-addressable memory, the processor increments the PC by 1 (in LC-3)

❑ If byte-addressable memory, the processor increments the PC by the word length (4 in MIPS)

◼ In MIPS the OS typically sets the PC to 0x00400000 (start of a program)

A Sample Program Stored in Memory

▪ A sample MIPS program

▪ 4 instructions stored in consecutive words in memory

▪ No need to understand the program now. We will get back to it

.
 .

.

Instructions

8 C 0 A 0 0 2 0

0 2 3 2 8 0 2 0

2 2 6 8 F F F 4

0 1 6 D 4 0 2 2

.
 .

.

00400000

00400004

00400008

0040000C

.
 .

.

Address

.
 .

.

lw $t2, 32($0)

add $s0, $s1, $s2

addi $t0, $s3, -12

sub $t0, $t3, $t5

MIPS assembly

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Machine code

← PC

The Instruction

◼An instruction the most basic unit of computer processing

❑Instructions are words in the language of a computer

❑Instruction Set Architecture (ISA) is the vocabulary

◼The language of the computer can be written as

❑Machine language: Computer-readable representation (that is, 0’s and 1’s)

❑Assembly language: Human-readable representation

◼We will look at LC-3 instructions and MIPS instructions

◼Let us start with some example instructions

The Instruction: Opcode and Operand

◼An instruction is made up of two parts

◼Opcode and Operands

◼Opcode specifies what the instruction does

◼Operands specify who the instruction is to do it to

◼Both are specified in instruction format (or instr. encoding)

◼An LC-3 instruction consists of 16 bits (bits [15:0])

◼Bits [15:12] specify the opcode → 16 distinct opcodes in LC-3

◼Bits [11:0] are used to figure out where the operands are

Instruction Types

▪ There are three main types of instructions

▪ Operate instructions

▪ Execute instructions in the ALU

▪ Data movement instructions

▪ Read from or write to memory

▪ Control flow instructions

▪ Change the sequence of execution

Operate Instruction Example

▪ Addition

▪ add: mnemonic to indicate the operation to perform

▪ b, c: source operands

▪ a: destination operand

▪ a ← b + c (Semantic)

▪ A generic representations is presented here

a = b + c; add a, b, c

High-level code Assembly

Representation With LC-3 and MIPS

▪ The variables are mapped to different register values.

add a, b, c b = R1

c = R2

a = R0

Assembly LC-3 registers

b = $s1

c = $s2

a = $s0

MIPS registers

From Assembly to Machine Code in LC-3

▪ Addition

ADD R0, R1, R2

LC-3 assembly

Field Values

Machine Code

0x1042
Machine Code, in short (hexadecimal)

1 0 1 0 00 2

OP DR SR1 SR2

0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0

OP DR SR1 SR2

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

Instruction Encoding Format:

Instruction Format (or Encoding)

▪ LC-3

▪ OP = opcode (what the instruction does, different for different instructions)

▪ E.g., ADD = 0001

▪ Semantics: DR ← SR1 + SR2

▪ E.g., AND = 0101

▪ Semantics: DR ← SR1 AND SR2

▪ SR1, SR2 = source registers

▪ DR = destination register

OP DR SR1 0 00 SR2

4 bits 3 bits 3 bits 3 bits

15 14 13 12 11 10 9 8 7 6 2 1 05 4 3

From Assembly to Machine Code in MIPS

Instruction Format:

▪ Addition

0 17 18 16 0 32

op rs rt rd shamt funct

add $s0, $s1, $s2

MIPS assembly

Field Values

0x02328020

000000 10001 10010 10000 00000 100000

op rs rt rd shamt funct

Machine Code

15 11 10 6 05162021252631

rd ← rs + rt

16 (s0),17 (s1) and

18(s2) Represent the

Register number

Instruction Format: R-type in MIPS

◼R-type : that uses register as an operands (one type of operate inst. format)

❑ 3 register operands

◼MIPS

❑0 = opcode (only for R-type)

❑ rs, rt = source registers

❑ rd = destination register

❑shamt = shift amount (only shift operations)

❑ funct = operation in R-type instructions (extended opcode)

0 rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Reading Operands from Memory

▪ With the operate instructions, such as addition, we tell the processor to execute
arithmetic (or logic) computations in the ALU

▪ We also need instructions to access the operands from memory. (MIPS and
LC3 are register to register architectures X86 allows memory operations)

▪ Load them from memory to registers

▪ Store them from registers to memory

▪ Next, we see how to read (or load) from memory

▪ Writing (or storing) is performed in a similar way, but we will talk about that
later

Reading Word-Addressable Memory

▪ Load word

▪ load: mnemonic to indicate the load word operation

▪ A: base address

▪ i: offset, determine where the element of array is located

▪ E.g., immediate or literal (a constant)

▪ a: destination operand

▪ Semantics: a ← Memory[A + i]

a = A[i]; load a, A, i

High-level code Generic Assembly

Load Word in LC-3 and MIPS

▪ LC-3 assembly

▪ MIPS assembly (Assuming MIPS is word addressable)

a = A[2]; LDR R3, R0, #2

High-level code LC-3 assembly

R3 ← Memory[R0 + 2]

a = A[2]; lw $s3, 2($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 2]

These instructions use a particular addressing mode

(i.e., the way the address is calculated), called base+offset

(useful when matrix or array need to be operated)

LDR: Load Data Register

Load Word in Byte Addressable MIPS

▪ MIPS assembly

▪ Byte address is calculated as: word_address * bytes/word

▪ 4 bytes/word in MIPS

▪ If LC-3 were byte-addressable (i.e., LC-3b), 2 bytes/word

a = A[2]; lw $s3, 8($s0)

High-level code MIPS assembly

$s3 ← Memory[$s0 + 8]

Instruction Format with Immediate

▪ LC-3

▪ MIPS

6 3 0 4

OP DR BaseR offset6

LDR R3, R0, #4

LC-3 assembly

Field Values

35 16 19 8

op rs rt imm

lw $s3, 8($s0)

MIPS assembly

Field Values

I-Type
15 0162021252631

5 0689111215

How are these Instructions Executed?

◼By using instructions we can speak the language of the computer

◼Thus, we now know how to tell the computer to

❑Execute computations in the ALU by using, for instance, an addition

❑Access operands from memory by using the load word instruction

◼But, how are these instructions executed on the computer?

❑The process of executing an instruction is called is the instruction cycle

The Instruction Cycle

◼The instruction cycle is a sequence of steps or phases, that an instruction
goes through to be executed

❑FETCH

❑DECODE

❑EVALUATE ADDRESS

❑FETCH OPERANDS

❑EXECUTE

❑STORE RESULT

◼Not all instructions have the six phases

❑LDR does not require EXECUTE

❑ADD does not require EVALUATE ADDRESS

❑ Intel x86 instruction ADD [eax], edx is an example of instruction with six phases

❑ eax is the register that contain the address.

❑ edx <- Mem[eax] + edx

The Instruction Cycle (After Store Result, a new Fetch)

▪ FETCH

▪ DECODE

▪ EVALUATE ADDRESS

▪ FETCH OPERANDS

▪ EXECUTE

▪ STORE RESULT

Fetch

▪ The FETCH phase obtains the instruction from memory and loads it into
the instruction register

▪ This phase is common to every instruction type. No difference between
the operate, data movement and control instructions

▪ To execute every instruction, we need to get the instruction bits.

▪ Complete description

▪ Step 1: Load the MAR with the contents of the PC, and simultaneously increment the
PC

▪ Step 2: Look up the memory for the address stored in the MAR. This results the
instruction to be placed in the MDR

▪ Step 3: Load the IR with the contents of the MDR

Scanned by CamScanner

Step 1: Load
MAR and

increment PC

Step 2: Access
memory and

Load MDR

Step 3: Load IR
with the content

of MDR

Decode

▪ The DECODE phase identifies the instruction

▪ The decoding of an instruction is done in the control unit

▪ A 4-to-16 decoder identifies which of the 16 opcodes is going to be processed

▪ The input is the four bits IR[15:12] (Most Significant Bit of the
instruction)

▪ The remaining 12 bits identify what else is needed to process the
instruction

Scanned by CamScanner

DECODE
identifies the

instruction to
be processed

Recall: Decoder

◼ “Input pattern detector”

◼ n inputs and 2n outputs

◼ Exactly one of the outputs is 1 and all the rest are 0s

◼ The output that is logically 1 is the output corresponding to the

input pattern that the logic circuit is expected to detect

◼ Example: 2-to-4 decoder

Recall: Decoder (II)

▪ The decoder is useful in determining how to interpret a bit pattern

A = 1
0

B = 0

0

1

0

❑ It could be the address of

a location in memory,

that the processor

intends to read from

❑ It could be an instruction

in the program and the

processor needs to decide

what action to take

(based on instruction

opcode)

Decode State

To Come: Full State Machine for LC-3b

Evaluate Address

▪ The EVALUATE ADDRESS phase computes the address of the memory
location that is needed to process the instruction

▪ This phase is necessary in LDR

▪ It computes the address of the data word that is to be read from memory

▪ By adding an offset to the content of a register that generate effective address.

▪ But not necessary in ADD (does not need the memory for the operand
fetch)

Scanned by CamScanner

LDR calculates
the address by

adding a
register and an
immediate

ADD

Fetch Operands

◼ The FETCH OPERANDS phase obtains the source operands needed to
process the instruction

◼ Applied to both Operate instruction and Data Movement instruction
(but functioning is different).

◼ In LDR

❑ Step 1: Load MAR with the address calculated in EVALUATE ADDRESS

❑ Step 2: Read memory, placing source operand (as it load this data in the
destination register) in MDR

◼ In ADD

❑ Obtain the source operands from the register file

❑ In most current microprocessors, this phase can be done at the same time
the instruction is being decoded, but the basic principle is same

Scanned by CamScanner

LDR loads MAR
(step 1), and

places the
results in MDR

(step 2)

Execute

◼ The EXECUTE phase executes the instruction based on the type of

opcode

❑ In ADD, it performs addition in the ALU

❑ In XOR, it performs bitwise XOR in the ALU

◼ Instruction(s) like LDR, STORE, etc does not have this phase.

Scanned by CamScanner

ADD adds SR1
and SR2

Store Result

▪ The STORE RESULT phase writes to the designated destination
(depending on the instruction, the destination may be either register or
memory)

▪ Once STORE RESULT is completed, a new instruction cycle starts (with
the FETCH phase)

Scanned by CamScanner

ADD loads ALU
Result into DR

Scanned by CamScanner

LDR loads MDR
into DR

The Instruction Cycle

▪ FETCH

▪ DECODE

▪ EVALUATE ADDRESS

▪ FETCH OPERANDS

▪ EXECUTE

▪ STORE RESULT

