
Dynamic Parameterized Problems ∗

R. Krithika, Abhishek Sahu, and Prafullkumar Tale

The Institute of Mathematical Sciences, HBNI, Chennai, India.
{rkrithika|asahu|pptale}@imsc.res.in

Abstract

We study the parameterized complexity of various graph theoretic problems in the dynamic
framework where the input graph is being updated by a sequence of edge additions and dele-
tions. Vertex subset problems on graphs typically deal with finding a subset of vertices having
certain properties. In real world applications, the graph under consideration often changes over
time and due to this dynamics, the solution at hand might lose the desired properties. The
goal in the area of dynamic graph algorithms is to efficiently maintain a solution under these
changes. Recomputing a new solution on the new graph is an expensive task especially when
the number of modifications made to the graph is significantly smaller than the size of the
graph. In the context of parameterized algorithms, two natural parameters are the size k of the
symmetric difference of the edge sets of the two graphs (on n vertices) and the size r of the sym-
metric difference of the two solutions. We study the Dynamic Π-Deletion problem which
is the dynamic variant of the classical Π-Deletion problem and show NP-hardness, fixed-
parameter tractability and kernelization results. For specific cases of Dynamic Π-Deletion
such as Dynamic Vertex Cover and Dynamic Feedback Vertex Set, we describe im-
proved algorithms and linear kernels. Specifically, we show that Dynamic Vertex Cover has
a deterministic algorithm with 1.0822knO(1) running time and Dynamic Feedback Vertex
Set has a randomized algorithm with 1.6667knO(1) running time. We also show that Dynamic
Connected Feedback Vertex Set can be solved in 2O(k)nO(1) time. For each of Dynamic
Connected Vertex Cover, Dynamic Dominating Set and Dynamic Connected Dom-
inating Set, we describe an algorithm with 2knO(1) running time and show that this is the
optimal running time (up to polynomial factors) assuming the Set Cover Conjecture.

1 Introduction

Graphs are discrete mathematical structures that represent pairwise relations between objects.
Due to their tremendous power to model real world systems, many problems of practical interest
can be represented as problems on graphs. Consequently, the design of algorithms on graphs is
of major importance in computer science. Applications that employ graph algorithms typically
involve large graphs that change over time. A natural goal in this setting is to design algorithms
that efficiently maintain a solution under these changes. That is, given a graph G and a solution
S, one searches for a solution S ′ that is as close as possible to S in a graph G ′ that can be
obtained from G by making at most k changes. We only consider instances where the graphs
under consideration have the same vertex set. Formally, a dynamic version of a graph theoretic
problem is a quintuple (G,G ′, S, k, r) where G and G ′ are graphs on the same vertex set. The size
of the symmetric difference of the edge sets of G and G ′ is upper bounded by k and S is a solution
(not necessarily optimal) for G. The task is to determine whether there is a solution S ′ (also not
necessarily optimal) for G ′ such that the symmetric difference of S and S ′ is at most r.

Dynamic problems have been recently studied in the parameterized complexity framework
[AKEF+15, DEF+14, HN13, GGJ+17, AKCE+17]. In parameterized complexity, each problem

∗A preliminary version of this work appears in the proceedings of the 11th International Symposium on Param-
eterized and Exact Computation (IPEC 2016).

1

instance is associated with a non-negative integer called parameter. A common parameter is a
bound on the size of an optimum solution to the problem instance. A problem is said to be
fixed-parameter tractable (FPT) with respect to parameter ` if it can be solved in f(`)nO(1) time for
some computable function f, where n is the input size. For convenience, the running time f(`)nO(1)

where f grows super polynomially with ` is denoted as O∗(f(`)). In order to classify parameterized
problems as being FPT or not, the W-hierarchy: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP is defined. It is
believed that the subset relations in this sequence are all strict and a parameterized problem that
is hard for some complexity class above FPT in this hierarchy is unlikely to be FPT. Such a hard
problem is said to be fixed-parameter intractable. A kernelization algorithm is a polynomial-time
algorithm that transforms an arbitrary instance (I, l) of the problem to an equivalent instance
(I ′, l ′) of the same problem such that |I ′|+ l ′ = g(l) for some computable function g. The instance
(I ′, l ′) is called a kernel and if g(l) = lO(1), then it is called a polynomial kernel and we say that the
problem admits a polynomial kernel. Further details on parameterized algorithms can be found
in [CFL+15, DF13, FG06].

Two relevant parameters for dynamic problem instances are the edit parameter k and the dis-
tance parameter r. Parameterized complexity results for the dynamic versions of various problems
with respect to these parameters are known [DEF+14, AKEF+15]. In this work, we revisit several
classical parameterized problems in the dynamic setting. Let Π be a fixed collection of graphs.
Given a graph G and an integer l, the Π-Deletion problem is to determine if G has a set S ⊆ V(G)
of vertices with |S| ≤ l such that G − S ∈ Π. Π-Deletion is an abstraction of various problems
on graphs. Due to a generic result by Lewis and Yannakakis [LY80], Π-Deletion is known to
be NP-hard for most choices of Π. Hence, it has been extensively studied in various algorithmic
realms. We refer to the dynamic version of this problem as Dynamic Π-Deletion and show NP-
hardness, fixed-parameter tractability and kernelization results. For the specific cases of Dynamic
Π-Deletion such as Dynamic Vertex Cover and Dynamic Feedback Vertex Set, we de-
scribe improved FPT algorithms and linear kernels with respect to the edit parameter. We also
show that Dynamic Connected Feedback Vertex Set is FPT with respect to the edit param-
eter. Further, we describe FPT algorithms for Dynamic Connected Vertex Cover, Dynamic
Dominating Set and Dynamic Connected Dominating Set with improved running times
for the same parameterization. We show that for each of these problems, this running time is the
best possible (up to polynomial factors) under the Set Cover Conjecture (defined subsequently).
Table 1 summarizes our results along with the running time bounds known for these problems.

Dynamic Problem Parameter k Parameter r

Vertex Cover 1.0822k 1.2738r

O(k) kernel O(r2) kernel

Connected Vertex 4k [AKEF+15], 2k ‡ W[2]-hard [AKEF+15]

Cover No kO(1) size kernel

Feedback Vertex Set 1.6667k (randomized) 3.592r, 3r (randomized)
O(k) kernel O(r2) kernel

Connected Feedback 2O(k) W[2]-hard

Vertex Set No kO(1) size kernel

Dominating Set 2O(k
2) [DEF+14], 2k ‡ W[2]-hard [DEF+14]

No kO(1) size kernel

Connected Dominating 4k [AKEF+15], 2k ‡ W[2]-hard [AKEF+15]

Set No kO(1) size kernel

Table 1: Summary of known and new results for different dynamic parameterized problems. All
running time bounds are specified by ignoring polynomial factors. ‡ denotes that the running
time is optimal under the Set Cover Conjecture.

2

Some of our algorithms involve a reduction to the Group Steiner Tree problem or to the
Set Cover problem. We now define these problems. Given a graph G, an integer p and a family
F of subsets of V(G), the Group Steiner Tree problem is the task of determining whether G
contains a tree on at most p vertices that contains at least one vertex from each set in F . This
problem is known to admit an algorithm with O∗(2|F |) running time [MPR+12]. Given a family
F of subsets of a universe U and a positive integer `, the Set Cover problem is the task of
determining whether there is a subfamily F ′ ⊆ F of size at most ` such that

⋃
X∈F ′ X = U. Set

Cover can be solved in O∗(2|U|) time by a dynamic programming routine [FKW05] and the Set
Cover Conjecture states that no O∗((2− ε)|U|) time algorithm exists for any ε > 0 [CDL+16]. Our
lower bound results are based on this conjecture. To show certain kernelization hardness results,
we use the fact that Set Cover parameterized by the universe size does not have polynomial
kernels unless NP ⊆ coNP/poly [DLS09].

Preliminaries: Parameterized complexity terminology and definitions not stated here can be
found in [CFL+15]. Graph theoretic notation/definitions not given explicitly here can be found in
[Die05]. All graphs considered in this paper are finite, undirected, unweighted and simple. For a
graph G, V(G) and E(G) denote the set of vertices and edges respectively. The symmetric difference
of two subsets S, S ′ ⊆ V(G), denoted by dv(S, S

′), is defined as the size of the set (S \S ′)∪ (S ′ \S).
For two graphs G and G ′ on the same vertex set, de(G,G

′) denotes the size of the symmetric
difference of E(G) and E(G ′). For a vertex u in a graph G, its neighbourhood NG(u), is set of all
the vertices adjacent to it and its closed neighbourhoodNG[u] is the setNG(u)∪{u}. This definition
is extended to subsets of vertices as NG[S] =

⋃
v∈SNG[v] and NG(S) = NG[S] \ S where S ⊆ V(G).

The subscript in the notation for neighbourhood is omitted if the graph under consideration is
clear from the context. For a set of edges E ′, V(E ′) denotes the union of the endpoints of the
edges in E ′. For a set S ⊆ V(G), G[S] and G − S denote the subgraphs of G induced by the
set S and V(G) \ S respectively. The contraction operation of an edge e = uv in G adds a new
vertex w adjacent to the vertices that are adjacent to either u or v and then deletes u and v.
That is, the contraction of e in G results in a graph G ′ with V(G ′) = (V(G) ∪ {w}) \ {u, v} and
E(G ′) = {xy | x, y ∈ V(G) \ {u, v} and xy ∈ E(G)} ∪ {wx | x ∈ NG(u) ∪ NG(v)}. An independent
set is a set of pairwise non-adjacent vertices and a clique is a set of pairwise adjacent vertices. We
also call an edgeless graph as an independent set and a complete graph as a clique. A forest is a
graph with no cycles.

2 Complexity of Dynamic Π-Deletion

A graph property Π is a collection of graphs. Π is said to be hereditary if for any graph in Π,
all of its induced subgraphs are in Π too. The membership testing problem for Π is the task of
determining if a graph is in Π or not. For most natural choices of Π, the Π-Deletion problem
is NP-hard [LY80] and interesting dichotomy results are known in the parameterized complexity
framework [Cai96, KR02]. We formally define its dynamic variant referred to as Dynamic Π-
Deletion as follows. Let In denote the graph on n vertices with no edges and Kn denote the
complete graph on n vertices.

Dynamic Π-Deletion
Input: Graphs G,G ′ on the same vertex set, a set S ⊆ V(G) such that G−S ∈ Π and integers
k, r with de(G,G

′) ≤ k.
Question: Does there exist S ′ ⊆ V(G ′) with dv(S, S

′) ≤ r such that G ′ − S ′ ∈ Π?

Observe that if Π-Deletion is in NP then so is Dynamic Π-Deletion. We are now ready to
state our first result.

3

Theorem 1. Let Π be a graph property that includes all independent sets or all cliques. Then,
Π-Deletion reduces to Dynamic Π-Deletion in polynomial time.

Proof. Let (H, l) be an instance of Π-Deletion where H is a graph on n vertices. We reduce (H, l)
to the instance (G,G ′ = H, S = ∅, k, r = l) of Dynamic Π-Deletion as follows. If Π includes

all independent sets, then G = In and k = |E(H)|. Otherwise, G = Kn and k =
(
|V(H)|
2

)
− |E(H)|.

In both cases, by the property of Π, G − S ∈ Π. Also, the vertex sets of H, G and G ′ are the
same. Then, for a set S ′ ⊆ V(H), we have H − S ′ ∈ Π if and only if G ′ − S ′ ∈ Π such that
dv(S, S

′) = |S ′|.

As a consequence of Theorem 1, we have the following hardness result.

Corollary 2. The following results hold for a property Π that includes all independent sets or all
cliques.

• If Π-Deletion is NP-hard, then Dynamic Π-Deletion is NP-hard.

• If Π-Deletion parameterized by solution size is fixed-parameter intractable then Dynamic
Π-Deletion parameterized by r is fixed-parameter intractable.

• If Π-Deletion is NP-complete and does not admit a polynomial kernel when parameterized
by solution size then Dynamic Π-Deletion parameterized by r does not admit a polynomial
kernel.

Proof. The NP-hardness and the fixed-parameter intractability results follow straightaway from
Theorem 1. If Π-Deletion is NP-complete, then Dynamic Π-Deletion reduces to Π-Deletion
in polynomial time. Therefore, if Dynamic Π-Deletion parameterized by r admits a polynomial
kernel, such a kernel can be transformed to a polynomial kernel for Π-Deletion parameterized
by solution size using this reduction and the reduction described in Theorem 1.Thus, the claimed
kernelization hardness follows too.

The following observation shows that for many choices of Π, to solve Dynamic Π-Deletion, it
suffices to look for a new solution that contains the current solution.

Observation 3. Let Π be a hereditary property. If S ′ is a solution to the instance (G,G ′, S, k, r),
then there is another solution S ′′ with dv(S, S

′′) ≤ dv(S, S ′) and S ⊆ S ′′.

Proof. As G ′ − S ′ ∈ Π and Π is hereditary, it follows that G ′ − (S ∪ S ′) ∈ Π as well. Further,
dv(S, S ∪ S ′) = |S ′ \ S| ≤ dv(S, S ′).

Now, we proceed to show certain tractable cases of Dynamic Π-Deletion.

Theorem 4. Let Π be a hereditary property whose membership testing problem is polynomial-time
solvable. Then, Dynamic Π-Deletion reduces to Π-Deletion in polynomial time.

Proof. Consider an instance (G,G ′, S, k, r) of Dynamic Π-Deletion. The task is to determine if
G ′ has a solution S ′ with dv(S, S

′) ≤ r. If G ′−S ∈ Π, then S is the required solution S ′. Otherwise,
from Observation 3, we may assume that S ′ contains S. Let H denote the graph G ′ − S. Then,
H− (S ′ \ S) ∈ Π. Therefore, for a set T ⊆ V(H), we have H− T ∈ Π if and only if G ′− (S∪ T) ∈ Π
such that dv(S, S ∪ T) = |T |.

Now, the following claim holds.

Corollary 5. Let Π be a hereditary property whose membership testing problem is polynomial-time
solvable. If Π-Deletion is FPT with respect to the solution size l as parameter, then Dynamic
Π-Deletion is FPT both with respect to r as parameter and with respect to k as parameter.

4

Proof. Consider an instance (G,G ′, S, k, r) of Dynamic Π-Deletion. Suppose Π-Deletion has
an algorithm with O∗(f(l)) running time. Then, from Theorem 4, there is an algorithm A solving
(G,G ′, S, k, r) in O∗(f(r)) time. Thus, the problem is FPT when parameterized by r. Let Ẽ denote
the set (E(G ′) \ E(G)) ∪ (E(G) \ E(G ′)). Let T be a set of vertices of G ′ that contains at least one
endpoint of each edge in Ẽ. Clearly, T has at most k vertices. As Π is hereditary and G−S ∈ Π, it
follows that G ′− (S∪ T) ∈ Π. Now, if r ≥ k, then S∪ T is the required solution S ′. Otherwise, the
algorithm A solving Dynamic Π-Deletion runs in O∗(f(k)) time. Hence, the problem is FPT
when parameterized by k.

Finally, we move on to kernelization results for the problem.

Corollary 6. Let Π be a hereditary property whose membership testing problem is polynomial-time
solvable. The following results hold when Π-Deletion parameterized by the solution size l admits
a kernel with p(l) vertices and q(l) edges.

• If Π includes all independent sets, then Dynamic Π-Deletion admits a kernel with 2p(r) ≤
2p(k) vertices and q(r) ≤ q(k) edges.

• If Π includes all cliques, then Dynamic Π-Deletion admits a kernel with 2p(r) ≤ 2p(k)
vertices and q(r) + p(r)2 ≤ q(k) + p(k)2 edges.

Proof. Consider an instance (G,G ′, S, k, r) of Dynamic Π-Deletion. If G ′ − S ∈ Π or r ≥
k, the output of the kernelization algorithm is (K1, ∅, K1, 0, 0) (with constant size) which is a
trivial yes-instance of Dynamic Π-Deletion. Suppose G ′ − S 6∈ Π and r < k. Let (H ′, r ′) be
the kernelized instance of (H, r), the instance of Π-Deletion obtained from Theorem 4. Then,
(H ′′, H ′, ∅, |E(H ′)|, r ′) is the kernelized instance of (G,G ′, S, k, r) where H ′′ = I|V(H ′)| if Π includes
all independent sets and H ′′ = K|V(H ′)| if Π includes all cliques. Hence, the claimed bounds on the
kernel size follow.

Remark: A property Π is called interesting if the number of graphs in Π and the number of graphs
not in Π are unbounded. Any hereditary property that is interesting either contains all independent
sets or contains all cliques. Thus, all the above results hold for such properties. In particular, the
results of this section hold for the dynamic variants of classical problems like Vertex Cover,
Feedback Vertex Set, Odd Cycle Transversal and Split Vertex Deletion.

3 Dynamic Vertex Cover

A vertex cover is a set of vertices that has at least one endpoint from every edge and Dynamic
Vertex Cover is formally defined as follows.

Dynamic Vertex Cover
Input: Graphs G,G ′ on the same vertex set, a vertex cover S of G and integers k, r such that
de(G,G

′) ≤ k.
Question: Does there exist a vertex cover S ′ of G ′ such that dv(S, S

′) ≤ r?

Clearly, Dynamic Vertex Cover is Dynamic Π-Deletion where Π is the set of all independent
sets. As Vertex Cover, the problem of determining if a graph has a vertex cover of size l, is
NP-hard, its dynamic version is NP-hard too by Theorem 1. In [AKEF+15], the authors claim that
Dynamic Vertex Cover is W[1]-hard with respect to k + r as parameter by a reduction from
Independent Set parameterized by the solution size. However, the reduction is incorrect and
the fixed-parameter intractability does not follow. Vertex Cover parameterized by the solution
size l admits a kernel with at most 2l vertices [CKX10] and an algorithm with O∗(1.2738l) running
time [CKJ01]. By Theorem 4 and Corollaries 5 and 6, these results extend to Dynamic Vertex
Cover as well. In particular, the following results hold.

5

• Dynamic Vertex Cover can be solved in O∗(1.2738r) time and in O∗(1.2738k) time.

• Dynamic Vertex Cover admits a kernel with at most 4r vertices and O(r2) edges.

• Dynamic Vertex Cover admits a kernel with at most 4k vertices and O(k2) edges.

We now improve over these results by describing a linear kernel and a faster algorithm for the
problem when parameterized by k. First, we describe the linear kernelization.

Theorem 7. Dynamic Vertex Cover admits a kernel with at most 2k vertices and k edges.

Proof. Consider an instance (G,G ′, S, k, r) of Dynamic Vertex Cover. By Observation 3, it
suffices to search for a solution S ′ that contains S. As de(G,G

′) ≤ k, we have |E(G ′) \ E(G)| ≤
k. Also, edges in E(G) \ E(G ′) do not affect the solution. Let H be the graph with V(H) =
V(E(G ′) \E(G)) and E(H) = E(G ′) \E(G). Then, H has at most 2k vertices and k edges. Further,
(G,G ′, S, k, r) is a yes-instance of Dynamic Vertex Cover if and only if (H, r) is a yes-instance
of Vertex Cover. Then, from Corollary 6, it suffices to output a linear kernel of the instance
(H, r). We apply the following standard preprocessing on H.

Reduction Rule 3.1. Delete isolated vertices.

Reduction Rule 3.2. If there is a vertex v of degree 1, add its neighbour u into the solution and
decrease r by 1. Delete u and v from the graph.

Let H ′ denote the resultant graph on which these rules are no longer applicable and r ′ denote the
budget. As the rules are safe (i.e., they preserve minimum vertex covers), we have the following
equivalence: (H, r) is a yes-instance of Vertex Cover if and only if (H ′, r ′) is a yes-instance of
Vertex Cover. Then, as the minimum degree of H ′ is at least 2, we have |E(H ′)| ≥ |V(H ′)|.
As |E(H ′)| ≤ k, it follows that |V(H ′)| ≤ k. Thus, from Corollary 6, the kernelized instance
corresponding to (G,G ′, S, k, r) is (I|V(H ′)|, H

′, ∅, k = |E(H ′)|, r ′).

Next, we describe an algorithm (faster than the O∗(1.2738k) time algorithm) for the problem when
parameterized by k.

Theorem 8. Dynamic Vertex Cover can be solved in O∗(1.0822k) time.

Proof. Consider an instance (G,G ′, S, k, r) of Dynamic Vertex Cover. By Observation 3, it
suffices to search for a solution S ′ that contains S. Let H be the graph with V(H) = V(E(G ′)\E(G))
and E(H) = E(G ′) \ E(G). Then, H has at most 2k vertices and k edges and it suffices to solve
the instance (H, r) of Vertex Cover. We first apply Reduction Rules 3.1 and 3.2 on H as long
as they are applicable. Then, |V(H)| ≤ |E(H)| ≤ k. It is known that a minimum vertex cover of a
graph with m edges can be obtained in O∗(1.0822m) time [Bei99]. Thus, an O∗(1.0822k) algorithm
follows.

4 Dynamic Connected Vertex Cover

A connected vertex cover is a vertex cover that induces a connected subgraph and Dynamic
Connected Vertex Cover is defined as follows.

Dynamic Connected Vertex Cover
Input: Graphs G,G ′ on the same vertex set, a connected vertex cover S of G and integers k, r
such that de(G,G

′) ≤ k.
Question: Does there exist a connected vertex cover S ′ of G ′ such that dv(S, S

′) ≤ r?

The problem is NP-complete, W[2]-hard when parameterized by r and admits an O∗(4k) algorithm
by a reduction to finding a minimum weight Steiner tree [AKEF+15]. We describe an O∗(2k)

6

algorithm by a reduction to finding a group Steiner tree. First, we observe a property of a solution
to an instance of Dynamic Connected Vertex Cover analogous to Observation 3. Consider
an instance (G,G ′, S, k, r) of Dynamic Connected Vertex Cover. Observe that G ′ must be
connected, otherwise, (G,G ′, S, k, r) is a no-instance. Then, any set that contains a connected
vertex cover is also a connected vertex cover. As dv(S, S

′ ∪ S) = |S ′ \ S| ≤ dv(S, S ′), the following
claim holds.

Observation 9. If S ′ is a connected vertex cover of G ′, then S ′ ∪ S is also a connected vertex
cover of G ′ with dv(S, S

′ ∪ S) ≤ dv(S, S ′).

Now, we prove the main result of this section.

Theorem 10. Dynamic Connected Vertex Cover can be solved in O∗(2k) time.

Proof. Consider an instance (G,G ′, S, k, r) of Dynamic Connected Vertex Cover. By Ob-
servation 9, we can assume that the required solution S ′ contains S. Observe that G ′[S] is
not necessarily connected and the edges in G ′ that are not covered by S are those edges in
E ′ = (E(G ′) \ E(G)) ∩ E(G ′ − S). Now, we show a reduction to finding a group Steiner tree.
Contract each component of G ′[S] to a single vertex. Let H denote the resulting graph and
let X = V(H) \ V(G ′). Construct an instance (H, |X| + r,F) of Group Steiner Tree where
F = {{u, v} | uv ∈ E ′} ∪ {{x} | x ∈ X}. We claim that (G,G ′, S, k, r) is a yes-instance of Dynamic
Connected Vertex Cover if and only if (H, |X| + r,F) is a yes-instance of Group Steiner
Tree.

Suppose there is a connected vertex cover S ′ of G ′ such that dv(S, S
′) ≤ r and S ⊆ S ′.

As G ′[S ′] is connected, it follows that H[X ∪ (S ′ ∩ V(G ′ − S))] is also connected. Moreover, as
|S ′ ∩ V(G ′ − S)| ≤ r, it follows that the spanning tree of H[X ∪ (S ′ ∩ V(G ′ − S))] is of size at most
|X| + r. Hence (H, |X| + r,F) is a yes-instance of Group Steiner Tree. Conversely, suppose
(H, |X| + r,F) is a yes-instance of Group Steiner Tree. Let T denote the solution tree of H.
Then, X ⊆ V(T) and |V(T) \ X| = |V(T) ∩ V(G ′ − S)| ≤ r. Define S ′ = S ∪ (V(T) ∩ V(G ′ − S)).
The size of S ′ is at most |S| + r. Further, G ′[S ′] is connected as S ′ is obtained from the vertices
of T . Also, for every edge in E ′, T contains at least one of its endpoints. Thus, S ′ is the desired
connected vertex cover of G ′. As the sum of the number of components of G ′[S] and the size of E ′

is upper bounded by k+1, it follows that |F | ≤ k+1. Thus, the Group Steiner Tree algorithm
of [MPR+12] runs in O∗(2k) time.

Next, we show a lower bound on the running time of an algorithm that solves Dynamic Con-
nected Vertex Cover assuming the Set Cover Conjecture. We do so by a reduction from Set
Cover to Dynamic Connected Vertex Cover.

Theorem 11. Dynamic Connected Vertex Cover does not admit an algorithm with O∗((2−
ε)k) running time for any ε > 0 assuming the Set Cover Conjecture.

Proof. Consider an instance (U,F , `) of Set Cover where U = {u1, · · · , un} and F = {S1, · · · , Sm}
is a family of subsets of U. Without loss of generality, assume that every ui is in at least one set
Sj. Let G be the graph with vertex set U ∪ V ∪ {x} where U = {u1, · · · , un} and V = {s1, · · · , sm}.
The set V is an independent set and the set U induces the path u1, · · · , un (in order). Further, a
vertex ui is adjacent to sj if and only if ui ∈ Sj and x is adjacent to every vertex in V and to u1
in U. Clearly, S = U ∪ {x} is a connected vertex cover of G.

Let G ′ be the graph obtained from G by deleting the edges with both endpoints in U and the
edge xu1. We claim that (U,F , `) is a yes-instance of Set Cover if and only if (G,G ′, S = U ∪
{x}, k = n, r = `) is a yes-instance of Dynamic Connected Vertex Cover. Suppose F ′ is a
set cover of size at most `. Then, S ′ = S ∪ {si | Si ∈ F ′} is a connected vertex cover of G ′ with
dv(S, S

′) ≤ `. Conversely, suppose G ′ has a connected vertex cover S ′ with dv(S, S
′) ≤ `. From

Observation 9, assume that S ⊆ S ′ and so |S ′\S| ≤ `. Further, S ′\S ⊆ V. Now, {Si ∈ F | vi ∈ S ′∩V}
is a set cover of size at most `. This leads to the claimed lower bound under the Set Cover
Conjecture.

7

Note that the above reduction also shows that Dynamic Connected Vertex Cover does
not have a polynomial kernel when parameterized by k.

Theorem 12. Dynamic Connected Vertex Cover does not admit a polynomial kernel when
parameterized by k unless NP ⊆ coNP/poly.

5 Dynamic Feedback Vertex Set

A feedback vertex set is a set of vertices whose deletion results in a forest and Dynamic Feedback
Vertex Set is defined as follows.

Dynamic Feedback Vertex Set
Input: Graphs G,G ′ on the same vertex set, a feedback vertex set X of G and integers k, r
such that de(G,G

′) ≤ k.
Question: Does there exist a feedback vertex set X ′ of G ′ such that dv(X,X

′) ≤ r?

Clearly, Dynamic Feedback Vertex Set is Dynamic Π-Deletion where Π is the set of all
forests. As Feedback Vertex Set, the problem of determining if a graph has a feedback vertex
set of at most l vertices, is NP-hard, its dynamic variant is NP-hard too by Theorem 1. Feedback
Vertex Set is known to admit an O∗(3.592l) algorithm [KP14] and a kernel with O(l2) vertices
[Tho10]. Also, a randomized algorithm that solves the problem in O∗(3l) time is known from
[CNP+11]. By Theorem 4 and Corollaries 5 and 6, all these results extend to Dynamic Feedback
Vertex Set. In particular, the following results hold.

• Dynamic Feedback Vertex Set can be solved in O∗(3.592r) time and in O∗(3.592k) time.

• Dynamic Feedback Vertex Set admits randomized algorithms with O∗(3r) and O∗(3k)
running times.

• Dynamic Feedback Vertex Set admits an O(r2) kernel and an O(k2) kernel.

We now improve these bounds by describing a linear kernel and a faster randomized algorithm for
the problem when parameterized by k. First, we describe the linear kernelization.

Theorem 13. Dynamic Feedback Vertex Set admits a kernel with at most 4k vertices and
3k edges.

Proof. Consider an instance (G,G ′, X, k, r) of Dynamic Feedback Vertex Set. Observe that if
G ′ is obtained from G by only deleting edges, then X is feedback vertex set of G ′ too. Also, edges
in E(G ′)\E(G) that have an endpoint in X do not affect the solution. Moreover, from Observation
3, it suffices to search for a feedback vertex set of G ′ that contains X. Let H be the subgraph of G ′

induced by V(G ′)\X. From Theorem 4, we have that (G,G ′, X, k, r) is a yes-instance of Dynamic
Feedback Vertex Set if and only if (H, r) is a yes-instance of Feedback Vertex Set. From
Corollary 6, it suffices to output a linear kernel of the instance (H, r).

We show that a linear kernel can be obtained by applying two preprocessing rules well known
in the literature [BYGNR94, Tho10]. We primarily exploit the fact that H is obtained by adding
at most k edges to a forest. This implies that |E(H)| ≤ |V(H)|+k−1. First, we apply the following
preprocessing rule on H.

Reduction Rule 5.1. If there is a vertex v of degree at most 1, then delete v.

This rule is safe (i.e. it preserves minimum feedback vertex sets) as no minimal feedback vertex
set of H contains v. Observe that |E(H)| ≤ |V(H)|+ k− 1 is preserved. Next, when this rule is no
longer applicable, we apply the following reduction rule.

Reduction Rule 5.2. If there is a vertex v of degree 2, then delete v and add an edge between its
two neighbours.

8

Once again this rule is safe as any minimal feedback vertex set of H can be modified into another
minimal feedback vertex set of at most the same size that does not contain v. Further, |E(H)| ≤
|V(H)|+ k− 1 still holds as the number of edges decreases by 1 for every vertex deleted as a result
of applying the rule. The following property holds on the resulting graph H ′′ on which Reduction
Rules 5.1 and 5.2 are no longer applicable.

Observation 14. The minimum degree of H ′′ is at least 3 and |E(H ′′)| ≤ |V(H ′′)|+ k− 1.

This implies that 1.5|V(H ′′)| ≤ |E(H ′′)| ≤ |V(H ′′)|+k−1 and hence |V(H ′′)| ≤ 2k−2, |E(H ′′)| ≤ 3k−
3. Further, (H, r) is a yes-instance of Feedback Vertex Set if and only if (H ′′, r) is a yes-instance
of Feedback Vertex Set. Thus, from Corollary 6, the kernelized instance corresponding to
(G,G ′, S, k, r) is (I|V(H ′′)|, H

′′, ∅, k = |E(H ′′)|, r).

Next, we proceed to describe an improved FPT algorithm for the problem when parameterized by
k. We first need to state some results known for Feedback Vertex Set. There is a deterministic
O∗(1.7216n) time algorithm and a randomized O∗(1.6667n) time algorithm for finding a minimum
feedback vertex set of a graph on n vertices [FGLS16]. The treewidth of a graph is a parameter
that quantifies the closeness of the graph to a tree (see [CFL+15] for the precise definition). If the
treewidth of the input graph is upper bounded by tw, then there is a randomized algorithm that
computes a minimum feedback vertex set in O∗(3tw) time [CNP+11]. The following result relates
the treewidth of a graph to the number of its vertices and edges.

Lemma 15. [FGSS09] For any ε > 0, there exists an integer nε such that for every connected
graph G on n vertices and m edges with n > nε and 1.5n ≤ m ≤ 2n, the treewidth of G is
upper bounded by m−n

3 + εn. Moreover, a tree decomposition of the corresponding width can be
constructed in polynomial time.

This theorem along with the described linear kernelization leads to the following result.

Theorem 16. Dynamic Feedback Vertex Set has a randomized algorithm with O∗(1.6667k)
running time.

Proof. Consider an instance (G,G ′, X, k, r) of Dynamic Feedback Vertex Set. Let (H ′′, r) be
the corresponding instance of Feedback Vertex Set obtained from the linear kernelization of
Theorem 13. That is, H ′′ is a graph (not necessarily simple) on n vertices and m edges such that
m ≤ n+k−1 and n ≤ 2k−2. Further, every vertex of H ′′ has degree at least 3 and hencem ≥ 1.5n.
If m > 2n, then as m ≤ n+k−1, we have n < k−1. Then, a minimum feedback vertex set of H ′′

can be obtained in O(1.6667k) using the randomized exact exponential-time algorithm described
in [FGLS16]. Otherwise, 1.5n ≤ m ≤ 2n. Let ε be a constant (to be chosen subsequently). Then,
let nε be the integer obtained from Lemma 15 satisfying the required properties. If n ≤ nε,
then a minimum feedback vertex set of H ′′ can be obtained in constant time as nε is a constant
depending only on ε. Otherwise, the treewidth of H ′′ is at most t = m−n

3 + εn = m
3 + n(ε − 1

3).
Then, using the randomized algorithm described in [CNP+11], a minimum feedback vertex set of
H ′′ can be obtained in O∗(3t) time. Now, by choosing ε to be a sufficiently small constant, t can
be made arbitrarily close to m−n

3 . For instance, if ε = 10−10, then t is .3m − .33333333323n. As
m−n
3 ≤ n+k−1−n

3 = k
3 , the algorithm in [CNP+11] runs in O∗(1.443k) time.

6 Dynamic Connected Feedback Vertex Set

A connected feedback vertex set is a feedback vertex set that induces a connected subgraph and
Dynamic Connected Feedback Vertex Set is defined as follows.

Dynamic Connected Feedback Vertex Set
Input: Graphs G,G ′ on the same vertex set, a connected feedback vertex set S of G and
integers k, r such that de(G,G

′) ≤ k.
Question: Does there exist a connected feedback vertex S ′ of G ′ such that dv(S, S

′) ≤ r?

9

Note that the generic results of section 2 (in particular Corollary 5) do not follow for this
problem straightaway. In fact, even a result analogous to Observation 9 does not necessarily hold.
We first show that the problem is W[2]-hard when parameterized by r. Then, we show that it is
FPT when parameterized by k.

Theorem 17. Dynamic Connected Feedback Vertex Set is W[2]-hard when parameterized
by r.

Proof. We prove the claim by showing that Dynamic Connected Vertex Cover reduces
to Dynamic Connected Feedback Vertex Set. This reduction is similar to the classi-
cal NP-hardness reduction from Vertex Cover to Feedback Vertex Set. Consider an in-
stance (G,G ′, S, k, r) of Dynamic Connected Vertex Cover. We will construct an instance
(H,H ′, S, 3k, r) of Dynamic Connected Feedback Vertex Set as follows. The graph H is
obtained from G by adding a vertex ve corresponding to every edge e = xy ∈ E(G) adjacent to x
and y. Similarly, the graph H ′ is obtained from G ′ by adding a vertex ve corresponding to every
edge e = xy ∈ E(G ′) adjacent to x and y. Vertices in V(H) \ V(H ′) are added as isolated vertices
to H ′ and vertices in V(H ′) \V(H) are added as isolated vertices to H. This addition ensures that
V(H) = V(H ′). Also, if de(G,G

′) = k ′, then de(H,H
′) = 3k ′. Then, S ′ is a connected vertex

cover of G ′ with dv(S, S
′) ≤ r if and only if S ′ is a connected feedback vertex set of H ′ with

dv(S, S
′) ≤ r.

The above reduction also shows that Dynamic Connected Feedback Vertex Set does
not have a polynomial kernel when parameterized by k as Dynamic Connected Vertex Cover
does not have one.

Theorem 18. Dynamic Connected Feedback Vertex Set does not admit a polynomial
kernel when parameterized by k unless NP ⊆ coNP/poly.

Next, we prove the following result on the existence of a canonical solution to an instance of
Dynamic Connected Feedback Vertex Set.

Lemma 19. Consider an instance (G,G ′, S, k, r) of Dynamic Connected Feedback Vertex
Set. Let C = {C1, C2, . . . , Cl} be the set of components of G ′[S]. If S ′ is a connected feedback vertex
set of G ′, then there is a connected feedback vertex set S̃ of G ′ with dv(S, S̃) ≤ dv(S, S ′) such that
for each C ∈ C, either V(C) ∩ S̃ = ∅ or V(C) ⊆ S̃.

Proof. Suppose there is a component C ∈ C such that S ′∩V(C) 6= ∅ and V(C) 6⊆ S ′. Let S ′′ be the
set S ′ ∪ V(C). As G ′[S ′] and G ′[C] are connected and S ′ ∩ V(C) 6= ∅, it follows that G ′[S ′′] is also
connected. Further, S ′′ is a feedback vertex set of G ′ since it contains S ′. Finally, as V(C) ⊆ S,
we have dv(S, S

′′) < dv(S, S
′). Repeating this procedure for each such component C, we get the

desired solution S̃.

Now, we proceed to describe an algorithm for Dynamic Connected Feedback Vertex
Set. Let (G,G ′, S, k, r) be an instance of Dynamic Connected Feedback Vertex Set. Let
G ′ be obtained from G by k1 edge additions and k2 edge deletions. Let E ′ be the set of edges
in E(G ′) \ E(G) that have both endpoints in V(G ′ − S). Let V ′ be a minimal set of vertices of
V(G ′−S) that has at least one endpoint of each edge in E ′. Then, G ′[S] has l ≤ k2+1 components
and the graph G ′ − S has a feedback vertex set of size at most k1. The former property is obvious
while the latter follows from the fact that G ′ − (S ∪ V ′) is a forest and |V ′| ≤ k1 (as |E ′| ≤ k1).

Let C = {C1, C2, . . . , Cl} be the set of components of G ′[S]. Armed with Lemma 19, we first
guess the components of G ′[S] whose vertices are in solution S ′. There are at most 2l choices for
this guess. Let D = {D1, D2, . . . , Dα} be the subset of C whose vertices are in S ′. Let D ′ denote
C \ D. Let Z =

⋃
C∈D ′ V(C) and I =

⋃
C∈D V(C). If |Z| > r, we can skip to the next choice of

D. Otherwise, the problem reduces to finding a connected feedback vertex set S ′ of G ′ such that
I ⊆ S ′, Z ∩ S ′ = ∅ and |S ′ ∩ V(G ′ − S)| ≤ r− |Z|.

10

Let G̃ be the graph obtained from G ′ by contracting every edge in G[Z] and every edge in G[I].
Let Ĩ and Z̃ denote the set of new vertices introduced as a result of this contraction where each
vertex in Ĩ corresponds to a component in D and each vertex in Z̃ corresponds to a component
in D ′. Observe that |̃I| = α and |Z̃| = l − α. As contracting an edge cannot introduce new cycles
[BL11], we have the following proposition.

Proposition 1. G ′ has a connected feedback vertex set S ′ with |S ′ ∩ V(G ′ − S)| ≤ r − |Z| such
that I ⊆ S ′ and Z ∩ S ′ = ∅ if and only if G̃ has a connected feedback vertex set S̃ of size at most
r+ α− |Z| such that Ĩ ⊆ S̃ and Z̃ ∩ S̃ = ∅.

By construction of the graph G̃, V(G̃) = Ĩ∪ Z̃∪V(G ′−S). Further, the subgraph of G̃ induced
by V(G ′−S) is a graph that has a feedback vertex set of size at most k1. Therefore, this subgraph
has treewidth upper bounded by k1+1. Then, it follows that the treewidth of G̃ is upper bounded
by k+2 as |̃I∪ Z̃| = l ≤ k2+1. Also, a tree decomposition of G̃ with this width can be obtained in
polynomial time. Now, the task reduces to the following problem where k̃ = k+2 and r̃ = r+α−|Z|.

Constrained Connected Feedback Vertex Set

Input: Graph G̃ with tree decomposition of width at most k̃, disjoint subsets Ĩ and Z̃ of V(G̃)
and an integer r̃.
Question: Does there exist a connected feedback vertex S̃ of G̃ such that |S̃| ≤ r̃, Ĩ ⊆ S̃ and
Z̃ ∩ S̃ = ∅?

From [CNP+11], there is a randomized algorithm solving Constrained Connected Feed-

back Vertex Set in O∗(4k̃) time when Z̃ = ∅. This algorithm is based on the cut and count
technique which can also be adapted to solve the general version of the problem when Z̃ 6= ∅.
Also, there is a deterministic algorithm (rank-based approach) running in O∗(2O(tw)) time that
finds a minimum connected feedback vertex set where tw is an upper bound on the treewidth of
the input graph [BCKN15] which can once again be adapted to solve Constrained Connected
Feedback Vertex Set. Thus, we have the following result.

Theorem 20. Dynamic Connected Feedback Vertex Set can be solved in O∗(2O(k)) time.

7 Dynamic Dominating Set

A dominating set of a graph G is a set D of vertices such that D∩N[v] 6= ∅ for every v ∈ V(G). A
set S ⊆ V(G) is said to dominate another set T ⊆ V(G) if T ⊆ N[S]. Dynamic Dominating Set
is formally defined as follows.

Dynamic Dominating Set
Input: Graphs G,G ′, a dominating set D of G and integers k, r such that de(G,G

′) ≤ k.
Question: Does there exist a dominating set D ′ of G ′ such that dv(D,D

′) ≤ r?

The problem is NP-complete and W[2]-hard when parameterized by r [DEF+14]. Also, it is FPT
when parameterized by k but admits no polynomial kernel unless NP ⊆ coNP/poly. We describe a
faster algorithm for this parameterization. First, we observe that it suffices to look for a dominating
set with a specific property. Consider an instance (G,G ′, D, k, r) of Dynamic Dominating Set.
As a set that contains a dominating set is also a dominating set, the following observation holds.

Observation 21. If D ′ is a dominating set of G ′, then D ′∪D is also a dominating set of G ′ with
dv(D,D

′ ∪D) ≤ dv(D,D ′).

Now, we solve Dynamic Dominating Set by reducing it to an instance of Set Cover.

Theorem 22. Dynamic Dominating Set can be solved in O∗(2k) time.

11

Proof. Consider an instance (G,G ′, D, k, r) of Dynamic Dominating Set. If G ′ is obtained from
G by only adding edges, then D is dominating set of G ′. The only kind of edge deletions that
could possibly affect the solution are those that have one endpoint in D and the other endpoint in
V(G ′) \D. Further, as de(G,G

′) ≤ k, |V(G ′) \NG ′ [D]| ≤ k. That is, there are at most k vertices
in G ′ that are not dominated by D. Let H be the subgraph of G ′ induced by V(G ′) \D. Partition
V(H) into two sets C = NG ′(D) and B = V(H ′) \ C where |B| ≤ k.

We claim that (G,G ′, D, k, r) is a yes-instance of Dynamic Dominating Set if and only if
there exists a set P ⊆ V(H) of cardinality at most r such that B ⊆ NH[P]. If there is a set P of size
at most r in V(H) that dominates B, then D ′ = D∪P is a dominating set of G ′ with dv(D,D

′) ≤ r.
Hence, (G,G ′, D, k, r) is a yes-instance of Dynamic Dominating Set. Conversely, suppose there
is a dominating set D ′ of G ′ with dv(D,D

′) ≤ r. Define D ′′ as D ′ \D. Notice that |D ′′| ≤ r. By
construction of H, B is not dominated by D and hence B ⊆ NH[D ′′]. This implies that D ′′ is the
required set of vertices of H that dominates B.

The problem now reduces to finding a set of at most r vertices from B∪C that dominates B in H.
We construct an instance of Set Cover with U = B, F = {NH(u)∩B | u ∈ C}∪{NH[w]∩B | w ∈ B}
and ` = r. Then, there exists a set P of size at most r in H which dominates B if and only if (U,F , `)
is a yes-instance of Set Cover. A set X ∈ F is said to be associated with a vertex v in C if
X = NH(v) ∩ B or with a vertex v in B if X = NH[v] ∩ B. If there exists a set P with desired
property, then every vertex w in B is contained in open or closed neighbourhood of some vertex
in P. Consider the subfamily F ′ of F that are associated with vertices in P. Every element of U
is contained in at least one of these sets. Thus, F ′ is the required set cover. Conversely, if there
exists a set cover F ′ of size at most ` = r, then let P ′ be the set of vertices which are associated
with sets in F ′. Then, |P ′| = |F ′| ≤ r and every vertex in B is either in P ′ or is adjacent to some
vertex in P ′. Hence, P ′ is the desired set.

As any instance (U,F , `) of Set Cover can be solved in O∗(2|U|) [FKW05], the claimed
running time bound follows.

Finally, we show a lower bound on the running time of an algorithm that solves Dynamic Domi-
nating Set.

Theorem 23. Dynamic Dominating Set does not admit an algorithm with O∗((2−ε)k) running
time for any ε > 0 assuming the Set Cover Conjecture.

Proof. Consider an instance (U,F , `) of Set Cover where U = {u1, · · · , un} and F = {S1, · · · , Sm}
is a family of subsets of U. Without loss of generality, assume that every ui is in at least one set
Sj. Let G be the graph with vertex set U ∪ V ∪ {x} where U = {u1, · · · , un} and V = {s1, · · · , sm}.
The set V is a clique and the set U is an independent set in G. Further, a vertex ui is adjacent to
sj if and only if ui ∈ Sj and x is adjacent to every vertex in U∪V. Clearly, D = {x} is a dominating
set of G. Let G ′ be the graph obtained from G by deleting edges between x and U. We claim
that (U,F , `) is a yes-instance of Set Cover if and only if (G,G ′, D = {x}, k = n, r = `) is a
yes-instance of Dynamic Dominating Set. Suppose F ′ is a set cover of size at most `. Then,
D ′ = D ∪ {si | Si ∈ F ′} is a dominating set of G ′ with dv(D,D

′) ≤ `. Conversely, suppose G ′

has a dominating set D ′ with dv(D,D
′) ≤ `. From Observation 21, assume that D ⊆ D ′ and so

|D ′ \D| ≤ `. For every vertex u ∈ U ∩D ′, replace u by one of its neighbours in V. The resultant
dominating set D ′′ contains D and satisfies D ′′ \D ⊆ V. Now, {Si ∈ F | vi ∈ D ′′∩V} is a set cover
of size at most `. This leads to the claimed lower bound under the Set Cover Conjecture.

The above reduction also shows that Dynamic Dominating Set does not have a polynomial
kernel when parameterized by k.

Theorem 24. Dynamic Dominating Set does not admit a polynomial kernel when parameter-
ized by k unless NP ⊆ coNP/poly.

12

8 Dynamic Connected Dominating Set

A connected dominating set is a dominating set that induces a connected graph and Dynamic
Connected Dominating Set is formally defined as follows.

Dynamic Connected Dominating Set
Input: Graphs G,G ′ on the same vertex set, a connected dominating set D of G and integers
k, r such that de(G,G

′) ≤ k.
Question: Does there exist a connected dominating set D ′ of G ′ such that dv(D,D

′) ≤ r?

The problem is NP-complete and admits an O∗(4k) time algorithm by a reduction to finding a
minimum weight Steiner tree [AKEF+15]. We now show that it has an O∗(2k) time algorithm
by a reduction to finding a group Steiner tree. Analogous to the problems considered earlier, we
first observe a property of the required solution. Consider an instance (G,G ′, D, k, r) of Dynamic
Connected Dominating Set. Observe that G ′ must be connected, otherwise, (G,G ′, D, k, r) is
a no-instance. As a set that contains a dominating set is also a dominating set and every vertex
in D \D ′ is adjacent to some vertex in D ′, the following claim holds.

Observation 25. If D ′ is a connected dominating set of G ′, then D ′ ∪ D is also a connected
dominating set of G ′ with dv(D,D

′ ∪D) ≤ dv(D,D ′).

Now, we describe an algorithm for Dynamic Connected Dominating Set.

Theorem 26. Dynamic Connected Dominating Set can be solved in O∗(2k) time.

Proof. Consider an instance (G,G ′, D, k, r) of Dynamic Connected Dominating Set. Observe
that G ′ must be connected, otherwise, it is a no-instance. Also, edges in E(G ′)\E(G) do not affect
the solution. Partition V(G ′) \ D into two sets C = NG ′(D) and B = V(G ′) \ C. Contract each
component of G ′[D] to a single vertex. Let H denote the resulting graph and let X = V(H)\V(G ′).
Construct an instance (H, |X|+ r,F) of Group Steiner Tree where F = {NG ′ [v] | v ∈ B}∪ {{x} |
x ∈ X}. We claim that (G,G ′, D, k, r) is a yes-instance of Dynamic Connected Dominating
Set if and only if (H, |X|+ r,F) is a yes-instance of Group Steiner Tree.

Suppose there exists a connected dominating set D ′ of G ′ such that dv(D,D
′) ≤ r and D ⊆ D ′.

For every vertex u in B, there is a vertex x in D ′ ∩ (B ∪ C) that is adjacent to u. As G ′[D ′] is
connected, it follows that H[X ∪ (D ′ ∩ (B ∪ C))] is also connected. Moreover, as |D ′ ∩ (C ∪ B)| ≤
|D ′|− |D| ≤ r, it follows that the spanning tree of H[X ∪ (D ′ ∩ (C ∪ B))] is of size at most |X|+ r.
Hence (H, |X| + r,F) is a yes-instance of Group Steiner Tree. Suppose (H, |X| + r,F) is a
yes-instance of Group Steiner Tree. Let T denote the solution tree of H. Then, X ⊆ V(T) and
|V(T) \ X| = |V(T) ∩ (C ∪ B)| ≤ r. Define D ′ = D ∪ (V(T) ∩ (B ∪ C)). The size of D ′ is at most
|D| + r. Now, G ′[D ′] is connected as D ′ is obtained from the vertices of T . Also, for every vertex
u in B, T contains at least one vertex in NG ′ [v]. Thus, D ′ is the desired connected dominating set
of G ′.

As E(G) \ E(G ′), the sum of the number of components of G ′[D] and the size of B is upper
bounded by k + 1. That is, |F | ≤ k + 1 and the Group Steiner Tree algorithm of [MPR+12]
runs in O∗(2k) time.

Finally, by a reduction from Set Cover to Dynamic Connected Dominating Set, we show
the following result.

Theorem 27. Dynamic Connected Dominating Set does not admit an algorithm with O∗((2−
ε)k) running time for any ε > 0 assuming the Set Cover Conjecture.

Proof. We observe that the reduction described in Theorem 23 produces instances of Dynamic
Connected Dominating Set. Thus, the claimed lower bound holds assuming the Set Cover
Conjecture.

13

The above reduction also shows that Dynamic Connected Dominating Set does not have
a polynomial kernel when parameterized by k.

Theorem 28. Dynamic Connected Dominating Set does not admit a polynomial kernel when
parameterized by k unless NP ⊆ coNP/poly.

9 Conclusion

We studied the parameterized complexity of several classical problems in the dynamic framework.
Recently, the connection between dynamic problems and the improvement of greedy heuristics has
been witnessed to a significant extent [HN13, DEF+14, AKCE+17]. In particular, an algorithm for
Dynamic Dominating Set has been used to improve heuristic search algorithms for Dominating
Set [DEF+14, AKCE+17]. We believe that the heuristics can be improved further using our faster
algorithm for Dynamic Dominating Set. Along similar lines, studying the complexity of the
dynamic version of various fixed-parameter intractable problems like Partial Vertex Cover,
Set Cover and Hitting Set is an exciting direction of research. This could provide an insight
into the possibility of (exact or heuristic) algorithms for these problems that are better than the
ones currently known. The role of structural parameters like treewidth and pathwidth in the
dynamic setting also remains to be explored.

Acknowledgments: We are grateful to Saket Saurabh for the invaluable discussions and for
providing several useful pointers.

References

[AKCE+17] F. N. Abu-Khzam, S. Cai, J. Egan, P. Shaw, and K. Wang. Turbo-Charging Dominat-
ing Set with an FPT Subroutine: Further Improvements and Experimental Analysis.
In Proceedings of the 14th International Conference on Theory and Applications of
Models of Computation, pages 59–70. Springer, 2017.

[AKEF+15] F. N. Abu-Khzam, J. Egan, M. R. Fellows, F. A. Rosamond, and P. Shaw. On the
Parameterized Complexity of Dynamic Problems. Theoretical Computer Science, 607
(3):426–434, 2015.

[BCKN15] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof. Deterministic Single Ex-
ponential Time Algorithms for Connectivity Problems Parameterized by Treewidth.
Information and Computation, 243:86–111, 2015.

[Bei99] R. Beigel. Finding Maximum Independent Sets in Sparse and General Graphs. In Pro-
ceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’99, pages 856–857. SIAM, 1999.

[BL11] P. Bonsma and D. Lokshtanov. Feedback Vertex Set in Mixed Graphs. In Proceedings
of the 12th International Conference on Algorithms and Data Structures, WADS ’11,
pages 122–133. Springer-Verlag, 2011.

[BYGNR94] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation Algorithms for
the Vertex Feedback Set Problem with Applications to Constraint Satisfaction and
Bayesian Inference. In Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’94, pages 344–354. SIAM, 1994.

[Cai96] L. Cai. Fixed-Parameter Tractability of Graph Modification Problems for Hereditary
Properties. Information Processing Letters, 58(4):171–176, 1996.

14

[CDL+16] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi,
S. Saurabh, and M. Wahlstrom. On Problems As Hard As CNF-SAT. ACM Trans-
actions on Algorithms, 12(3):41:1–41:24, 2016.

[CFL+15] M. Cygan, F. V. Fomin, K. Lukasz, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[CKJ01] J. Chen, I. A. Kanj, and W. Jia. Vertex Cover: Further Observations and Further
Improvements. Journal of Algorithms, 41(2):280–301, 2001.

[CKX10] J. Chen, I. A. Kanj, and G. Xia. Improved Upper Bounds for Vertex Cover. Theo-
retical Computer Science, 411(40-42):3736–3756, 2010.

[CNP+11] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and J. O.
Wojtaszczyk. Solving Connectivity Problems Parameterized by Treewidth in Single
Exponential Time. In Proceedings of the 52nd Annual Symposium on Foundations
of Computer Science, FOCS ’11, pages 150–159. IEEE, 2011.

[DEF+14] R.G. Downey, J. Egan, M.R. Fellows, F.A. Rosamond, and P. Shaw. Dynamic Domi-
nating Set and Turbo-Charging Greedy Heuristics. Tsinghua Science and Technology,
19(4):329–337, 2014.

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer-Verlag, 2013.

[Die05] R. Diestel. Graph Theory. Springer-Verlag, 2005.

[DLS09] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through Colors and IDs.
In Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP 2009), pages 378–389. Springer, 2009.

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[FGLS16] F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact Algorithms via
Monotone Local Search. In Proceedings of the 48th Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 764–775. ACM, 2016.

[FGSS09] F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov. On Two Techniques of
Combining Branching and Treewidth. Algorithmica, 54(2):181–207, 2009.

[FKW05] F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (Exponential) Algorithms
for the Dominating Set Problem. In Proceedings of the 30th Workshop on Graph
Theoretic Concepts in Computer Science (WG), pages 245–256. Springer, 2005.

[GGJ+17] S. Gaspers, J. Gudmundsson, M. Jones, J. Mestre, and S. Rümmele. Turbocharg-
ing Treewidth Heuristics. In Proceedings of the 11th International Symposium on
Parameterized and Exact Computation (IPEC 2016), volume 63 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 13:1–13:13. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017.

[HN13] S. Hartung and R. Niedermeier. Incremental List Coloring of Graphs, Parameterized
by Conservation. Theoretical Computer Science, 494:86–98, 2013.

[KP14] T. Kociumaka and M. Pilipczuk. Faster Deterministic Feedback Vertex Set. Infor-
mation Processing Letters, 114(10):556–560, 2014.

[KR02] S. Khot and V. Raman. Parameterized Complexity of Finding Subgraphs with Hered-
itary Properties. Theoretical Computer Science, 289(2):997–1008, 2002.

15

[LY80] J. M. Lewis and M. Yannakakis. The Node-Deletion Problem for Hereditary Prop-
erties is NP-Complete. Journal of Computer and System Sciences, 20(2):219–230,
1980.

[MPR+12] N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT Algorithms for
Connected Feedback Vertex Set. Journal of Combinatorial Optimization, 24(2):131–
146, 2012.

[Tho10] S. Thomassé. A 4k2 Kernel for Feedback Vertex Set. ACM Transactions on Algo-
rithms, 6(2):32:1–32:8, 2010.

16

