
Lossy Kernelization for Some Graph
Contraction Problems

R Krithika P. Mishra A. Rai P. Tale
October 25, 2017

The Institute of Mathematical Sciences, HBNI, Chennai, India

1

Graph Contraction Problems

Graph Contraction Problems

F is a graph class and G/F is graph obtained from G by
contracting edges in F

F-Contraction Parameter: k
Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is in F?

2

F-Contraction: Parameterized Complexity

[HvtHL+12] Tree Contraction 4k

Path Contraction 2k+o(k)

[GvtHP13] Planar Contraction FPT
[CG13] Clique Contraction 2O(k log k)

[HvtHLP13] Bipartite Contraction FPT
[GM13] 2O(k2)

[LMS13] [CG13] P�+1-free Contraction W [2]-hard
C�-free Contraction W [2]-hard

[ALSZ17] Split Contraction W [2]-hard

3

F-Contraction: Kernelization

[HvtHL+12] Tree Contraction No poly-kernel

Path Contraction O(k)

4

Tree Contraction

Tree Contraction

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

5

Tree Contraction

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

6

Tree Contraction

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

7

Tree Contraction

t4

t5

t3

t1
t2

t6

t7

t8

8

Tree Contraction

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

9

Contraction as a Partition Problem

Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

10

Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

G is contractible to T if there exists a partition of V (G) into
W (t1), W (t2), . . . W (t|V (T)|) s.t.

10

Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

G is contractible to T if there exists a partition of V (G) into
W (t1), W (t2), . . . W (t|V (T)|) s.t.

• ∀ t ∈ V (T), G [W (t)] is connected
• ti tj ∈ E (T) iff W (ti) and W (tj) are adjacent in G

10

Witness Structure : Definition

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G

11

Witness Structure : Definition

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1), W (t6), W (t4)

11

Witness Structure : Definition

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1), W (t6), W (t4)
k = �

t∈V (T)(|W (t)| − 1)
We say G is k-contractible to graph T

11

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

12

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;

12

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;

12

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

12

Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

v14

Contraction Problem

• Identify a partition
• Provide connectivity

13

Lossy Kernelization (Informal Intro)

Kernelization (Reduction Rule)

An algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance

14

Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• graph induced on these vertices is connected

h1

h2

h3

hd

W (t)

15

Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd
• Construct G � from G by contracting graph induced on

{h1, h2, . . . hd}
• Output: (G �, k − (d − 1))

h1

h2

h3

hd

W (t)

16

Lossy Kernelization (Reduction Rule)

A reduction algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance

17

Lossy Kernelization (Reduction Rule)

A reduction algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance

A solution lifting algorithm ASol−Lift running in poly(n)

Solution S � for (I �, k �) −→ Solution S for (I, k)

17

Lossy Kernelization (Reduction Rule)

A reduction algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance

A solution lifting algorithm ASol−Lift running in poly(n)

Solution S � for (I �, k �) −→ Solution S for (I, k)

such that solution S to (I , k) is as good as solution S � was to (I �, k �).

17

Lossy Kernelization (Reduction Rule)

A reduction algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance

A solution lifting algorithm ASol−Lift running in poly(n)

Solution S � for (I �, k �) −→ Solution S for (I, k)

such that solution S to (I , k) is as good as solution S � was to (I �, k �).

ASol−Lift have access to ARed

17

Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• graph induced on these vertices is connected

h1

h2

h3

hd

W (t)

18

Lossy Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))

19

Lossy Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))

Algorithm ASol−Lift

• Input : S � a solution to (G �, k �); (G �, k �); (G , k) (and hence F �)
• Output: S � ∪ F �

19

Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• there exists v such that {h1, h2, . . . , hd} ⊆ N(v)

20

Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• there exists v such that {h1, h2, . . . , hd} ⊆ N(v)

v

h1

h2

h3

hd

W (t)

20

Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• there exists v such that {h1, h2, . . . , hd} ⊆ N(v)

v

h1

h2

h3

hd

W (t)

Can we utilize this information to simplify graph? 20

Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).

21

Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity

21

Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity

v

h1

h2

h3

hd

W (t)

21

Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity

v

h1

h2

h3

hd

W (t)

Contract all edges {vhi |∀i ∈ [d]} to get new instance
(G �, k − (d − 1))

21

Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity

v

h1

h2

h3

hd

W (t)

Contract all edges {vhi |∀i ∈ [d]} to get new instance
(G �, k − (d − 1))
We contracted d edges but reduced the budget by d − 1. 21

Lossy Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd & v1

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd , v1}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))

22

Lossy Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd & v1

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd , v1}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))

Algorithm ASol−Lift

• Input : S � a solution for (G �, k �); (G �, k �); (G , k) (and hence F �)
• Output: S � ∪ F �

22

Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).

23

Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
h1, h2, . . . , hd are in big-witness set ⇒ there are (d − 1) solution
edges incident these vertices

23

Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
h1, h2, . . . , hd are in big-witness set ⇒ there are (d − 1) solution
edges incident these vertices

v

h1

h2

h3

hd

W (t)

v

h1

h2

h3

hd

W (t)

23

Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
h1, h2, . . . , hd are in big-witness set ⇒ there are (d − 1) solution
edges incident these vertices

v

h1

h2

h3

hd

W (t)

v

h1

h2

h3

hd

W (t)

Contracting d-many edges for every (d − 1) edges in the solution.

23

Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
h1, h2, . . . , hd are in big-witness set ⇒ there are (d − 1) solution
edges incident these vertices

v

h1

h2

h3

hd

W (t)

v

h1

h2

h3

hd

W (t)

Contracting d-many edges for every (d − 1) edges in the solution.
The number of edges contracted in this process is d

d−1 = α times
that of optimum solution 23

Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).

If S � is c-factor approximate solution to (G �, k �) then S is
max{c, α}-factor solution to (G , k).

24

Lossy Kernelization

Kernelization

25

Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I �, k �)
such that

• |I �| + k � ≤ h(k)
• (I, k) is YES instance iff (I �, k �) is YES instance

25

Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I �, k �)
such that

• |I �| + k � ≤ h(k)
• (I, k) is YES instance iff (I �, k �) is YES instance

How about optimization version?
25

Optimization Version

For a parameterized problem Q, its optimization analogue is a
computable function

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}

26

Optimization Version

For a parameterized problem Q, its optimization analogue is a
computable function

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}

Given instance I, parameter k and a solution S, the value of a
solution S to an instance (I, k) of Q is Π(I, k, S).

26

Optimization Version

For a parameterized problem Q, its optimization analogue is a
computable function

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}

Given instance I, parameter k and a solution S, the value of a
solution S to an instance (I, k) of Q is Π(I, k, S).

For parameterized minimization problems,

OPTΠ(I, k) = min
S∈Σ∗;|S|≤|I|+k

{Π(I, k, S)}

26

Lossy Kernelization

Given a solution S � to (I �, k �) can we construct a solution S to (I , k)
which is as good as S �?

27

Lossy Kernelization

Given a solution S � to (I �, k �) can we construct a solution S to (I , k)
which is as good as S �?
Quality of solution S � to (I �, k �) is Π(I�,k�,S�)

OPT(I�,k�)

27

Lossy Kernelization

Given (I �, k �, S �) can we construct a solution S to (I, k) such that

Π(I, k, S)
OPT(I, k) ≤ α

Π(I �, k �, S �)
OPT(I �, k �)

for some constant α?

28

Lossy Kernelization

Definition (α-PTAS)
An α-approximate polynomial-time preprocessing algorithm
(α-PTAS) is pair of two polynomial time algorithms as follows:

Input Output
Reduction Algorithm (I, k) (I �, k �)

Solution Lifting Algorithm (I, k) and (I �, k �, S �) S
such that

Π(I, k, S)
OPT(I, k) ≤ α · Π(I �, k �, S �)

OPT(I �, k �)

29

Lossy Kernelization

Definition (Strict α-PTAS)
An α-approximate polynomial-time preprocessing algorithm
(α-PTAS) is pair of two polynomial time algorithms as follows:

Input Output
Reduction Algorithm (I, k) (I �, k �)

Solution Lifting Algorithm (I, k) and (I �, k �, S �) S
such that

Π(I, k, S)
OPT(I, k) ≤ max{α,

Π(I �, k �, S �)
OPT(I �, k �)}

30

Lossy Kernelization

Definition (Strict α-approximate kernel)
For a parameterized minimization problem Π if

1. Strict α-PTAS
2. the size of the output instance is upper bounded by a

computable function g : N → N of k.

31

Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

32

Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally bad.

32

Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally bad.

Maximization Problem

Π(I, k, S) =
�

−∞ if S is not a solution
min{|S|, k + 1} otherwise

32

Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally bad.

Maximization Problem

Π(I, k, S) =
�

−∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally good.

32

Lossy Kernel for Tree Contraction

Tree Contraction

Tree Contraction

Consider each 2-vertex connected component separately

Tree Contraction

Tree Contraction

Bags

Tree Contraction

Bags

Each bag is contracted
to a distinct vertex

Tree Contraction

Cut vertex

Tree Contraction

Tree Contraction

Vertices not in bags
must appear as
“leaves”

Tree Contraction
Any solution S, is a sub-forest
of G on at most 2k vertices.

These form a vertex cover

Vertices not in F
must appear as
“leaves”

Vertex cover

Tree Contraction

Vertices not in F
must appear as
“leaves”

Vertex cover

If G is k-contractible to a tree, G has CVC of size 2k.

Any solution S, is a sub-forest
of G on at most 2k vertices.

These form a vertex cover

Tree Contraction

Vertices not in F
must appear as
“leaves”

Vertex cover

Our goal is to reduce the leaves

Any solution S, is a sub-forest
of G on at most 2k vertices.

These form a vertex cover

Tree Contraction

● : vertices of degree
● : vertices whose neighborhood
is contained in

● : the remaining vertices

Tree Contraction

● : vertices of degree
● : vertices whose neighborhood
is contained in

● : the remaining vertices

Almost all are leaves

Must go to
some bag

Tree Contraction

● : vertices of degree
● : vertices whose neighborhood
is contained in

● : the remaining vertices

Goal is to reduce

Tree Contraction

We don't know if are in the same bag

Tree Contraction

Tree Contraction

Claim: must all go to the same bag

Tree Contraction One of them is a leaf

Claim: must all go to the same bag

Tree Contraction

This leaf has
neighbors in two
different bags

Claim: must all go to the same bag

Tree Contraction

This leaf has
neighbors in two
different bags

Claim: must all go to the same bag

Tree Contraction

Reduction Rule :

Contract to a vertex in

Claim: must all go to the same bag

Tree Contraction

Reduction Rule :

Contract to a vertex in

Claim: must all go to the same bag

This is -safe

Tree Contraction

Reduction Rule :

Contract to a vertex in

We argue that

Claim: must all go to the same bag

Tree Contraction

Reduction Rule :

Contract to a vertex in

Claim: must all go to the same bag

We get a lossy kernel for Tree Contraction of size

Thank you!

35

References i

A. Agrawal, D. Lokshtanov, S. Saurabh, and M. Zehavi.
Split contraction: The untold story.
In 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, Hannover, Germany, pages 5:1–5:14,
2017.
Leizhen Cai and Chengwei Guo.
Contracting few edges to remove forbidden induced
subgraphs.
In IPEC, pages 97–109, 2013.

36

References ii

Sylvain Guillemot and DÃąniel Marx.
A faster FPT algorithm for bipartite contraction.
Inf. Process. Lett., 113(22–24):906–912, 2013.

Petr A. Golovach, Pim van ’t Hof, and Daniel Paulusma.
Obtaining planarity by contracting few edges.
Theoretical Computer Science, 476:38–46, 2013.
Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel
Lokshtanov, and Christophe Paul.
Contracting graphs to paths and trees.
In Proceedings of the 6th International Conference on
Parameterized and Exact Computation, IPEC’11, pages 55–66,
Berlin, Heidelberg, 2012. Springer-Verlag.

37

References iii

Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and
Christophe Paul.
Obtaining a bipartite graph by contracting few edges.
SIAM Journal on Discrete Mathematics, 27(4):2143–2156,
2013.
Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
On the hardness of eliminating small induced subgraphs
by contracting edges.
In IPEC, pages 243–254, 2013.

38

