Lossy Kernelization for Some Graph Contraction Problems

R Krithika P. Mishra A. Rai <u>P. Tale</u> October 25, 2017

The Institute of Mathematical Sciences, HBNI, Chennai, India

Graph Contraction Problems

 ${\mathcal F}$ is a graph class and G/F is graph obtained from G by contracting edges in F

 \mathcal{F} -CONTRACTIONParameter: kInput: A graph G and an integer kQuestion: Does there exist $F \subseteq E(G)$ of size at most k suchthat G/F is in \mathcal{F} ?

$\mathcal{F}\text{-}\textbf{Contraction:}$ Parameterized Complexity

[HvtHL ⁺ 12]	TREE CONTRACTION	4 ^{<i>k</i>}
	PATH CONTRACTION	$2^{k+o(k)}$
[GvtHP13]	PLANAR CONTRACTION	FPT
[CG13]	CLIQUE CONTRACTION	$2^{\mathcal{O}(k \log k)}$
[HvtHLP13]	BIPARTITE CONTRACTION	FPT
[GM13]		$2^{\mathcal{O}(k^2)}$
[LMS13] [CG13]	$P_{\ell+1}$ -FREE CONTRACTION	W[2]-hard
	C_{ℓ} -free Contraction	W[2]-hard
[ALSZ17]	Split Contraction	W[2]-hard

$\mathcal{F}\text{-}\textbf{Contraction}:$ Kernelization

[HvtHL ⁺ 12]	TREE CONTRACTION	No poly-kernel
	PATH CONTRACTION	$\mathcal{O}(k)$

G is contractible to *T* if there exists a partition of V(G) into $W(t_1), W(t_2), \ldots, W(t_{|V(T)|})$ s.t.

G is contractible to *T* if there exists a partition of V(G) into $W(t_1), W(t_2), \ldots, W(t_{|V(T)|})$ s.t.

- $\forall t \in V(T)$, G[W(t)] is connected
- $t_i t_j \in E(T)$ iff $W(t_i)$ and $W(t_j)$ are adjacent in G

Witness Structure : Definition

• $\mathcal{W} = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*

Witness Structure : Definition

• $\mathcal{W} = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*

Big-witness set if |W(t)| > 1 e.g. $W(t_1), W(t_6), W(t_4)$

Witness Structure : Definition

- $\mathcal{W} = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*
- Big-witness set if |W(t)| > 1 e.g. $W(t_1), W(t_6), W(t_4)$
- $k = \sum_{t \in V(T)} (|W(t)| 1)$ We say G is k-contractible to graph T

If G is k-contractible to T and W be its T-witness structure then,

If G is k-contractible to T and W be its T-witness structure then,

• No witness set in \mathcal{W} contains more than k+1 vertices;

If G is k-contractible to T and W be its T-witness structure then,

- No witness set in \mathcal{W} contains more than k+1 vertices;
- \mathcal{W} has at most k big witness sets;

If G is k-contractible to T and W be its T-witness structure then,

- No witness set in \mathcal{W} contains more than k+1 vertices;
- \mathcal{W} has at most k big witness sets;
- Union of big witness sets in \mathcal{W} contains at most 2k vertices.

Contraction Problem

- Identify a partition
- Provide connectivity

Lossy Kernelization (Informal Intro)

An algorithm \mathcal{A}_{Red} running in poly(n)

$$(I,k) \longrightarrow (I',k')$$

(I, k) is a yes instance iff (I', k') is a yes instance

Kernelization

In time poly(n), we can find vertices h_1, h_2, \ldots, h_d s.t.

- all these vertices are in one witness set, say W(t), for any optimal solution
- graph induced on these vertices is connected

Kernelization

Algorithm \mathcal{A}_{Red}

- In input graph G, find vertices h_1, h_2, \ldots, h_d
- Construct G' from G by contracting graph induced on {h₁, h₂, ..., h_d}
- Output: (G', k (d 1))

A reduction algorithm \mathcal{A}_{Red} running in poly(n)

$$(I,k) \longrightarrow (I',k')$$

(I, k) is a yes instance iff (I', k') is a yes instance

A reduction algorithm \mathcal{A}_{Red} running in poly(n)

 $(I,k) \longrightarrow (I',k')$

(I, k) is a yes instance iff (I', k') is a yes instance A solution lifting algorithm $\mathcal{A}_{Sol-Lift}$ running in poly(n)

Solution S' for $(I', k') \longrightarrow$ Solution S for (I, k)

A reduction algorithm \mathcal{A}_{Red} running in poly(n)

 $(I,k) \longrightarrow (I',k')$

(I, k) is a yes instance iff (I', k') is a yes instance A solution lifting algorithm $\mathcal{A}_{Sol-Lift}$ running in poly(n)

Solution S' for $(I', k') \longrightarrow$ Solution S for (I, k)

such that solution S to (I, k) is as good as solution S' was to (I', k').

A reduction algorithm \mathcal{A}_{Red} running in poly(n)

 $(I, k) \longrightarrow (I', k')$

(I, k) is a yes instance iff (I', k') is a yes instance A solution lifting algorithm $\mathcal{A}_{Sol-Lift}$ running in poly(n)

Solution S' for $(I', k') \longrightarrow$ Solution S for (I, k)

such that solution S to (I, k) is as good as solution S' was to (I', k'). $\mathcal{A}_{Sol-Lift}$ have access to \mathcal{A}_{Red}

In time poly(n), we can find vertices h_1, h_2, \ldots, h_d s.t.

- all these vertices are in one witness set, say W(t), for any optimal solution
- graph induced on these vertices is connected

Algorithm \mathcal{A}_{Red}

- In input graph G, find vertices h_1, h_2, \ldots, h_d
- Construct G' from G by contracting graph induced on $\{h_1, h_2, \ldots, h_d\}$. (Let F' be set of contracted edges.)
- Output: (G', k (d 1))

Algorithm \mathcal{A}_{Red}

- In input graph G, find vertices h_1, h_2, \ldots, h_d
- Construct G' from G by contracting graph induced on $\{h_1, h_2, \ldots, h_d\}$. (Let F' be set of contracted edges.)

• Output:
$$(G', k - (d - 1))$$

Algorithm $\mathcal{A}_{Sol-Lift}$

- Input : S' a solution to (G', k'); (G', k'); (G, k) (and hence F')
- Output: $S' \cup F'$

In time poly(n), we can find vertices h_1, h_2, \ldots, h_d s.t.

- all these vertices are in one witness set, say W(t), for any optimal solution
- there exists v such that $\{h_1, h_2, \ldots, h_d\} \subseteq N(v)$

In time poly(n), we can find vertices h_1, h_2, \ldots, h_d s.t.

- all these vertices are in one witness set, say W(t), for any optimal solution
- there exists v such that $\{h_1, h_2, \ldots, h_d\} \subseteq N(v)$

In time poly(n), we can find vertices h_1, h_2, \ldots, h_d s.t.

- all these vertices are in one witness set, say W(t), for any optimal solution
- there exists v such that $\{h_1, h_2, \ldots, h_d\} \subseteq N(v)$

Can we utilize this information to simplify graph?

We have not found entire W(t); v may or may not be in W(t).

We have not found entire W(t); v may or may not be in W(t). Introducing lossy-ness : Add vertex v to W(t) for connectivity

We have not found entire W(t); v may or may not be in W(t). Introducing lossy-ness : Add vertex v to W(t) for connectivity

We have not found entire W(t); v may or may not be in W(t). Introducing lossy-ness : Add vertex v to W(t) for connectivity

Contract all edges $\{vh_i | \forall i \in [d]\}$ to get new instance (G', k - (d - 1))

We have not found entire W(t); v may or may not be in W(t). Introducing lossy-ness : Add vertex v to W(t) for connectivity

Contract all edges $\{vh_i | \forall i \in [d]\}$ to get new instance (G', k - (d - 1))We contracted *d* edges but reduced the budget by d - 1.

Algorithm \mathcal{A}_{Red}

- In input graph G, find vertices $h_1, h_2, \ldots, h_d \& v_1$
- Construct G' from G by contracting graph induced on {h₁, h₂,..., h_d, v₁}. (Let F' be set of contracted edges.)
- Output: (G', k (d 1))

Algorithm \mathcal{A}_{Red}

- In input graph G, find vertices $h_1, h_2, \ldots, h_d \& v_1$
- Construct G' from G by contracting graph induced on $\{h_1, h_2, \dots, h_d, v_1\}$. (Let F' be set of contracted edges.)

• Output:
$$(G', k - (d - 1))$$

Algorithm $\mathcal{A}_{Sol-Lift}$

- Input : S' a solution for (G', k'); (G, k) (and hence F')
- Output: $S' \cup F'$

Claim: Solution S to (G, k) is as good as solution S' was to (G', k').

Claim: Solution S to (G, k) is as good as solution S' was to (G', k').

 h_1, h_2, \ldots, h_d are in big-witness set \Rightarrow there are (d-1) solution edges incident these vertices

Claim: Solution S to (G, k) is as good as solution S' was to (G', k'). h_1, h_2, \ldots, h_d are in big-witness set \Rightarrow there are (d - 1) solution edges incident these vertices

Claim: Solution S to (G, k) is as good as solution S' was to (G', k'). h_1, h_2, \ldots, h_d are in big-witness set \Rightarrow there are (d - 1) solution edges incident these vertices

Contracting *d*-many edges for every (d-1) edges in the solution.

Claim: Solution S to (G, k) is as good as solution S' was to (G', k'). h_1, h_2, \ldots, h_d are in big-witness set \Rightarrow there are (d - 1) solution edges incident these vertices

Contracting *d*-many edges for every (d-1) edges in the solution. The number of edges contracted in this process is $\frac{d}{d-1} = \alpha$ times that of optimum solution

Claim: Solution S to (G, k) is as good as solution S' was to (G', k').

If S' is c-factor approximate solution to (G', k') then S is $\max\{c, \alpha\}$ -factor solution to (G, k).

Kernelization

Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a poly-time algorithm A which given an input (I, k) outputs (I', k') such that

- $|I'| + k' \leq h(k)$
- (I, k) is YES instance iff (I', k') is YES instance

Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a poly-time algorithm A which given an input (I, k) outputs (I', k') such that

- $|I'| + k' \leq h(k)$
- (I, k) is YES instance iff (I', k') is YES instance

How about optimization version?

For a parameterized problem Q, its optimization analogue is a computable function

$$\Pi: \Sigma^* \times \mathbb{N} \times \Sigma^* \to \mathbb{R} \cup \{\pm \infty\}$$

For a parameterized problem Q, its optimization analogue is a computable function

$\Pi: \Sigma^* \times \mathbb{N} \times \Sigma^* \to \mathbb{R} \cup \{\pm \infty\}$

Given instance I, parameter k and a solution S, the value of a solution S to an instance (I, k) of Q is $\Pi(I, k, S)$.

For a parameterized problem Q, its optimization analogue is a computable function

$$\Pi: \Sigma^* \times \mathbb{N} \times \Sigma^* \to \mathbb{R} \cup \{\pm \infty\}$$

Given instance I, parameter k and a solution S, the value of a solution S to an instance (I, k) of Q is $\Pi(I, k, S)$.

For parameterized minimization problems,

$$OPT_{\Pi}(I,k) = \min_{S \in \Sigma^*; |S| \le |I|+k} \{\Pi(I,k,S)\}$$

Given a solution S' to (I', k') can we construct a solution S to (I, k) which is as good as S'?

Given a solution S' to (I', k') can we construct a solution S to (I, k) which is as good as S'? Quality of solution S' to (I', k') is $\frac{\Pi(I', k', S')}{OPT(I', k')}$

Given (I', k', S') can we construct a solution S to (I, k) such that

$$\frac{\Pi(I, k, S)}{\operatorname{OPT}(I, k)} \leq \alpha \frac{\Pi(I', k', S')}{\operatorname{OPT}(I', k')}$$

for some constant α ?

Definition (α **-PTAS)**

An α -approximate polynomial-time preprocessing algorithm (α -PTAS) is pair of two polynomial time algorithms as follows:

	Input	Output
Reduction Algorithm	(<i>I</i> , <i>k</i>)	(l', k')
Solution Lifting Algorithm	(I, k) and (I', k', S')	S
such that $\frac{\Pi(I, k, S)}{OPT(I, k)}$	$\leq lpha \cdot \frac{\Pi(l', k', S')}{\operatorname{OPT}(l', k')}$	

Definition (Strict α -PTAS)

An α -approximate polynomial-time preprocessing algorithm (α -PTAS) is pair of two polynomial time algorithms as follows:

	Input	Output	
Reduction Algorithm	(<i>I</i> , <i>k</i>)	(l', k')	
Solution Lifting Algorithm	(I, k) and (I', k', S')	5	
such that $\frac{\Pi(I, k, S)}{\operatorname{OPT}(I, k)} \leq \max\{\alpha, \frac{\Pi(I', k', S')}{\operatorname{OPT}(I', k')}\}$			

Definition (Strict α -approximate kernel)

For a parameterized minimization problem Π if

- 1. Strict α -PTAS
- 2. the size of the output instance is upper bounded by a computable function $g : \mathbb{N} \to \mathbb{N}$ of k.

Minimization Problem

$$\Pi(I, k, S) = \begin{cases} \infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

Minimization Problem

$$\Pi(I, k, S) = \begin{cases} \infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

all solutions of size larger than k + 1 are equally bad.

Minimization Problem

$$\Pi(I, k, S) = \begin{cases} \infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

all solutions of size larger than k + 1 are equally bad.

Maximization Problem

$$\Pi(I, k, S) = \begin{cases} -\infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

Minimization Problem

$$\Pi(I, k, S) = \begin{cases} \infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

all solutions of size larger than k + 1 are equally bad.

Maximization Problem

$$\Pi(I, k, S) = \begin{cases} -\infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

all solutions of size larger than k + 1 are equally good.

Lossy Kernel for Tree Contraction

Consider each 2-vertex connected component separately

"leaves"

- H : vertices of degree $\geq 2k+1$
- $I\,$: vertices whose neighborhood is contained in H
- ${}^{\bullet}R$: the remaining vertices

- H : vertices of degree $\geq 2k+1$
- $I\,$: vertices whose neighborhood is contained in H
- ${}^{\bullet}R$: the remaining vertices

Goal is to reduce I

We don't know if h_1, h_2, \ldots, h_d are in the same bag

$$d = \lceil \frac{\alpha}{\alpha - 1} \rceil$$

$I \qquad \begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots \dots v_{2k+1} \\ I \qquad H \qquad \begin{array}{c} \bullet \bullet \bullet \bullet \bullet \\ h_1 \ h_2 \dots h_d \end{array}$

$$d = \lceil \frac{\alpha}{\alpha - 1} \rceil$$

$$\boxed{d = \lceil \frac{\alpha}{\alpha - 1} \rceil}$$

$\begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots v_{2k+1} \\ I \\ H \\ h_1 \\ h_2 \dots h_d \\ \hline \text{This leaf has} \\ \text{neighbors in two} \\ \text{different bags} \\ \hline \end{array}$

$$d = \lceil \frac{\alpha}{\alpha - 1} \rceil$$

$\begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots v_{2k+1} \\ I \\ H \\ h_1 \\ h_2 \dots h_d \\ \hline \text{This leaf has} \\ \text{neighbors in two} \\ \text{different bags} \\ \hline \end{array}$

$$d = \lceil \frac{\alpha}{\alpha - 1} \rceil$$

$I \qquad \underbrace{\begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots \dots v_{2k+1} \\ \hline \\ \hline \\ \hline \\ h_1 \ h_2 \dots h_d \end{array}}$

<u>*Claim:*</u> h_1, h_2, \ldots, h_d must all go to the same bag

Reduction Rule :

Contract $\{v_1, h_1, h_2, \ldots, h_d\}$ to a vertex inH

$$d = \lceil \frac{\alpha}{\alpha - 1} \rceil$$

$I \qquad \underbrace{\begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots \dots v_{2k+1} \\ \hline \\ \hline \\ \hline \\ \hline \\ h_1 \ h_2 \dots h_d \end{array}}$

<u>*Claim:*</u> h_1, h_2, \ldots, h_d must all go to the same bag

Reduction Rule :

Contract $\{v_1, h_1, h_2, \dots, h_d\}$ to a vertex inH

<u>This is α -safe</u>

$$\boxed{d = \lceil \frac{\alpha}{\alpha - 1} \rceil}$$

$I \qquad \underbrace{\begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots \dots v_{2k+1} \\ \hline \\ \hline \\ \hline \\ \hline \\ h_1 \ h_2 \dots h_d \end{array}}$

<u>*Claim:*</u> h_1, h_2, \ldots, h_d must all go to the same bag

<u>Reduction Rule :</u>

Contract $\{v_1, h_1, h_2, \dots, h_d\}$ o a vertex in HWe argue that $|I| \leq \mathcal{O}(k^d)$

$I \qquad \underbrace{\begin{array}{c} \hline \text{Tree Contraction} \\ v_1 v_2 \dots \dots v_{2k+1} \\ \hline \\ \hline \\ \hline \\ \hline \\ h_1 \ h_2 \dots h_d \end{array}}$

<u>*Claim:*</u> h_1, h_2, \ldots, h_d must all go to the same bag

<u>Reduction Rule :</u>

Contract $\{v_1, h_1, h_2, \dots, h_{a}\}$ a vertex in H

We get a lossy kernel for Tree Contraction of size

 $\mathcal{O}(k^d)$

Thank you!

References i

A. Agrawal, D. Lokshtanov, S. Saurabh, and M. Zehavi. **Split contraction: The untold story.**

In 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, pages 5:1–5:14, 2017.

Leizhen Cai and Chengwei Guo.

Contracting few edges to remove forbidden induced subgraphs.

In IPEC, pages 97–109, 2013.

References ii

- Sylvain Guillemot and DÃąniel Marx.
 A faster FPT algorithm for bipartite contraction.
 Inf. Process. Lett., 113(22–24):906–912, 2013.
- Petr A. Golovach, Pim van 't Hof, and Daniel Paulusma.
 Obtaining planarity by contracting few edges.
 Theoretical Computer Science, 476:38–46, 2013.
- Pinar Heggernes, Pim van 't Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul.

Contracting graphs to paths and trees.

In *Proceedings of the 6th International Conference on Parameterized and Exact Computation*, IPEC'11, pages 55–66, Berlin, Heidelberg, 2012. Springer-Verlag.

References iii

Pinar Heggernes, Pim van 't Hof, Daniel Lokshtanov, and Christophe Paul.

Obtaining a bipartite graph by contracting few edges. *SIAM Journal on Discrete Mathematics*, 27(4):2143–2156, 2013.

 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
 On the hardness of eliminating small induced subgraphs by contracting edges.
 In *IPEC*, pages 243–254, 2013.