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Abstract
We study some well-known graph contraction problems in the recently introduced framework
of lossy kernelization. In classical kernelization, given an instance (I, k) of a parameterized
problem, we are interested in obtaining (in polynomial time) an equivalent instance (I ′, k′) of
the same problem whose size is bounded by a polynomial in k. This notion however has a
major limitation. Given an approximate solution to the instance (I ′, k′), we can say nothing
about the original instance (I, k). To handle this issue, among others, the framework of Lossy
kernelization was introduced. In this framework, for a constant α, given an instance (I, k) we
obtain an instance (I ′, k′) of the same problem such that, for every c > 1, any c-approximate
solution to (I ′, k′) can be turned into a (cα)-approximate solution to the original instance (I, k)
in polynomial time. Naturally, we are interested in a polynomial time algorithm for this task,
and further require that |I ′|+ k′ = kO(1). Akin to the notion of polynomial time approximation
schemes in approximation algorithms, a parameterized problem is said to admit a polynomial
size approximate kernelization scheme (PSAKS) if it admits a polynomial size α-approximate
kernel for every approximation parameter α > 1. In this work, we design PSAKSs for Tree
Contraction, Star Contraction, Out-Tree Contraction and Cactus Contraction
problems. These problems do not admit polynomial kernels, and we show that each of them
admit a PSAKS with running time kf(α)|I|O(1) that returns an instance of size kg(α) where f(α)
and g(α) are constants depending on α.
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1 Introduction

Many computational problems arising from real-world problems are NP-hard, and we do
not expect any efficient algorithms for solving them optimally. Preprocessing heuristics,
or data reduction rules, are widely applied to reduce large instances of these problems
to a smaller size before attempting to solve them. Such algorithms are often extremely
effective, and provide a significant boost to the subsequent step of computing a solution
to the instance. Kernelization, under the aegis of Parameterized Complexity, has been
developed as a mathematical framework to study these algorithms and quantify their efficacy.
In Parameterized Complexity, we consider instances (I, k) of parameterized a problem
Π ⊆ Σ∗ × N, where Σ is a finite alphabet. Typically, I is an instance of some computational
problem, and k denotes the parameter which reflects some structural property of the instance.
A common parameter is a bound on the size of an optimum solution to the problem instance.
A data reduction algorithm, formally called a Kernelization algorithm, runs in polynomial
time and reduces a given instance (I, k) of the problem to an equivalent instance (I ′, k′)
such that |I ′|+ k′ = kO(1). The instance (I ′, k′) is called a polynomial kernel, and we say
that the problem Π admits a polynomial kernelization (also called classical kernelization).
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Desigining kernelization algorithms for various computational problems, and investigating
the associated lower bounds, is an active area of research in Computer Science. We refer the
reader to [6, 9, 10] for an introduction to Parameterized Complexity and Kernelization.

The notion of polynomial kernels turns out to be a bit stringent, and it has been discovered
that many problems do not admit a polynomial kernel under well-known complexity theory
conjectures. On the other hand this notion turns out to be too lax as the instances (I, k)
and (I ′, k′) are not as tightly-coupled as one would like. For example, it is not possible to
translate an approximate solution to the instance (I ′, k′), into an approxmimate solution to
the original instance (I, k). Indeed, given anything but an optimal solution (or a solution of
size k′) to (I ′, k′), it is impossible to conclude anything about the original instance (I, k).
These issues, among others, have led to the development of a framework for “approximation
preserving kernelization” or Lossy Kernelization. Informally, an α-approximate kernelization
algorithm ensures that given any c-approximate solution to the kernel (I ′, k′), it can be
converted into a c · α-approximate solution to the original instance (I, k) in polynomial
time. This notion was formally introduced, very recently, in [18] which shows that there are
many problems without classical polynomial kernels that admit lossy polynomial kernels.
Furthermore, it is likely that this notion will be very useful in practice. Many state of the
art approximation algorithms are extremely sophisticated and it is infeasible to apply them
to large problem instances. It is far more practical to reduce a large instance to a small
kernel, then obtain a good approximate solution to this kernel, and finally transform it
into an approximate solution to the original instance. In other words, lossy kernelization
provides a mathematical framework for designing and analyzing preprocessing heuristics for
approximation algorithms.

Let us state these notions formally. We first define a parameterized optimization (maxim-
ization / minimization) problem, which is the parameterized analogue of an optimization
problem in the theory of approximation algorithms. A parameterized minimization problem is
computable function Π : Σ∗×N×Σ∗ 7→ R∪{±∞}. The instances of Π are pairs (I, k) ∈ Σ∗×N
and a solution to (I, k) is simply a string S ∈ Σ∗ such that |S| ≤ |I|+k. The value of a solution
S is Π(I, k, S). The optimum value of (I, k) is OPTΠ(I, k) = minS∈Σ∗, |S|≤|I|+k Π(I, k, S).
An optimum solution for (I, k) is a solution S such that Π(I, k, S) = OPTΠ(I, k). A para-
meterized maximization problem is defined in a similar way. We omit the subscript Π in the
notation for optimum value if the problem under consideration is clear from context. Next
we come to the notion of an α-approximate polynomial-time preprocessing algorithm for a
parameterized optimization problem Π. It is defined as a pair of polynomial-time algorithms,
called the reduction algorithm and the solution lifting algorithm, that satisfy the following
properties.

Given an instance (I, k) of Π, the reduction algorithm computes an instance (I ′, k′) of Π.
Given the instances (I, k) and (I ′, k′) of Π, and a solution S′ to (I ′, k′), the solution
lifting algorithm computes a solution S to (I, k) such that Π(I,k,S)

OPT(I,k) ≤ α ·
Π(I′,k′,S′)
OPT(I′,k′) .

A reduction rule is the execution of the reduction algorithm on an instance. A reduction
rule is said to be applicable on an instance if the output instance is different from the
input instance. An α-approximate kernelization (or α-approximate kernel) for Π is an
α-approximate polynomial-time preprocessing algorithm such that the size of the output
instance is upper bounded by a computable function g : N × N. In classical kernelization,
often we apply reduction rules several times to reduce the given instance. This however breaks
down in lossy kernelization, since each application of a reduction rule introduces a “gap”
between the approximation quality of the kernel and that of the original instance. This is
remedied by introducing α-strict kernelization and α-safe reduction rules. An α-approximate
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kernelization is said to be strict if Π(I,k,s)
OPT(I,k) ≤ max{ Π(I′,k′,s′)

OPT(I′,k′) , α}. A reduction rule is said to
be α-safe for Π if there is a solution lifting algorithm, such that the rule together with this
algorithm constitutes a strict α-approximate polynomial-time preprocessing algorithm for Π.
A reduction rule is safe if it is 1-safe. A polynomial-size approximate kernelization scheme
(PSAKS) for Π is a family of α-approximate polynomial kernelization algorithms for each
α > 1. The size of an output instance of a PSAKS, when run on (I, k) with approximation
parameter α, must be upper bounded by f(α)kg(α) for some functions f and g independent
of |I| and k. We encourage the reader to see [18] for a more comprehensive discussion of
these ideas and definitions.

In [18], the authors exhibit lossy kernels for several problems which do not admit a
classical kernelization, such as Connected Vertex Cover, Disjoint Cycle Packing
and Disjoint Factors, admit polynomial lossy kernels. They also develop a lower bound
framework for lossy kernels, by extending the lower bound framework of classical kernelization.
They then show that Longest Path does not admit a lossy kernel of polynomial size unless
NP⊆ coNP/poly. In this paper, we investigate several other problems in the framework
the lossy kernelization. In particular, we design lossy polynomial kernels for several graph
contraction problems which do not admit classical polynomial kernels under well known
complexity theory conjectures. These problems are defined as follows. For a graph class
G, the G-Contraction problem is to determine if an input graph G can be contracted
to some graph H ∈ G using at most k edge contractions. These problems are well studied
and G-Contraction has been proven to be NP-complete for several classes G [1, 4, 20, 21].
They have also received a lot of attention in Parameterized Complexity [2, 5, 12, 13, 14, 15,
16, 17, 19]. In this work, we give lossy polynomial kernels for the following problems.

Tree Contraction Parameter: k

Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a tree?

Star Contraction Parameter: k

Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a star?

Out-Tree Contraction Parameter: k

Input: A digraph D and an integer k
Question: Does there exist F ⊆ A(D) of size at most k such that D/A is an out-tree?

Cactus Contraction Parameter: k

Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a cactus?

It can be shown that these problems do not admit polynomial kernels, via a parameter
preserving reduction from the Red Blue Dominating Set problem. Let us define these
terms formally. A polynomial-time parameter preserving reduction from a parameterized
problem Π1 to a parameterized problem Π2 is a polynomial-time function that maps an
instance (I1, k1) of Π1 to an instance (I2, k2) of Π2 such that k2 = k

O(1)
1 , and (I1, k1) is an

YES instance of Π1 if and only if (I2, k2) is an YES instance of Π2. It is known that if Π1
doesn’t admit a polynomial kernel, then neither does Π2 [3]. Next, let us define the Red Blue
Dominating Set problem. The input is a bipartite graph G with bipartition (A,B) and an
integer t, this problem asks if B has a subset of at most t vertices that dominates A. This
problem is NP-complete [11] and it does not have a polynomial kernel when parameterized
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by |A| [8]. It was shown that Tree Contraction and Star Contraction do not admit
a polynomial kernel, by a polynomial parameter preserving reduction from this problem [16].
We modify the reductions of [16], to show that the remaining two problems do not admit a
polynomial kernel as well.

Next, we examine these problems in the framework of lossy kernelization. To this end,
we first define a parameterized optimization version of these problems in the following way.
Let G be the input (directed) graph G, and F be a subset of its edges.

Π(G, k, F ) =
{

∞ if F is not a solution
min{|F |, k + 1} otherwise

We use TC(·), OTC(·) and CC(·) to denote the parameterized optimization version of Tree
Contraction, Out-Tree Contraction and Cactus Contraction, respectively. The
following theorem is the main result of this paper.

I Theorem 1.1. Given a graph (digraph) G on n vertices, an integer k and an approx-
imation parameter α > 1, there is an algorithm that runs in kf(α)nO(1) time and outputs
a graph (digraph) G′ on kg(α) vertices and an integer k′ such that for every c > 1, a c-
approximate (tree/star/cactus/out-tree contraction) solution for (G′, k′) can be turned into a
(cα)-approximate (tree/star/cactus/out-tree contraction) solution for (G, k) in nO(1). Here
f(α) and g(α) are constants depending on α.

2 Preliminaries

An undirected graph is a pair consisting of a set V of vertices and a set E of edges where
E ⊆ V × V . An edge is specified as an unordered pair of vertices. For a graph G, V (G)
and E(G) denote the set of vertices and edges respectively. Two vertices u, v are said to be
adjacent if there is an edge uv in the graph. The neighbourhood of a vertex v, denoted by
NG(v), is the set of vertices adjacent to v and its degree dG(v) is |NG(v)|. The subscript
in the notation for neighbourhood and degree is omitted if the graph under consideration
is clear. For a set of edges F , V (F ) denotes the set of endpoints of edges in F . For a set
S ⊆ V (G), G− S denotes the graph obtained by deleting S from G and G[S] denotes the
subgraph of G induced on set S. For graph theoretic terms and notation which are not
explicitly defined here, we refer the reader to the book by Diestel [7].

Two non-adjacent vertices u and v are called as false twins of each other if N(u) = N(v).
A path P = (v1, . . . , vl) is a sequence of distinct vertices where every consecutive pair of
vertices are adjacent. The vertices of P is the set {v1, . . . , vl} and is denoted by V (P ). The
length of a path is |V (P )| − 1. A cycle is a sequence (v1, . . . , vl, v1) of vertices such that
(v1, . . . , vl) is a path and vlv1 is an edge. A leaf is a vertex of degree 1. A graph is called
connected if there is a path between any pair of its vertices and it is called disconnected
otherwise. A cut vertex of a connected graph G is a vertex v such that G−{v} is disconnected.
A graph that has no cut vertex is called 2-connected. A component of a disconnected graph
is a maximal connected subgraph. A set S ⊆ V (G) is called a vertex cover if for every edge
uv, either u ∈ S or v ∈ S. Further, S is called a connected vertex cover if G[S] is connected.
A set I ⊆ V (G) of pairwise non-adjacent vertices is called as an independent set. A set S of
vertices is said to dominate another set S′ of vertices if for every vertex in S′, N(S′)∩ S 6= ∅.
A tree is a connected acyclic graph. A star is a tree in which there is a path of length at
most 2 between any 2 vertices. A graph is called a cactus if every edge is a part of at most
one cycle.
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The contraction operation of an edge e = uv in G results in the deletion of u and
v and the addition of a new vertex w adjacent to vertices that were adjacent to either
u or v. Any parallel edges added in the process are deleted so that the graph remains
simple. The resulting graph is denoted by G/e. Formally, V (G/e) = V (G) ∪ {w}\{u, v} and
E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈ E(G)} ∪ {wx| x ∈ NG(u) ∪NG(v)}. For a set of
edges F ⊆ E(G), G/F denotes the graph obtained from G by sequentially contracting the
edges in F . G/F is oblivious to the contraction sequence. A graph G is contractible to a
graph T , if T can be obtained from G by a sequence of edge contractions. For graphs G and
T with V (T ) = {t1, · · · , tl}, G is said to have a T -witness structure W if W is a partition of
V (G) into l sets and there is a bijection W : V (T ) 7→ W such that the following properties
hold.

For each ti ∈ V (T ), G[W (ti)] is connected.
For a pair ti, tj ∈ V (T ), titj ∈ E(T ) if and only if there is an edge between a vertex in
W (ti) and a vertex in W (tj) in G.

The sets W (t1), · · · ,W (tl) in W are called witness sets. Moreover, G is contractible to T if
and only if G has a T -witness structure. We associate the T -witness structure W of G with
a set F ⊆ E(G) whose contraction in G results in T by defining F to be the set of the edges
of a spanning tree of the G[W ] for each W ∈ W.

I Observation 1. |F | =
∑

W∈W
(|W | − 1).

Then, G is said to be |F |-contractible to T and the following observation is easy to verify.

I Observation 2. For every W ∈ W, |W | ≤ |F |+ 1. Further, |{W ∈ W | |W | > 1}| ≤ |F |.

Finally, we observe that t is a leaf in T , then the neighbours of the vertices in W (t) are
contained in one witness set.

I Observation 3. Let t be a leaf in T and t′ be its unique neighbour. Then,
⋃
v∈W (t)NG(v) ⊆

W (t′) ∪W (t).

Proof. Consider a leaf t in T . Assume on the contrary that there exists t′ and t′′ (distinct
from t) such that N(u)∩W (t′) 6= ∅ and N(v)∩W (t′′) 6= ∅ for some u and v (not necessarily
distinct) in W (t). Then, t has degree at least 2 contradicting the fact that it is a leaf. J

We denote the set of integers from 1 to n by [n]. We also use the bound, x+p
y+q ≤ max{xy ,

p
q }

for any positive real numbers x, y, p, q, to prove that the reduction rules we define are strict
α-approximate for some real number α.

3 Tree Contraction

We begin with the Tree Contraction problem, which admits a 4knO(1) algorithm (where
n is the number of vertices of the input graph) by using a FPT algorithm for Connected
Vertex Cover as a subroutine, and further it does not admit a polynomial kernel unless
NP ⊆ coNP/poly [16]. This lower-bound also holds for Star Contraction. Before we
proceed to describe a PSAKS for these problems, we mention the following simplifying
assumption known from [16] which states that, the tree witness structure of a graph can be
constructed from the tree witness structures of its 2-connected components.

I Lemma 3.1 ([16]). A connected graph is k-contractible to a tree if and only if each of its
2-connected components is contractible to a tree using at most k edge contractions in total.
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Observe that there can be at most k 2-connected components in the graph, and we can
consider each such component separately. The output of our kernelization algorithm will be
a disjoint union of the kernels for each 2-connected component. So from now onwards we
assume that the input graph is 2-connected. Next, we make some observations on the tree
witness structure of a graph.

I Lemma 3.2. Let F be a minimal set of edges of a 2-connected graph G such that G/F
is a tree T with V (T ) = {t1, t2, . . . , tl}. Let W denote the T -witness structure of G. Then,
there exists a set F ′ of at most |F | edges of G such that G/F ′ is a tree T ′ and the T ′-witness
structure W ′ of G satisfies the property that W ′(t) ∈ W ′ is a singleton set if and only if t is
a leaf in T ′.

Proof. First, we show that every vertex t ∈ V (T ) such that |W (t)| = 1 is a leaf in T .
Suppose there is a non-leaf t in T such that W (t) = {u} for some u ∈ V (G). Then, T − {t}
has at least two non-empty subtrees, say T1 and T2. Consider U1 =

⋃
t∈V (T1)W (t) and

U2 =
⋃
t∈V (T2)W (t). As W is the T -witness structure of G, it follows that there is no edge

between a vertex in U1 and a vertex in U2 in G − {u}. This contradicts the fact that G
is 2-connected. Now, consider a leaf ti in T such that |W (ti)| > 1. Let tj be the unique
neighbour of ti. As titj ∈ E(T ), there exists an edge in G between a vertex in W (ti) and a
vertex in W (tj). Therefore, G[W (ti)∪W (tj)] is connected. We claim that G[W (ti)∪W (tj)]
has a spanning tree which has a leaf from W (ti). Observe that as |W (ti)| > 1, any spanning
tree of G[W (ti)] has at least 2 leaves. If there is a spanning tree of G[W (ti)] that has a leaf
u which is not adjacent to any vertex in W (tj), then G[(W (ti) ∪W (tj)) \ {u}] is connected
too and u is the required vertex. Otherwise, every leaf in every spanning tree of G[W (ti)]
is adjacent to some vertex in W (tj) and hence G[(W (ti) ∪W (tj)) \ {u}] is connected for
each vertex u ∈W (ti). Therefore, as claimed, G[W (ti) ∪W (tj)] has a spanning tree which
has a leaf v from W (ti). Consider the partition W ′ = (W ∪ {Wv,Wij}) \ {W (ti),W (tj)}
of G where Wv = {v} and Wij = (W (tj) ∪W (ti)) \ {v}. Then, as N(v) ⊆ W (ti) ∪W (tj)
by Observation 3, it follows that W ′ is the T ′-witness structure of G such that T ′ is a tree.
Further, T ′ is the tree obtained from T by adding a new vertex tij adjacent to N(tj) and a
new vertex tv adjacent to tij and then deleting ti, tj . This leads to a set F ′ of at most |F |
edges of G such that T ′ = G/F ′ is a tree. Repeating this procedure ensures that the leaves
of the resulting tree corresponds to singleton witness sets. J

Subsequently, we assume that all tree witness structures have this property. Lemma 3.2
immediately leads to the following equivalence of Star Contraction and Connected
Vertex Cover.

I Lemma 3.3. G has a set F ⊆ E(G) such that G/F is a star if and only if G has a
connected vertex cover of size |F |+ 1.

Proof. Let F be a set of edges of G such that G/F is a star T . By Lemma 3.2, we can
assume that every leaf of T corresponds to a singleton witness set. If T has at most 2 vertices,
then the claim trivially holds. Otherwise, T has at least 3 vertices. Let t0 be the vertex
that is adjacent to all other vertices of T and let ti, tj be two leaves of T . Let W (ti) = {u}
and W (tj) = {v} for some u, v ∈ V (G). Since titj 6∈ E(G/F ), we have uv 6∈ E(G). Hence
G −W (t0) is an independent set and G[W (t0)] is connected. Further, |W (t0)| = |F | + 1.
Thus, W (t0) is the required connected vertex cover of G. Conversely, consider a connected
vertex cover X of G. Consider the partition W = X ∪

⋃
u∈V (G)\X{u}. Then, every set in

this partition induces a connected subgraph. Further, as G−X is an independent set, for
any two parts W and W ′ (excluding X) in this partition, there is no edge in G between
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a vertex in W and a vertex in W ′. Thus, W is a T -witness structure of G where T is a
star. Moreover, G/F = T where F is the set of edges of a spanning tree of G[X] and hence
|F | = |X| − 1. J

As Connected Vertex Cover has a PSAKS [18], we have the following result.

I Theorem 3.4. Star Contraction parameterized by the solution size admits a PSAKS.

Lemma 3.2 also leads to the following relationship between Tree Contraction and
Connected Vertex Cover.

I Lemma 3.5. If G is k-contractible to a tree, then G has a connected vertex cover of size
at most 2k.

Proof. As G is k-contractible to a tree, there exists a (minimal) set of edges F such that
|F | ≤ k and T = G/F is a tree. Let W be the T -witness structure of G and W ′ denote the
set of non-singleton sets in W . Let X denote the set of vertices of G which are in a set in W ′.
By Lemma 3.2, we can assume that every leaf of T corresponds to a singleton witness set.
Let L be the set of leaves of T . Then, I = {v ∈ V (G) | v ∈W (t), t ∈ L} is an independent
set in G. Thus, X is a vertex cover of G. As |F | ≤ k, we have |X| ≤ 2k as every vertex in X
has an edge incident on it that is in F . Finally, since the set of non-leaves of a tree induces a
subtree, it follows that G[X] is connected. J

Now, we move on to describe a PSAKS for Tree Contraction. We define a partition of
vertices of G into the following three parts.

H = {u ∈ V (G) | d(u) ≥ 2k + 1}

I = {v ∈ V (G) \H | N(v) ⊆ H}

R = V (G) \ (H ∪ I)

We define the first reduction rule as follows.

I Reduction Rule 3.1. If there is a vertex v ∈ I that has at least 2k + 1 false twins, then
delete v. That is, the resultant instance is (G− {v}, k).

I Lemma 3.6. Reduction Rule 3.1 is safe.

Proof. Consider a solution F ′ of the reduced instance (G′, k′). If |F ′| ≥ k′ + 1, then the
solution lifting algorithm returns E(G), otherwise it returns F = F ′. We show that this
solution lifting algorithm with the reduction rule constitutes a strict 1-approximate polynomial
time preprocessing algorithm. If |F ′| ≥ k′ + 1 then TC(G, k, F ) ≤ k + 1 = TC(G′, k′, F ′).
Otherwise, |F ′| ≤ k and let T ′ be the tree G′/F ′ and W ′ denote the T ′-witness structure
of G′. Then, as v has at least 2k + 1 false twins, one of these twins, say u, is not in V (F ′).
In other words, there is a vertex t in T ′ such that W ′(t) = {u}. By Lemma 3.2, t is a leaf.
Let t′ denote the unique neighbour of t in T ′. Then, from Observation 3, NG′(u) ⊆W ′(t′).
Let T be the tree obtained from T ′ by adding a new vertex tv as a leaf adjacent to t′. Since
NG′(u) = NG(u) = NG(v), all the vertices in NG(v) are in W ′(t′). Define the partition W of
V (G) obtained from W ′ by adding a new set {v}. Then, G/F is T and W is the T -witness
structure of G. Hence, TC(G, k, F ) ≤ TC(G′, k′, F ′).

Next, consider an optimum solution F ∗ for (G, k). If |F ∗| ≥ k + 1 then OPT(G, k) =
k + 1 ≥ OPT(G′, k′). Otherwise, |F ∗| ≤ k and let T = G/F ∗. Let W∗ denote the T -witness
structure of G. If there is a leaf t in T such that W ∗(t) = {v}, then F ∗ is also a solution for
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(G′, k′) and the required relation holds. Otherwise, as v has at least 2k + 1 false twins, one
of these twins, say u, is not in V (F ∗). That is, there is a leaf t in T such that W ∗(t) = {u}.
Define the partition W ′ of V (G) obtained from W∗ by replacing u by v and v by u. Then,
the set F ′ of edges of G obtained from F by replacing the edge xv with the edge xu for each
x is also an optimum solution for (G, k). Further, it is a solution for (G′, k′). Therefore,
OPT(G′, k′) ≤ OPT(G, k). Hence, TC(G,k,F )

OPT(G,k) ≤
TC(G′,k′,F ′)
OPT(G′,k′) . J

Given α > 1, let d be the minimum integer such that α ≥ d
d−1 . That is, d = d α

α−1e. The
second reduction rule is the following.

I Reduction Rule 3.2. If there are vertices v1, v2, . . . , v2k+1 ∈ I and h1, h2, . . . , hd ∈ H such
that {h1, . . . , hd} ⊆ N(vi) for each i ∈ [2k+ 1] then contract all edges in Ẽ = {v1hi | i ∈ [d]}
and reduce the parameter by d− 1. The resulting instance is (G/Ẽ, k − d+ 1).

I Lemma 3.7. Reduction Rule 3.2 is α-safe.

Proof. Consider a solution F ′ of the reduced instance (G′, k′). If |F ′| ≥ k′ + 1, then
the solution lifting algorithm returns E(G), otherwise it returns F = F ′ ∪ Ẽ. We will
show that this solution lifting algorithm with the reduction rule constitutes a strict α-
approximate polynomial time preprocessing algorithm. First, we prove that TC(G, k, F ) ≤
TC(G′, k′, F ′) + d. If |F ′| ≥ k′ + 1 then TC(G′, k′, F ′) = k′ + 1. In this case, F = E(G) and
TC(G, k, F ) ≤ k+ 1 = k′+d = TC(G′, k′, F ′) +d− 1. Consider the case when |F ′| ≤ k′ and
letW ′ = {W ′(t1),W ′(t2), . . . ,W ′(tl)} be the G′/F ′-witness structure of G. Let w denote the
vertex in V (G′)\V (G) obtained by contracting Ẽ. Without loss of generality, assume that w ∈
W ′(t1). DefineW = (W ′∪{W1})\{W ′(t1)} whereW1 = (W ′(t1)∪{v1, h1, h2, . . . , hd})\{w}.
Note that V (G) \ {v1, h1, h2, . . . , hd} = V (G′) \ {w} and hence W is partition of V (G).
Further, G[W1] is connected as G′[W ′(t1)] is connected. A spanning tree of G′[W ′(t1)] along
with Ẽ is a spanning tree of G[W1]. Also, |W1| = |W ′(t1)| + d and any vertex which is
adjacent to w in G′ is adjacent to at least one vertex in {v1, h1, h2, . . . , hd} in G. Thus,
W is a G/F -witness structure of G where G/F is a tree isomorphic to G′/F ′. Therefore,
TC(G, k, F ) ≤ TC(G′, k′, F ′) + d.

We now show that OPT(G′, k′) ≤ OPT(G, k)− (d− 1). Let F ∗ be an optimum solution
for (G, k) and W be a G/F ∗-witness structure of G. Let T be G/F ∗. If |F ∗| ≥ k + 1, then
OPT(G, k) = k+1 = k′+d ≥ OPT(G′, k′)+d−1. Otherwise, |F ∗| ≤ k and there is at least
one vertex, say vq in {v1, v2, . . . , v2k+1} which is not in V (F ∗). By Observation 3, N(vq) and
hence {h1, h2, . . . , hd} are in the same witness set, say W (ti) where ti ∈ V (T ). If v1 ∈W (ti)
then F ′ = F ∗\Ẽ is solution to (G′, k′) and so OPT(G′, k′) ≤ |F ′| = |F ∗|−d = OPT(G, k)−d.
Otherwise, v1 6∈W (ti) and let tj ∈ V (T ) be the vertex such that v1 ∈W (tj). Then, ti and
tj are adjacent in T . Define another partition W ′ =W ∪ {W (tij)} \ {W (ti),W (tj)} of V (G)
where W (tij) = W (ti) ∪W (tj). Clearly, G[W (tij)] is connected. Thus, W ′ is a G/F -witness
structure of G where |F | = |F ∗| + 1 as |W (ti)| − 1 + |W (tj)| − 1 = (|W (tij)| − 1) − 1.
In particular, G/F is the tree obtained from G/F ∗ by contracting the edge titj . Finally,
without loss of generality Ẽ ⊆ F and thus F ′ = F \ Ẽ is a solution to (G′, k′). Therefore,
OPT(G′, k′) ≤ |F ′| = |F ∗|+ 1− d = OPT(G, k)− d+ 1. Combining these bounds, we have
TC(G,k,F )
OPT(G,k) ≤

TC(G′,k′,F ′)+d
OPT(G′,k′)+(d−1) ≤ max

{
TC(G′,k′,F ′)
OPT(G′,k′) , α

}
. J

This leads to the following bound.

I Lemma 3.8. Suppose G is k-contractible to a tree and neither of the Reduction rules 3.1
and 3.2 are applicable on the instance (G, k). Then, |V (G)| is O((2k)d+1 + k2).
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Proof. We will bound H, I and R separately in order to bound V (G). By Lemma 3.5, G
has a connected vertex cover S of size at most 2k. As H is the set of vertices of degree at
least 2k + 1, H ⊆ S and so |H| ≤ 2k. Every vertex in R has degree at most 2k. Therefore,
as S ∩ R is a vertex cover of G[R], |E(G[R])| is O(k2). Also, by the definition of I, every
vertex in R has a neighbour in R and hence there are no isolated vertices in G[R]. Thus, |R|
is O(k2). Finally, we bound the size of I. For every set H ′ ⊆ H of cardinality less than d,
there are at most 2k + 1 vertices in I which have H ′ as their neighbourhood. Otherwise,
Reduction Rule 3.1 would have been applied. Hence, there are at most (2k + 1) ·

( 2k
d−1
)

vertices in I which have degree less than d. Further, for a d-size subset H ′ of H, there are at
most 2k + 1 vertices in I which contain H ′ in their neighbourhood. Otherwise, Reduction
Rule 3.2 would have been applied. As a vertex in I of degree at least d is adjacent to all
vertices in at least one such subset of H, there are at most (2k+ 1)

(2k
d

)
vertices of I of degree

at least d. Therefore, |I| is O((2k)d+1). J

Now, we have a PSAKS for the problem.

I Theorem 3.9. Tree Contraction admits a strict PSAKS with O((2k)d
α

α−1 e+1 + k2)
vertices.

Proof. Given α > 1, we choose d = d α
α−1e and apply Reduction Rules 3.1 and 3.2 on the

instance as long as they are applicable. The reduction rules can be applied in O((2k)d · nc)
time where c is a constant independent of α and n is the number of vertices in the input
graph. Then, if the reduced graph G has more than O((2k)d+1 + k2) vertices, then by
Lemma 3.8, OPT(G, k) is k + 1 and the algorithm outputs E(G) as the solution. Otherwise,
G has O((2k)d+1 + k2) vertices. J

4 Out-Tree Contraction

In this section, we describe a PSAKS for an analogue of Tree Contraction in directed
graphs. We first require some terminology on directed graphs. A directed graph (or digraph)
is a pair consisting of a set V of vertices and a set A of directed edges (arcs) where A ⊆ V ×V .
An arc is specified as an ordered pair of vertices uv and we say that the arc uv is directed
from u to v. Let V (D) and A(D) denote the sets of vertices and arcs of a digraph D. For a
vertex v ∈ V (D), N−(v) denotes the set {u ∈ V (D) | uv ∈ A(D)} of its in-neighbors and
N+(v) denotes the set {u ∈ V (D) | vu ∈ A(D)} of its out-neighbors. The neighbourhood of
a vertex v is the set N(v) = N+(v) ∪N−(v). The in-degree of a vertex v, denoted by d−(v),
is |N−(v)|. Similarly, its out-degree is |N+(v)| which is denoted by d+(v). The (total) degree
of v, denoted by d(v), is the sum of its in-degree and out-degree. A sequence P = (v1, · · · , vl)
of distinct vertices of D is called a directed path in D if v1v2, · · · , vl−1vl ∈ A(D).

For a digraph D, its underlying undirected graph GD is the undirected graph on the
vertex set V (D) with the edge set {uv | uv ∈ A(D)}. An out-tree T is a digraph where each
vertex has in-degree at most 1 such that GT is a tree. A vertex v of an out-tree is called
a leaf if d−(v) = 1 and d+(v) = 0. The root of an out-tree is the unique vertex that has
no in-neighbour. The contraction of an arc e = uv in D results in the digraph, denoted by
D/e, on the vertex set V ′ = V (D) \ {u, v} ∪ {x} with A(D/e) = {pq | pq ∈ A(D) and p, q ∈
V ′} ∪ {xz | vz ∈ A(D)} ∪ {zx | zu ∈ A(D)} ∪ {xz | uz ∈ A(D)} ∪ {zx | zv ∈ A(D)}. The
notion of witness structures and witness sets are extended to digraphs as follows. For digraphs
D and T with V (T ) = {t1, · · · , tl}, D is said to have a T -witness structure W if W is a
partition of V (D) into l sets (called witness sets) and there is a bijection W : V (T ) 7→ W
such that the following properties hold.
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For each ti ∈ V (T ), GD[W (ti)] is connected.
For a pair ti, tj ∈ V (T ), titj ∈ A(T ) if and only if there is an arc from a vertex in W (ti)
to a vertex in W (tj) in D.

Analogous to undirected graphs, we associate the T -witness structure W of G with a set
F ⊆ A(D) whose contraction in D results in T by defining F to be the set of the arcs
corresponding to the edges of a spanning tree of GD[W ] for each W ∈ W. Now, we show
that similar to Tree Contraction, Out-Tree Contraction also does not admit a
polynomial kernel. We modify the reduction known for Tree Contraction to show this
hardness.

I Lemma 4.1. Out-Tree Contraction does not have a polynomial kernel unless NP⊆
coNP/poly.

Proof. Consider an instance (G(A,B), t) of Red Blue Dominating Set. We construct an
instance (D, k) of Out-Tree Contraction as follows. Let H be the underlying undirected
graph of D obtained from G by adding a new vertex u to A that is adjacent to every vertex
in B. Also, for every vertex a ∈ A, a set Sa of k + 1 new vertices that are adjacent to u and
a are added to B. Let A′ be A ∪ {u} and B′ be the set B along with the |A| · (k + 1) new
vertices. This completes the construction of H. Also, we set k = |A|+ t. The digraph D
is obtained from H by orientating the edges such that u has no in-neighbours. That is, all
edges incident on u are directed away from u and the remaining edges are oriented arbitrarily.
We claim that G has a set of at most t vertices in B that dominates A if and only if D is
k-contractible to an out-tree.

Suppose there exists a set S ⊆ B of size at most t that dominates A. Let X be A′ ∪ S.
Then, H[X] is connected as u is adjacent to all vertices in S and S dominates A. Define
a partition W of V (D) that contains X as one part and a singleton set for every vertex
in V (D) \ X. Now, as V (D) \ X is an independent set, it follows that W is a T -witness
structure of D where T is the star obtained from D by contracting all arcs corresponding to
the edges of a spanning tree of H[X]. As X has at most |A|+ t+ 1 = k + 1 vertices, any
spanning tree of H[X] has at most k edges. Thus, D is k-contractible to an out-tree whose
underlying undirected graph is a star. Conversely, suppose D is k-contractible to an out-tree
T . Let W be the T -witness structure of D. Let a be a vertex in A′ \ {u}. First, we show
that there exists t ∈ V (T ) such that u, a ∈ W (t). Assume on the contrary that u ∈ W (t)
and a ∈ W (t′). Then, as |Sa| = k + 1, there are k + 1 cycles in H that contain u, a and a
neighbour b ∈ B of a that pairwise intersect in {u, a, b}. To destroy all such cycles using
k contractions it is necessary that a and u are in the same witness set W . Consequently,
it follows that A′ is contained in W . As B′ is an independent set, W can be transformed
into another partition W ′ of V (D) that contains W and a singleton set for every vertex in
B′ \W . Thus, D is k-contractible to an out-tree T ′ with at least as many vertices as T and
W ′ is the T ′-witness structure of D. Suppose W contains a vertex b′ in B′ \ B. Then, by
construction, b′ is adjacent only to one vertex a ∈ A and u. Let b be a neighbour of a. Then,
ND(b′) ⊆ ND(b) and so W ′ = (W \ {b′}) ∪ {b} is connected in H and |W ′| ≤ |W |. Thus,
replacing W by W ′ inW ′ yields a T ′′-witness structure of D such that T ′′ is an out-star with
at least as many vertices as T ′. By repeating this process, we obtain a T ′′-witness structure
W ′′ of D with T ′′ being an out-tree and W ′′ containing only one non-singleton set W ′′ such
that W ′′ ∩ (B′ \ B) = ∅. Then, the set S = {v ∈ B | v ∈ W ′′} is W ′′ \ A′ and as A′ is an
independent set, S (with at most k − |A| − 1 vertices) dominates A in G. J

Now, we describe a PSAKS for Out-Tree Contraction. We note that the simplifying
assumptions in Tree Contraction, such as ignoring cut vertices and requiring that the



Krithika, Misra, Rai and Tale 1:11

leaves of the resultant tree correspond to singleton witness sets, do not hold anymore. Our
first reduction rule is based on the observation that the digraph obtained from an out-tree
by adding a new vertex as an out-neighbour of a leaf is once again an out-tree.

I Reduction Rule 4.1. If there is a vertex v ∈ V (D) with d−(v) = 1 and d+(v) = 0 then
delete v. The resulting instance is (D′, k′) where D′ = D − {v} and k′ = k.

I Lemma 4.2. Reduction Rule 4.1 is safe.

Proof. Consider a set F ′ ⊆ A(D′) such that T = D′/F ′ is an out-tree. If |F ′| ≥ k′ + 1, then
the solution lifting algorithm returns A(D), otherwise it returns F = F ′. If |F ′| ≥ k′ + 1
then OTC(D, k, F ) ≤ k + 1 = OTC(G′, k′, F ′). Otherwise, let V (T ) = {t1, · · · , tl} and W
denote the T -witness structure of D′. Then, there exists a vertex ti ∈ V (T ) such that the
unique neighbour of v in D is in W (ti). Define the partition of V (D) as W ′ = W ∪ {v}.
Now, no vertex in any set W ∈ W ′ with W 6= W (ti) contains a vertex that is adjacent to v.
Thus, W ′ is the D/F -witness structure of D where D/F is the out-tree obtained from T by
adding a new vertex tv as an out-neighbour of ti. Hence, OTC(D, k, F ) ≤ OTC(D′, k′, F ′).

Next, consider an optimum solution F ∗ to (D, k). If |F ∗| ≥ k+1, then OPT(D, k) = k+1
and by definition, OPT(D′, k′) ≤ k′ + 1 = k + 1 = OPT(D, k). Otherwise, |F ∗| ≤ k.
Let T = G/F ∗ and W∗ denote the T -witness structure of D. Let t ∈ V (T ) such that
v ∈W (t). If t is a leaf and W (t) is a singleton set, then F ∗ is also a solution to (D′, k′) and
OPT(D′, k′) ≤ OPT(D, k). Otherwise, as v is a vertex of degree 1, the underlying undirected
subgraph of D[W (t) \ {v}] is connected. Let e be the arc in D that is incident on v. The
partition W ′ of V (D′) obtained from W by deleting v from W (t) is the D′/(F ∗ \ e)-witness
structure of D′ where D′/(F ∗ \ e) is an out-tree. Thus, F ∗ \ e is a solution to (D′, k′) and
therefore, OPT(D′, k) ≤ OPT(D, k)−1 in this case. Hence, OTC(D,k,F )

OPT(D,k) ≤
OTC(D′,k′,F ′)

OPT(D′,k′) . J

The operation of subdividing an arc uv in D results in the deletion of the arc uv and the
addition of a new vertex w as an out-neighbour of u and an in-neighbour of v. The next
reduction rule is based on the observation that subdividing an arc of an out-tree results in
another out-tree. To exploit this observation, we need the following lemma.

I Lemma 4.3. Suppose D has a directed path P = (v0, v1, . . . , vl, vl+1) with l > k + 1 and
d−(v) = d+(v) = 1 for each v ∈ V (P ). Then, no minimal out-tree contraction solution F of
D with |F | ≤ k contains an arc incident on V (P ) \ {v0, vl+1}.

Proof. Assume on the contrary that F contains at least one such arc. As there are at
least k + 1 arcs with endpoints in V (P ) \ {v0, vl+1} and by the property of F , there is
one at least one arc vi−1vi ∈ F and vivi+1 /∈ F . Let T = D/F with V (T ) = {t1, · · · , tp}
and W denote the T -witness structure of D. Now, let t and t′ denote the vertices of
T such that vi−1, vi ∈ W (t) and vi+1 ∈ W (t′). If t = t′, then as GD[W (t)] is connected,
vi−1, vi, vi+1 ∈W (t) and vivi+1 /∈ F , it follows thatW (t) contains the vertices of the subpath
(vi+1, . . . , vl, vl+1) and the vertices of the subpath (v0, v1, . . . , vi−1, vi). Then, |W (t)| > k+ 1
which leads to a contradiction. Thus, t 6= t′. Now, vi is not a cut vertex in GD[W (t)] as
there is exactly one edge incident on it. This shows that GD[W (t) \ vi] is connected. Define
W ′ = (W \ {W (t)}) ∪ {vi} ∪ {W (t) \ {vi}}. Now, D/(F \ {vi−1vi}) is the graph formed by
subdividing the arc tt′ in the out-tree T . Thus, W ′ is an out-tree witness structure of D
leading to the solution F \ {vi−1vi} which contradicts the minimality of F . J

I Reduction Rule 4.2. If there is a directed path P = (v0, v1, . . . , vl, vl+1) with l > k+2 and
d−(v) = d+(v) = 1 for each v ∈ V (P ), then replace P by the path P ′ = (v0, v1, . . . , vk+2, vl+1).
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Specifically, the resulting instance is (D′, k′ = k) where D′ is the digraph obtained from D

by deleting {vk+3, . . . , vl} and adding the arc vk+2vl+1.

We note that this rule can be applied in polynomial time by searching for such a path in the
subgraph induced on the vertices of degree 2.

I Lemma 4.4. Reduction Rule 4.2 is safe.

Proof. Consider a minimal set F ′ ⊆ A(D′) such that T ′ = D′/F ′ is an out-tree. If
|F ′| ≥ k′ + 1, then the solution lifting algorithm returns A(D), otherwise it returns F = F ′.
If |F ′| ≥ k′ + 1 then OTC(D, k, F ) ≤ k + 1 = OTC(D′, k, F ′). Otherwise, let V (T ′) =
{t1, · · · , tr} and W ′ denote the T ′-witness structure of D′. Then, by Lemma 4.3, F ′ has
no arc incident on V (P ′) \ {v0, vl+1}. Therefore, every vertex in V (P ′) \ {v0, vl+1} is in a
singleton set of W ′. Define W to be the partition of V (D) that contains every set in W ′ and
a singleton set Wv for each vertex v in V (D) \ V (D′). Then, W is a T -witness structure of
D where T = D/F obtained from T ′ by subdividing some of its edges. As T ′ is an out-tree,
T is an out-tree too. Therefore, OTC(D, k, F ) ≤ OTC(D′, k′, F ′).

Next, consider a minimal optimum solution F ∗ to (D, k). If |F ∗| ≥ k + 1 then
OPT(D, k) = k + 1 and by definition, OPT(D′, k′) ≤ k′ + 1 = k + 1 = OPT(D, k).
Otherwise, |F ∗| ≤ k and let T = D/F ∗. Let W denote the T -witness structure of D.
By Lemma 4.3, F ∗ has no edge incident on V (P ) \ {v0, vl+1}. Therefore, every vertex
in V (P ) \ {v0, vl+1} is in a singleton set of W. Define W ′ to be the partition of V (D′)
that contains every set in W that contain a vertex of D′. Then, W ′ is a T ′-witness struc-
ture of D′ where T ′ = D′/F ∗. Finally, T ′ is the graph obtained from T by shortening
some of its paths. Hence, T ′ is an out-tree. Thus, OPT(D′, k′) ≤ OPT(D, k). Hence,
OTC(D,k,F )

OPT(D,k) ≤
OTC(D′,k′,F ′)

OPT(D′,k′) . J

Before we describe the next reduction rule, we define the following partition of V (D).

I = {v ∈ V (D) | d+(v) = 0}

H = V (D) \ I

Now, we apply the following reduction rule on I.

I Reduction Rule 4.3. If there are vertices v, v1, v2, . . . , v2k+1 ∈ I such that N−(v) =
N−(v1) = · · · = N−(v2k+1), then delete v. The resulting instance is (D′, k′) where D′ =
D − {v} and k′ = k.

I Lemma 4.5. Reduction Rule 4.3 is safe.

Proof. Consider a set F ′ ⊆ A(D′) such that T = D′/F ′ is an out-tree. If |F ′| ≥ k′ + 1, then
the solution lifting algorithm returns A(D), otherwise it returns F = F ′. If |F ′| ≥ k′+ 1 then
OTC(D, k, F ) ≤ k+1 = OTC(G′, k′, F ′). Otherwise, let V (T ) = {t1, · · · , tp} andW denote
the T -witness structure of D′. Then, as |V (F ′)| ≤ 2k, there exists a vertex ti ∈ V (T ) such
that W (ti) = {vj} for some j. Now, as vj has no out-neighbour in D′, ti is a leaf in T . Let
tjti ∈ A(T ). Then, N(vj) ⊆W (tj). Consider the partition of V (D) defined asW ′ =W∪{v}.
Now, there is a unique W ∈ W such that there exists a vertex u ∈W that is a neighbour of
v. Thus, W ′ is a D/F -witness structure of D where D/F is the out-tree obtained from T by
adding tv as an out-neighbour of tj . Hence, OTC(D, k, F ) ≤ OTC(D′, k′, F ′).

Next, consider an optimal solution F ∗ of (D, k). If |F ∗| ≥ k+ 1 then OPT(D, k) = k+ 1
and by definition, OPT(D′, k′) ≤ k′ + 1 = k + 1 = OPT(D, k). Otherwise, |F ∗| ≤ k and
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let T = G/F ∗. Let W∗ denote the T -witness structure of D. Let t ∈ V (T ) such that
v ∈W (t). If t is a leaf and W (t) is a singleton set, then F ∗ is also a solution to (D′, k′) and
OPT(D′, k′) ≤ OPT(D, k). Otherwise, as there are at least 2k + 1 vertices with the same
neighbourhood as v, there exists one such vertex u for which there exists a vertex t′ ∈ V (T )
with W ∗(t′) = {u}. As u has no out-neighbours, t′ is a leaf. Define the partition W ′ of V (G)
obtained from W∗ by renaming u by v and v by u. This defines a set of arcs F ′ obtained
from F by replacing the arc xv with the arc xu for each x. Then, F ′ is an optimum solution
for (D, k) and it is a solution for (D′, k). Therefore, OPT(D′, k) ≤ OPT(D, k). Hence,
OTC(D,k,F )

OPT(D,k) ≤
OTC(D′,k′,F ′)

OPT(D′,k′) . J

Now, we describe the final reduction rule. Given α > 1, let d be the minimum integer such
that α ≥ d

d−1 .

I Reduction Rule 4.4. If there are vertices v1, v2, . . . , v2k+1 ∈ I and h1, h2, . . . , hd ∈ H such
that {h1, . . . , hd} ⊆ N(vi) for each i ∈ [2k + 1], then contract arcs in Ã = {v1hi | i ∈ [d]}
and reduce the parameter by d− 1. That is, the resulting instance is (D/Ã, k − (d− 1)).

I Lemma 4.6. Reduction Rule 4.4 is α-safe.

Proof. Let w denote the vertex in V (D′)\V (D) obtained by contracting Ã in D. Consider a
solution F ′ to the reduced instance (D′, k′). If |F ′| ≥ k′+1, then the solution lifting algorithm
returns A(D), otherwise it returns F = F ′∪Ã. If |F ′| ≥ k′+1 then OTC(D′, k′, F ′) = k′+1 =
k−d. In this case, F = A(D) and OTC(D, k, F ) ≤ k+ 1 = k′+d = OTC(D′, k′, F ′) +d−1.
Consider the case when |F ′| ≤ k′ and let W ′ = {W ′(t1),W ′(t2), . . . ,W ′(tl)} be the D′/F ′-
witness structure of D. Without loss of generality, assume that w ∈W ′(t1).

DefineW = (W ′∪{W1})\{W ′(t1)} whereW1 = (W ′(t1)∪{v1, h1, h2, . . . , hd})\{w}. Note
that V (D) \ {v1, h1, h2, . . . , hd} = V (D′) \ {w} and hence W is partition of V (D). Further,
GD[W1] is connected as G′D[W ′(t1)] is connected. A spanning tree of the latter along with
edges {v1hi| ∀i ∈ [d]} is a spanning tree of the former. Also, |W1| = |W ′(t1)|+ d and any
vertex which is adjacent to w in D′ is adjacent to at least one vertex in {v1, h1, h2, . . . , hd}
in D. Thus, W is a D/F -witness structure of D where D/F is an out-tree. Therefore,
OTC(D, k, F ) ≤ OTC(D′, k′, F ′) + d.

Next, let F ∗ be an optimum solution for (D, k) and W be a D/F ∗-witness structure
of D. Let T denote D/F ∗. If |F ∗| ≥ k + 1, then OPT(D, k) = k + 1 = k′ + d =
OPT(D′, k′) + d − 1. Otherwise, |F ∗| ≤ k and hence there is at least one vertex, say vq
in {v1, v2, . . . , v2k+1} which is not in V (F ∗). Then, there is a vertex ti ∈ V (D/F ∗) such
that W (ti) = {vq}. Further ti is a leaf as vq has no out-neighbours leading to the existence
of a witness set, say W (ti) where ti ∈ V (T ), that contains all vertices in N(vq). Hence
{h1, h2, . . . , hd} are in W (ti). Suppose v1 ∈ W (ti). Let Ã = {v1hi| ∀ i ∈ [d]}. Then,
F ′ = F ∗ \ Ã is solution to (D′, k′) and so OPT(D′, k′) ≤ |F ′| ≤ |F ∗| − d = OPT(D, k)− d.
Otherwise, v1 6∈ W (ti) and then there exists a vertex tj ∈ V (T ) adjacent to ti such that
v1 ∈W (tj). Define another partition W ′ =W ∪ {W (tij)} \ {W (ti),W (tj)} of V (D) where
W (tij) = W (ti) ∪W (tj). Clearly, GD[W (tij)] is connected. Thus, W ′ is a D/F -witness
structure of D where |F | = |F ∗| + 1 as |W (ti)| − 1 + |W (tj)| − 1 = (|W (tij)| − 1) − 1.
Further F can be assumed to contain Ã and F ′ = F \ Ã is solution to (D′, k′) leading to
OPT(D′, k′) ≤ |F ′| = |F ∗|+ 1− d = OPT(D, k)− d+ 1. Combining these bounds, we have
OTC(D,k,F )

OPT(D,k) ≤
OTC(D′,k′,F ′)+d

OPT(D′,k′)+(d−1) ≤ max
{

OTC(D′,k′,F ′)
OPT(D′,k′) , α

}
. J

Now, we prove that the reduction rules described lead to a lossy kernel of polynomial size.
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I Lemma 4.7. Suppose D is k-contractible to an out-tree and none of Reduction Rules
4.1,4.2,4.3 and 4.4 are applicable on the instance (D, k). Then, |V (D)| is O((2k)d+1 + k2).

Proof. For an out-tree T , we define the following sets: V1(T ) = {t ∈ V (T ) | d(t) = 1},
V2(T ) = {t ∈ V (T ) | d(t) = 2} and V3(T ) = {t ∈ V (T ) | d(t) ≥ 3}. Suppose D is
contractible to the out-tree T with V (T ) = {t1, · · · , tl}. Let W denote the T -witness
structure of D. Let L denote the set of the leaves in T . Let t ∈ L and t′t ∈ A(T ). Then,⋃
v∈W (t)N(v) ⊆ W (t) ∪ W (t′). Further, either |W (t)| > 1 or |W (t′)| > 1. Otherwise,

Reduction Rule 4.1 would have been applied. Let Ls denote {t ∈ L | |W (t)| = 1}, the set of
leaves of T that correspond to singleton witness sets in W.

Consider the subtree T ′ = T − Ls. Then, H ⊆ H ′ where H ′ = {v ∈ V (D) | ∃t ∈
V (T ′), v ∈ W (t)}. We now bound the set H by bounding H ′. As Reduction Rule 4.1 is
not applicable, |W (t)| > 1 for every t ∈ V (T ′) and thus |V1(T ′)| ≤ k. As the number
of vertices of at least 3 in a tree is upper bounded by the number of leaves, we have
|V3(T ′)| ≤ k. Let V2 = {t ∈ V2(T ′) | |W (t)| = 1}. Clearly, |V2(T ′) \ V2| ≤ k. Thus,
|H ′ ∩ {v ∈ V (D) | v ∈W (t), t ∈ U}| is O(k2) where U = V1(T ′)∪ V3(T ′)∪ (V2(T ′) \ V2). We
now bound V2. Every vertex t ∈ V2 is either the root or an internal vertex of a path between
two vertices in V1(T ′) ∪ V3(T ′) ∪ (V2(T ′) \ V2) whose internal vertices have degree 2 in the
digraph. Now, the number of such paths is at most 2k − 1. Also, as the length of such a
path is O(k), it follows that |V2| is O(k2).

Summarizing these bounds, it follows that |H ′| is O(k2) and hence |H| is O(k2). Next,
we bound the size of I. For every set H ′′ ⊆ H of cardinality less than d, there are at most
2k + 1 vertices in I which have H ′′ as their neighbourhood. Otherwise, Reduction Rule 4.3
would have been applicable. Hence, there are at most (2k + 1) ·

( 2k
d−1
)
vertices in I which

have degree less than d. Every vertex in I of degree at least d is adjacent to all vertices in at
least one d-sized subset of H. For such a subset H ′′ of H, there are at most 2k + 1 vertices
in I which contain H ′′ in their neighbourhood. Otherwise, Reduction Rule 4.4 would have
been applied. Thus, there O((2k + 1)

(
k2

d

)
) vertices in I of degree at least d. Hence, |I| is

upper bounded by O(k2d+1). J

Now, we have the following result.

I Theorem 4.8. Out-Tree Contraction admits a PSAKS with O(k2d α
α−1 e+1 + k2)

vertices.

Proof. Given α > 1, we choose d = d α
α−1e and apply the Reduction Rules 4.1,4.2,4.3 and 4.4

exhaustively on the instance. All reduction rules can be applied in O((2k)d · nc) time where
c is a constant independent of α and n is the number of vertices in the input graph. If the
reduced graph D has more than O(k2d+1 +k2) vertices, then by Lemma 4.7, OPT(D, k) is at
least k+ 1 and the algorithm outputs A(D) as the solution. Otherwise, D has O(k2d+1 + k2)
vertices. J

5 Cactus Contraction

As mentioned earlier, Tree Contraction has been shown not to admit a polynomial kernel
unless NP ⊆ coNP/poly by a reduction from Red Blue Dominating Set [16]. We modify
this reduction to show similar hardness for Cactus Contraction.

I Lemma 5.1. Cactus Contraction does not have a polynomial kernel unless NP⊆
coNP/poly.
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Proof. Consider an instance (G(A,B), t) of Red Blue Dominating Set. We construct
an instance (H, k) of Cactus Contraction as follows. H is the graph obtained from G

by adding a new vertex u to A that is adjacent to every vertex in B. Also, for every vertex
a ∈ A, a set Sa of 5k + 3 new vertices that are adjacent to u and a are added to B. Let A′
be A ∪ {u} and B′ be the set B along with the |A| · (5k + 3) new vertices. This completes
the construction of H. Also, we set k = |A| + t. We claim that G has a set of at most t
vertices in B that dominates A if and only if H is k-contractible to a cactus.

Suppose there exists a set S ⊆ B of size at most t that dominates A. Let X be the set
A ∪ S ∪ {u}. Then, H[X] is connected as u is adjacent to all vertices in S and S dominates
A. Define a partition W of V (H) that contains X as one part and a singleton set for every
vertex in V (H)\X. Now, as V (H)\X is an independent set, it follows thatW is a T -witness
structure of H where T is the star obtained from H by contracting all edges of a spanning
tree of H[X]. As X has at most |A|+ t+ 1 = k + 1 vertices, any spanning tree of H[X] has
at most k edges. Thus, H is k-contractible to a star (which is a cactus). Conversely, suppose
H is k-contractible to a cactus T . Let W be the T -witness structure of H. Let a be a vertex
in A′ \ {u}. First, we show that there exists t ∈ V (T ) such that u, a ∈W (t). Assume on the
contrary that u ∈W (t) and a ∈W (t′). Then, as |Sa| = (5k+ 3), there exists distinct vertices
t1, t2, t3 of T that are different from t and t′ such that Sa ∩ ti 6= ∅ for each i ∈ {1, 2, 3}. Then,
T [{t, t′, t1, t2, t3}] has a pair of cycles that intersect at more than one vertex leading to a
contradiction. Therefore, u and a are in the same witness set W . Consequently, it follows
that the vertices in A′ are in W . Further as B′ is an independent set, W can be transformed
into another partition W ′ of V (H) that contains W and a singleton set for every vertex
in B′ \W . Now, it follows that H is k-contractible to a star T ′ and W ′ is the T ′-witness
structure of H. Moreover, T ′ has at least as many vertices as T . Suppose W contains a
vertex b′ in B′ \ B. Then, by construction, b′ is adjacent only to one vertex a ∈ A and u.
Let b ∈ B be a neighbour of a. Then, NH(b′) ⊆ NH(b) and so W ′ = (W \ {b′}) ∪ {b} is
connected and |W ′| ≤ |W |. Thus, replacing W by W ′ in W ′ yields a T ′′-witness structure of
H such that T ′′ is a star with at least as many vertices as T ′. By repeating this process, we
obtain a T ′′-witness structure W ′′ of H with T ′′ being a star and W ′′ containing only one
non-singleton set W ′′ such that W ′′ ∩ (B′ \B) = ∅. Then, the set S = {v ∈ B | v ∈W ′′} is
W ′′ \A′ and since A′ is an independent set, S (with at most k − |A| − 1 vertices) dominates
A in G. J

Next, we proceed to describe a PSAKS for Cactus Contraction. We first list the following
simplifying assumption.

I Lemma 5.2. A connected graph is k-contractible to a cactus if and only if each of its
2-connected components is contractible to a cactus using at most k edge contractions in total.

Proof. We prove the claim by induction on the number of vertices in the graph. The claim
holds for a graph on a single vertex and assume that it holds for graphs with lesser than
n vertices. Consider a connected graph G on n vertices. Suppose G is k-contractible to a
cactus. Then, there is a set F ⊆ E(G) of size at most k such that T = G/F is a cactus. Let
W be the T -witness structure of G. Let v be a cut vertex in G and let C be a connected
component of G − {v}. Let G1 denote the subgraph of G induced on V (C) ∪ {v} and G2
denote the subgraph of G induced on V (G) \ V (C). Then, G1 and G2 are connected graphs
satisfying V (G1) ∩ V (G2) = {v}. Further, the sets E(G1) and E(G2) partition E(G). We
claim that G1/(F ∩E(G1)) and G2/(F ∩E(G2)) are both cactus graphs. Consider the vertex
t0 ∈ V (T ) such that v ∈W (t0). As the deletion of a vertex in G2 − {v} cannot disconnect
G1, every set inW1 = {W (t)\V (G2) | t 6= t0,W (t) ∈ W}∪{W (t0)\ (V (G2)\{v})} induces
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a connected subgraph of G. Then, F ∩ E(G1) is the associated set of solution edges and
G1/(F ∩ E(G1)) is the subgraph of G/F induced on {t ∈ V (T ) |W (t) ∩ V (G1) 6= ∅}. Since
an induced subgraph of a cactus is also a cactus, it follows that G1/(F ∩E(G1)) is a cactus.
A similar argument holds for G2/(F ∩ E(G2)). As E(G1) and E(G2) form a partition of
E(G), |F ∩E(G1)|+ |F ∩E(G2)| ≤ k. By induction hypothesis, the required claim holds for
G1 and G2 and the result follows.

Conversely, let G1, G2, . . . Gl be the 2-connected components of G and let Fi ⊆ E(Gi) be
a set of edges such that Gi/Fi is a cactus and

∑
i∈[l] |Fi| ≤ k. Let Wi be the Gi/Fi-witness

structure of Gi. Define W =
⋃
i∈[l]Wi. Now, W is made into a partition of V (G) as follows:

if a vertex v is contained in W (t1) and in W (t2) then add W (t12) = W1 ∪W2 to W and
delete both W (t1) and W (t2). Then, F =

⋃
i∈[l] Fi contains the edges of a spanning tree of

every witness set in W and |F | ≤ k. It remains to argue that G/F is a cactus. If G/F is not
a cactus, then there exists two cycles C1, C2 which share at least two vertices. As any cycle
can have vertices from only one 2-connected component of a graph, C1, C2 are both in some
2-connected component of G leading to a contradiction. J

So, without loss of generality we can assume that the input graph G is 2-connected. Before
we proceed to describe the reduction rules, we need to define some additional terminology.
The operation of subdividing an edge uv results in the graph obtained by deleting uv and
adding a new vertex w adjacent to both u and v. The operation of short-circuiting a degree
2 vertex v with neighbours u and w results in the graph obtained by deleting v and then
adding the edge uw if it is not already present.

I Observation 4. The following statements hold for a cactus T .
1. Every vertex of degree at least 3 in T is a cut vertex.
2. The graph obtained by subdividing an edge of T is a cactus.
3. The graph obtained by short-circuiting a degree 2 vertex v in T is a cactus.
Next, we make some observations on the cactus witness structure of a graph.

I Lemma 5.3. Let F be a minimal set of edges of a 2-connected graph G such that G/F is
a cactus T with V (T ) = {t1, t2, . . . , tl}. Let W be the T -witness structure of G. Then, the
following properties hold.
1. There exists a set F ′ of at most |F | edges of G such that G/F ′ is a cactus and the G/F ′-

witness structure W ′ of G satisfies the property that for every leaf t in G/F ′, W ′(t) ∈ W ′
is a singleton set.

2. If W (t1) = {u1},W (t2) = {u2},W (t3) = {u3}, then there is a vertex t ∈ V (T ) such that
(N(u1) ∩N(u2) ∩N(u3)) ⊆W (t).

3. If t is cut vertex in T then |W (t)| > 1.
4. If |F | ≤ k and d(v) ≥ k + 3, then |W (t)| > 1 where v ∈W (t) for t ∈ V (T ).

Proof. Consider a leaf ti in T such that |W (ti)| > 1. Let tj be the unique neighbour of ti.
As titj ∈ E(T ), there exists an edge in G between a vertex in W (ti) and a vertex in W (tj).
Therefore, G[W (ti) ∪W (tj)] is connected. We claim that G[W (ti) ∪W (tj)] has a spanning
tree which has a leaf from W (ti). Observe that as |W (ti)| > 1, any spanning tree of G[W (ti)]
has at least 2 leaves. If there is a spanning tree of G[W (ti)] that has a leaf u which is not
adjacent to any vertex in W (tj), then G[(W (ti)∪W (tj)) \ {u}] is connected too and u is the
required vertex. Otherwise, every leaf in every spanning tree of G[W (ti)] is adjacent to some
vertex in W (tj) and hence G[(W (ti) ∪W (tj)) \ {u}] is connected for each vertex u ∈W (ti).
Therefore, as claimed, G[W (ti) ∪W (tj)] has a spanning tree which has a leaf v from W (ti).
Consider the partition W ′ = (W ∪ {Wv,Wij}) \ {W (ti),W (tj)} of G where Wv = {v} and
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Wij = (W (tj) ∪W (ti)) \ {v}. Then, as N(v) ⊆W (ti) ∪W (tj) by Observation 3, it follows
that W ′ is the T ′-witness structure of G such that T ′ is a cactus. Further, T ′ is the cactus
obtained from T by adding a new vertex tij adjacent to N(tj) and a new vertex tv adjacent
to tij and then deleting ti, tj . This leads to a set F ′ of at most |F | edges of G such that
T ′ = G/F ′ is a cactus. Repeating this procedure ensures that the leaves of the resulting
cactus corresponds to singleton witness sets. Therefore, the first property holds.

Let X denote N(u1) ∩ N(u2) ∩ N(u3). If there exists t 6= t′ such that X ∩W (t) and
X ∩W (t′) are non-empty, T contains two cycles (t1, t, t2, t′, t1) and (t1, t, t3, t′, t1) that share
more than one vertex leading to a contradiction. Thus, the second property is satisfied too.
The third property holds as if there is a cut vertex t in T such thatW (t) = {u}. Then, T−{t}
has at least two non-empty connected graphs, say T1 and T2. Consider U1 =

⋃
t∈V (T1)W (t)

and U2 =
⋃
t∈V (T2)W (t). As W is a cactus witness structure of G, it follows that there is no

edge between a vertex in U1 and a vertex in U2. This implies that u is a cut vertex in G
which leads to a contradiction.

Finally, if {v} = W (t) for some t ∈ V (T ) and d(v) ≥ k + 3, then by the earlier claim, t is
not a cut vertex in cactus T . Hence, by Observation 4, the degree of t is one or two. The former
case leads to the existence of a vertex t′ adjacent to t such that |W (t′)| ≥ k+ 3 and the latter
ascertains the existence of vertices t1, t2 adjacent to t such that |W (t1)|+ |W (t2)| ≥ k + 3.
However, as |F | ≤ k, both the cases leads to a contradiction as |W (t′)| ≤ k + 1 and
|W (t1)| − 1 + |W (t2)| − 1 ≤ k. J

Subsequently, we assume that all cactus witness structures have these properties.

I Lemma 5.4. Suppose G has a path P = (u0, u1, . . . , ul, ul+1) with l > k + 1 consisting
of vertices of degree 2. Then, no minimal cactus contraction solution F of G with |F | ≤ k
contains an edge incident on V (P ) \ {u0, ul+1}.

Proof. Assume on the contrary that F contains at least one such edge. As there are at
least k + 1 edges with endpoints in V (P ) \ {u0, ul+1} and by the property of F , there is
at least one edge ui−1ui ∈ F and uiui+1 /∈ F . Let T = G/F with V (T ) = {t1, · · · , tp}
and W denote the T -witness structure of G. Now, let t and t′ denote the vertices of T
such that ui−1, ui ∈ W (t) and ui+1 ∈ W (t′). If t = t′, then as G[W (t)] is connected,
ui−1, ui, ui+1 ∈ W (t) and uiui+1 /∈ F , it follows that W (t) contains the vertices of the
subpath (ui+1, . . . , ul, ul+1) and the vertices of the subpath (u0, u1, . . . , ui−1, ui). Then,
|W (t)| > k + 1 which leads to a contradiction. Thus, t 6= t′. Now, ui is not a cut vertex
in G[W (t)] as there is exactly one edge incident on it. This shows that G[W (t) \ {ui}] is
connected. Define W ′ = (W \ {W (t)}) ∪ {ui} ∪ {W (t) \ {ui}}. Then, W ′ is a partition of
V (G) which is a G/F ′-witness structure of G where F ′ = F \ {ui−1ui}. Now, G/F ′ is the
graph formed by subdividing the edge tt′ in the cactus T and by Observation 4, G/F ′ is also
a cactus. This contradicts the minimality of F .

J

Now, we are ready to state the first reduction rule.

I Reduction Rule 5.1. If G has a path P = (u0, u1, . . . , ul, ul+1) such that l > k + 2
consisting of vertices of degree 2, then replace P by the path P ′ = (u0, u1, . . . , uk+2, ul+1).
In other words, the resulting instance is (G′, k′ = k) where G′ is the graph obtained from G

by deleting {uk+3, . . . , ul} and adding the edge uk+2ul+1.

We observe that this rule can be applied in polynomial time by searching for such a path in
the subgraph induced on the vertices of degree 2.
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I Lemma 5.5. Reduction Rule 5.1 is safe.

Proof. Consider a minimal set F ′ ⊆ E(G) such that T ′ = G′/F ′ is a cactus. If |F ′| ≥ k′ + 1,
then the solution lifting algorithm returns E(G), otherwise it returns F = F ′. If |F ′| ≥ k′+ 1
then CC(G, k, F ) ≤ k + 1 = CC(G′, k′, F ′). Otherwise, let V (T ′) = {t1, · · · , tr} and W ′
denote the T ′-witness structure of G′. Then, by Lemma 5.4, F ′ has no edge incident on
V (P ) \ {u0, ul+1}. Therefore, every vertex in V (P ′) \ {u0, ul+1} is in a singleton set of W ′.
Define W to be the partition of V (G) that contains every set in W ′ and a singleton set Wv

for each vertex v in V (G) \ V (G′). Then, W is a T -witness structure of G where T is G/F
that is obtained from T ′ by subdividing some of its edges. By Observation 4, T is a cactus
as T ′ is a cactus. Therefore, CC(G, k, F ) ≤ CC(G′, k′, F ′).

Next, consider a minimal optimum solution F ∗ to (G, k). If |F ∗| ≥ k+1 then OPT(G, k) =
k + 1 and by definition, OPT(G′, k′) ≤ k′ + 1 = k + 1 = OPT(G, k). Otherwise, |F ∗| ≤ k
and let T = G/F ∗. Let W denote the T -witness structure of G. By Lemma 5.4, F ∗ has
no edge incident on V (P ) \ {u0, ul+1}. Therefore, every vertex in V (P ) \ {u0, ul+1} is in a
singleton set of W . Define W ′ to be the partition of V (G′) that contains every set in W that
contain a vertex of G′. Then, W ′ is a T ′-witness structure of G′ where T ′ = G′/F ∗. Finally,
T ′ is the graph obtained from T by short-circuiting some of its edges. Hence, T ′ is a cactus.
Thus, OPT(G′, k′) ≤ OPT(G, k). Hence, CC(G,k,F )

OPT(G,k) ≤
CC(G′,k′,F ′)
OPT(G′,k′) . J

Now, we describe a property of an instance on which the described reduction rule is not
applicable.

I Lemma 5.6. If G is k-contractible to a cactus and Reduction Rule 5.1 is not applicable
on (G, k), then G has a connected vertex cover of size O(k2).

Proof. Suppose G is k-contractible to the cactus T with V (T ) = {t1, · · · , tl}. Let W denote
the T -witness structure of G. Let V1, V2, V3 be the set of vertices of T of degree 1, 2
and at least 3 respectively. By Lemma 5.3, if ti ∈ V1 then |W (ti)| = 1. Consider two
vertices ti and tj in V1. Let W (ti) = {u} and W (tj) = {v}. Then, as titj 6∈ E(T ), we
have that uv 6∈ E(G). As T [V2 ∪ V3] is connected, it follows that S =

⋃
t∈V2∪V3

W (t) is a
connected vertex cover of G. We now argue that |S| is O(k2). For every vertex t ∈ V3,
|W (t)| > 1 by Observation 4 and Lemma 5.3. Then, there are at most k vertices in V3 as
G is k-contractible. That is,

⋃
t∈V3

W (t) is upper bounded by 2k. Further, the number of
vertices in V2 that correspond to non-singleton witness sets is also upper bounded by k.
Thus,

⋃
|W (t)|>1,t∈V2

W (t) is upper bounded by 2k. Now, it remains to bound the size of
the set U = {t ∈ V2 | ∃u ∈ V (G),W (t) = {u}}. Let T ′ be the graph obtained from T by
short-circuiting all vertices in U . Then, by Observation 4, T ′ is a cactus with at most 2k
vertices. Observe that the number of paths with vertices from U in T is bounded by |E(T ′)|.
Further, the length of each such path is O(k) as Reduction Rule 5.1 is not applicable. Since
the treewidth of a cactus is at most 2, |E(T ′)| is |V (T ′)| which is O(k). Thus, |U | and hence
|S| is O(k2). J

Before, we describe the next reduction rule, we define a partition of V (G) into the following
three parts.

H = {u ∈ V (G) | d(u) ≥ k + 3}

I = {v ∈ V (G) \H | N(v) ⊆ H}

R = V (G) \ (H ∪ I)

The next reduction rule is the following.
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I Reduction Rule 5.2. If there is a vertex v ∈ I that has at least 2k + 3 false twins, then
delete v. That is, the resultant instance is (G− {v}, k).

I Lemma 5.7. Reduction Rule 5.2 is safe.

Proof. Consider a solution F ′ of the reduced instance (G′, k′). If |F ′| ≥ k′ + 1, then the
solution lifting algorithm returns E(G), otherwise it returns F = F ′. If |F ′| ≥ k′ + 1 then
CC(G, k, F ) ≤ k + 1 = CC(G′, k, F ′). Otherwise, |F ′| ≤ k and let T ′ denote the cactus
G′/F ′ and W ′ denote the T ′-witness structure of G′. Then, as v has at least 2k + 3 false
twins, at least three of these twins, say u1, u2, u3, are not in V (F ′). By Lemma 5.3, there
exists ti ∈ V (T ′) such that NG′(u1) ⊆ W ′(ti). Let T be the cactus obtained from T ′ by
adding a new vertex tv as a leaf adjacent to ti. Since NG′(u1) = NG(u1) = NG(v), all the
vertices in NG(v) are in W ′(ti). Define the partitionW of V (G) obtained fromW ′ by adding
the new witness set {v}. Then, T is G/F and W is the T -witness structure of G. Hence,
CC(G, k, F ) ≤ CC(G′, k′, F ′).

Next, consider an optimum solution F ∗ for (G, k). If |F ∗| ≥ k + 1 then by definition,
OPT(G′, k′) ≤ k′ + 1 = k + 1 = OPT(G, k). Otherwise, |F ∗| ≤ k and let T be the cactus
G/F ∗. Let W∗ denote the T -witness structure of G. By a similar argument as above, we
know that there exists tj ∈ V (T ) such that N(v) ⊆W (tj). Let t ∈ V (T ) such that v ∈W (t).
If W (t) = {v} and t is a leaf in T then F ∗ is also a solution for (G′, k′) and the required
relation holds. Otherwise, as v has at least 2k + 3 false twins, at least one of them, say u,
is in a singleton witness set. That is, there exists a vertex t′ in T such that W (t′) = {u}.
Define the partition W ′ of V (G) obtained from W∗ by renaming u by v and v by u. This
leads to a set of edges F ′ obtained from F by replacing the edge xv with the edge xu for each
x. Further, F ′ is also an optimal solution to (G, k) and it is a solution for (G′, k′). Therefore,
OPT(G′, k′) ≤ OPT(G, k). Hence, CC(G,k,F )

OPT(G,k) ≤
CC(G′,k′,F ′)
OPT(G′,k′) . J

The final reduction rule is the following. Given α > 1, let d be d α
α−1e.

I Reduction Rule 5.3. If there are vertices v1, v2, . . . , v2k+3 ∈ I and h1, h2, . . . , hd ∈ H such
that {h1, . . . , hd} ⊆ N(vi) for all i ∈ [2k + 3] then contract all edges in Ẽ = {v1hi | i ∈ [d]}
and reduce the parameter by d− 1. The resulting instance is (G/Ẽ, k − d+ 1).

I Lemma 5.8. Reduction Rule 5.3 is α-safe.

Proof. Consider a solution F ′ of the reduced instance (G′, k′). If |F ′| ≥ k′ + 1, then
the solution lifting algorithm returns E(G), otherwise it returns F = F ′ ∪ Ẽ. If |F ′| ≥
k′ + 1 then CC(G′, k′, F ′) = k′ + 1 = k − d. In this case, F = E(G) and CC(G, k, F ) ≤
k + 1 = k′ + d = CC(G′, k′, F ′) + d − 1. Consider the case when |F ′| ≤ k′ and let
W ′ = {W ′(t1),W ′(t2), . . . ,W ′(tl)} be the G′/F ′-witness structure of G. Let w denote the
vertex in V (G′) \ V (G) obtained by contracting Ẽ. Without loss of generality, assume that
w ∈W ′(t1). DefineW =W ′∪{W1}\{W ′(t1)} whereW1 = W ′(t1)∪{v1, h1, h2, . . . , hd}\{w}.
Note that V (G)\{v1, h1, h2, . . . , hd} = V (G′)\{w} and henceW is partition of V (G). Further,
G[W1] is connected as G′[W ′(t1)] is connected. A spanning tree of G′[W1] along with Ẽ is a
spanning tree of G[W ′(t′1)]. Also, |W1| = |W ′(t1)|+ d and any vertex which is adjacent to w
in G′ is adjacent to at least one vertex in {v1, h1, h2, . . . , hd} in G. Thus,W ′ is a G/F -witness
structure of G where G/F is a cactus. Therefore, CC(G, k, F ) ≤ CC(G′, k′, F ′) + d.

Let F ∗ be an optimum solution for (G, k) and W be the G/F ∗-witness structure of G.
Let T be G/F ∗. If |F ∗| ≥ k + 1, then OPT(G, k) = k + 1 = k′ + d = OPT(G′, k′) + d− 1.
Otherwise, |F ∗| ≤ k and so there are at least 3 vertices, say vp, vq, vr in {v1, v2, . . . , v2k+3}
which are not in V (F ∗). That is, they are in singleton witness sets of W. Then, by
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Lemma 5.3, {h1, h2, . . . , hd} are in the same witness set, sayW (ti) where ti ∈ V (T ). Suppose
v1 ∈ W (ti) and let Ẽ = {v1hi | i ∈ [d]}. Then, F ′ = F ∗ \ Ẽ is solution to (G′, k′) and so
OPT(G′, k′) ≤ |F ′| ≤ |F ∗|−d = OPT(G, k)−d. Otherwise, v1 6∈W (ti) and let tj ∈ V (T ) be
the vertex such that v1 ∈W (tj). Then, ti and tj are adjacent in T . Define another partition
W ′ = W ∪ {W (tij)} \ {W (ti),W (tj)} of V (G) where W (tij) = W (ti) ∪W (tj). Clearly,
G[W (tij)] is connected. Thus, W ′ is a G/F -witness structure of G where |F | = |F ∗|+ 1 as
|W (ti)|−1+|W (tj)|−1 = (|W (tij)|−1)−1. Further F can be assumed to contain Ẽ and F ′ =
F \Ẽ is solution to (G′, k′) leading to OPT(G′, k′) ≤ |F ′| = |F ∗|+1−d = OPT(G, k)−d+1.
Combining these bounds, we have, CC(G,k,F )

OPT(G,k) ≤
CC(G′,k′,F ′)+d

OPT(G′,k′)+(d−1) ≤ max
{

CC(G′,k′,F ′)
OPT(G′,k′) , α

}
.
J

This leads to the following result.

I Lemma 5.9. Suppose graph G is k-contractible to a cactus and none of the Reduction
Rules 5.1, 5.2 and 5.3 are applicable on the instance (G, k). Then, |V (G)| is O((2k)d+1 +k3).

Proof. The set H consists of only vertices of degree at least k + 3 and by Lemma 5.3, every
vertex in H is incident on some solution edge hence |H| ≤ 2k. Since Reduction Rule 5.1 is
not applicable, by Lemma 5.6, it follows that G has connected vertex cover S of size O(k2).
Every vertex in R has degree at most k + 2. Therefore, if S ∩R is a vertex cover of G[R],
then |E(G[R])| is O(k3). Also, by the definition of I, every vertex in R has a neighbour in R
and hence there are no isolated vertices in G[R]. Thus, |R| is O(k3). Now, we bound the
size of I. For every set H ′ ⊆ H of cardinality less than d, there are at most 2k + 3 vertices
in I which have H ′ as their neighbourhood. Otherwise, Reduction Rule 5.2 would have been
applicable. Hence, there are at most (2k+ 3) ·

( 2k
d−1
)
vertices in I which have degree less than

d. Every vertex in I of degree at least d is adjacent to all vertices in at least one subset of
size d of H. For a such a subset H ′ of H, there are at most 2k + 3 vertices in I which have
H ′ in their neighbourhood. Otherwise, Reduction Rule 3.2 would have been applied. Thus,
there are at most (2k+ 3)

(2k
d

)
vertices of I of degree at least d. Hence, |I| is O((2k)d+1). J

I Theorem 5.10. Cactus Contraction admits a strict PSAKS with O((2k)d
α

α−1 e+1 + k3)
vertices.

Proof. Given α > 1, we choose d = d α
α−1e and apply Reduction Rules 5.1, 5.2 and 5.3 on the

instance as long as they are applicable. The reduction rules can be applied in O((2k)d · nc)
time where c is a constant independent of α and n is the number of vertices in the input
graph. If the reduced graph G has more than O((2k)d+1 + k3) vertices, then by Lemma 5.9,
OPT(G, k) is k + 1 and the algorithm outputs E(G) as a solution. Otherwise, G has
O((2k)d+1 + k3) vertices. J

6 Concluding Remarks

In this work we gave lossy kernels for several graph contraction problems. The running
time of our algorithms have a exponential dependence on the the approximation parameter
α. A natural question is if this dependence can be improved to a polynomial, or an even
better function. It is also an interesting open problem to construct lossy kernel for other
problems, even those that admit a classical kernelization for the reasons we discusses in the
introduction. It is also an interesting explore if the techniques described in this paper can be
extended to give lossy kernels for other graph contraction problems, e.g. contraction to a
graph of bounded treewidth, or to an outerplaner graph.
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