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Graph Contraction Problems



Graph Contraction Problems

F is a graph class and G/F is graph obtained from G by
contracting edges in F

F-Contraction Parameter: k
Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is in F?
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F-Contraction: Parameterized Complexity

[HvtHL+12] Tree Contraction 4k

Path Contraction 2k+o(k)

[GvtHP13] Planar Contraction FPT
[CG13] Clique Contraction 2O(k log k)

[HvtHLP13] Bipartite Contraction FPT
[GM13] 2O(k2)

[LMS13] [CG13] P�+1-free Contraction W [2]-hard
C�-free Contraction W [2]-hard

[ALSZ17] Split Contraction W [2]-hard

3



F-Contraction: Kernelization

[HvtHL+12] Tree Contraction No poly-kernel

Path Contraction O(k)
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Contraction as a Partition Problem
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Contraction as a Partition Problem
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G is contractible to T if there exists a partition of V (G) into
W (t1), W (t2), . . . W (t|V (T )|) s.t.
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Contraction as a Partition Problem
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G is contractible to T if there exists a partition of V (G) into
W (t1), W (t2), . . . W (t|V (T )|) s.t.

• ∀ t ∈ V (T ), G [W (t)] is connected
• ti tj ∈ E (T ) iff W (ti) and W (tj) are adjacent in G
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Witness Structure : Definition
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W = {W (t) | t ∈ V (T )} is called the T -witness structure of G
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Witness Structure : Definition
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W = {W (t) | t ∈ V (T )} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1), W (t6), W (t4)
k = �

t∈V (T )(|W (t)| − 1)
We say G is k-contractible to graph T
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Witness Structure : Observations
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If G is k-contractible to T and W be its T -witness structure then,
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If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
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Witness Structure : Observations
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If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.
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Contraction as a Partition Problem
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Contraction Problem

• Identify a partition
• Provide connectivity

13



Lossy Kernelization (Informal Intro)



Kernelization (Reduction Rule)

An algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance
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Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• graph induced on these vertices is connected
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Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd
• Construct G � from G by contracting graph induced on

{h1, h2, . . . hd}
• Output: (G �, k − (d − 1))
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Lossy Kernelization (Reduction Rule)

A reduction algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance
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A solution lifting algorithm ASol−Lift running in poly(n)

Solution S � for (I �, k �) −→ Solution S for (I, k)
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Lossy Kernelization (Reduction Rule)

A reduction algorithm ARed running in poly(n)

(I, k) −→ (I �, k �)

(I, k) is a yes instance iff (I �, k �) is a yes instance

A solution lifting algorithm ASol−Lift running in poly(n)

Solution S � for (I �, k �) −→ Solution S for (I, k)

such that solution S to (I , k) is as good as solution S � was to (I �, k �).

ASol−Lift have access to ARed
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Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• graph induced on these vertices is connected
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Lossy Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))
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• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))

Algorithm ASol−Lift

• Input : S � a solution to (G �, k �); (G �, k �); (G , k) (and hence F �)
• Output: S � ∪ F �
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Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• there exists v such that {h1, h2, . . . , hd} ⊆ N(v)
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Lossy Kernelization

In time poly(n), we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in one witness set, say W (t), for any
optimal solution

• there exists v such that {h1, h2, . . . , hd} ⊆ N(v)

v

h1

h2

h3

hd

W (t)

Can we utilize this information to simplify graph? 20



Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
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Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity
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We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity
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Contract all edges {vhi |∀i ∈ [d ]} to get new instance
(G �, k − (d − 1))
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Lossy Kernelization

We have not found entire W (t); v may or may not be in W (t).
Introducing lossy-ness : Add vertex v to W (t) for connectivity

v

h1

h2

h3

hd

W (t)

Contract all edges {vhi |∀i ∈ [d ]} to get new instance
(G �, k − (d − 1))
We contracted d edges but reduced the budget by d − 1. 21



Lossy Kernelization

Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd & v1

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd , v1}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))
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Algorithm ARed

• In input graph G , find vertices h1, h2, . . . , hd & v1

• Construct G � from G by contracting graph induced on
{h1, h2, . . . hd , v1}. (Let F � be set of contracted edges.)

• Output: (G �, k − (d − 1))

Algorithm ASol−Lift

• Input : S � a solution for (G �, k �); (G �, k �); (G , k) (and hence F �)
• Output: S � ∪ F �
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Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
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Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
h1, h2, . . . , hd are in big-witness set ⇒ there are (d − 1) solution
edges incident these vertices
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Contracting d-many edges for every (d − 1) edges in the solution.
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Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).
h1, h2, . . . , hd are in big-witness set ⇒ there are (d − 1) solution
edges incident these vertices

v

h1

h2

h3

hd

W (t)

v

h1

h2

h3

hd

W (t)

Contracting d-many edges for every (d − 1) edges in the solution.
The number of edges contracted in this process is d

d−1 = α times
that of optimum solution 23



Lossy Kernelization

Claim: Solution S to (G , k) is as good as solution S � was to
(G �, k �).

If S � is c-factor approximate solution to (G �, k �) then S is
max{c, α}-factor solution to (G , k).
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Lossy Kernelization



Kernelization
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Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I �, k �)
such that

• |I �| + k � ≤ h(k)
• (I, k) is YES instance iff (I �, k �) is YES instance
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Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I �, k �)
such that

• |I �| + k � ≤ h(k)
• (I, k) is YES instance iff (I �, k �) is YES instance

How about optimization version?
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Optimization Version

For a parameterized problem Q, its optimization analogue is a
computable function

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}
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Given instance I, parameter k and a solution S, the value of a
solution S to an instance (I, k) of Q is Π(I, k, S).
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Optimization Version

For a parameterized problem Q, its optimization analogue is a
computable function

Π : Σ∗ × N × Σ∗ → R ∪ {±∞}

Given instance I, parameter k and a solution S, the value of a
solution S to an instance (I, k) of Q is Π(I, k, S).

For parameterized minimization problems,

OPTΠ(I, k) = min
S∈Σ∗;|S|≤|I|+k

{Π(I, k, S)}
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Lossy Kernelization

Given a solution S � to (I �, k �) can we construct a solution S to (I , k)
which is as good as S �?
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Lossy Kernelization

Given a solution S � to (I �, k �) can we construct a solution S to (I , k)
which is as good as S �?
Quality of solution S � to (I �, k �) is Π(I�,k�,S�)

OPT(I�,k�)
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Lossy Kernelization

Given (I �, k �, S �) can we construct a solution S to (I, k) such that

Π(I, k, S)
OPT(I, k) ≤ α

Π(I �, k �, S �)
OPT(I �, k �)

for some constant α?
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Lossy Kernelization

Definition (α-PTAS)
An α-approximate polynomial-time preprocessing algorithm
(α-PTAS) is pair of two polynomial time algorithms as follows:

Input Output
Reduction Algorithm (I, k) (I �, k �)

Solution Lifting Algorithm (I, k) and (I �, k �, S �) S
such that

Π(I, k, S)
OPT(I, k) ≤ α · Π(I �, k �, S �)

OPT(I �, k �)
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Lossy Kernelization

Definition (Strict α-PTAS)
An α-approximate polynomial-time preprocessing algorithm
(α-PTAS) is pair of two polynomial time algorithms as follows:

Input Output
Reduction Algorithm (I, k) (I �, k �)

Solution Lifting Algorithm (I, k) and (I �, k �, S �) S
such that

Π(I, k, S)
OPT(I, k) ≤ max{α,

Π(I �, k �, S �)
OPT(I �, k �)}
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Lossy Kernelization

Definition (Strict α-approximate kernel)
For a parameterized minimization problem Π if

1. Strict α-PTAS
2. the size of the output instance is upper bounded by a

computable function g : N → N of k.
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Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise
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Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally bad.
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Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally bad.

Maximization Problem

Π(I, k, S) =
�

−∞ if S is not a solution
min{|S|, k + 1} otherwise
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Lossy Kernelization

Minimization Problem

Π(I, k, S) =
�

∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally bad.

Maximization Problem

Π(I, k, S) =
�

−∞ if S is not a solution
min{|S|, k + 1} otherwise

all solutions of size larger than k + 1 are equally good.
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Lossy Kernel for Tree Contraction



  

Tree Contraction



  

Tree Contraction

Consider each 2-vertex connected component separately



  

Tree Contraction



  

Tree Contraction

Bags



  

Tree Contraction

Bags

Each bag is contracted 
to a distinct vertex



  

Tree Contraction

Cut vertex



  

Tree Contraction



  

Tree Contraction

Vertices not in bags 
must appear as 
“leaves”



  

Tree Contraction
Any solution S, is a sub-forest 
of G on at most 2k vertices.

These form a vertex cover

Vertices not in F 
must appear as 
“leaves”

Vertex cover



  

Tree Contraction

Vertices not in F 
must appear as 
“leaves”

Vertex cover

If G is k-contractible to a tree, G has CVC of size 2k.

Any solution S, is a sub-forest 
of G on at most 2k vertices.

These form a vertex cover



  

Tree Contraction

Vertices not in F 
must appear as 
“leaves”

Vertex cover

Our goal is to reduce the leaves

Any solution S, is a sub-forest 
of G on at most 2k vertices.

These form a vertex cover



  

Tree Contraction

●    : vertices of degree    
●    : vertices whose neighborhood 
is contained in     

●    : the remaining vertices



  

Tree Contraction

●    : vertices of degree    
●    : vertices whose neighborhood 
is contained in     

●    : the remaining vertices

Almost all are leaves

Must go to 
some bag



  

Tree Contraction

●    : vertices of degree    
●    : vertices whose neighborhood 
is contained in     

●    : the remaining vertices

Goal is to reduce



  

Tree Contraction

We don't know if                     are in the same bag



  

Tree Contraction



  

Tree Contraction

Claim:                     must all go to the same bag



  

Tree Contraction One of them is a leaf

Claim:                     must all go to the same bag



  

Tree Contraction

This leaf has 
neighbors in two 
different bags

Claim:                     must all go to the same bag



  

Tree Contraction

This leaf has 
neighbors in two 
different bags

Claim:                     must all go to the same bag



  

Tree Contraction

Reduction Rule :

Contract                           to a vertex in

Claim:                     must all go to the same bag



  

Tree Contraction

Reduction Rule :

Contract                           to a vertex in

Claim:                     must all go to the same bag

This is   -safe



  

Tree Contraction

Reduction Rule :

Contract                           to a vertex in

We argue that   

Claim:                     must all go to the same bag



  

Tree Contraction

Reduction Rule :

Contract                           to a vertex in

Claim:                     must all go to the same bag

We get a lossy kernel  for Tree Contraction of size



Thank you!
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