
Dynamic Parameterized Problems

R. Krithika Abhishek Sahu Prafullkumar Tale
The Institute of Mathematical Sciences, Chennai, India

IPEC 2016
Aarhus University, Denmark

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Dynamic Graphs

Current graph is at a distance 8 from the initial graph

Dynamic Graphs

Dynamic Graphs
G

Dynamic Graphs

vertex cover of G

G

Dynamic Graphs

vertex cover of G

G

Dynamic Graphs

vertex cover of G

G H

Dynamic Graphs

edit distance 8

vertex cover of G

G H

Dynamic Graphs

edit distance 8

vertex cover of G

G H

vertex cover of H

Dynamic Graphs

edit distance 8

Hamming distance 1

vertex cover of G

G H

vertex cover of H

Dynamic Graphs

edit distance 8

G H

Dynamic Graphs

edit distance 8

G H

vertex cover of G

Dynamic Graphs

edit distance 8

G H

Hamming distance 2

vertex cover of G

Dynamic Graphs

edit distance 8

G H

Hamming distance 2

vertex cover of G vertex cover of H

Dynamic Problem Template

Dynamic Problem Template
Instance:

• Graphs G, H on same vertex set s.t de(G,H) ≤ k

• A solution S of G

• An integer r

Question: Does H have a solution T s.t dv(S,T) ≤ r?

Parameter(s): k, r

Dynamic Problem Template
Instance:

• Graphs G, H on same vertex set s.t de(G,H) ≤ k

• A solution S of G

• An integer r

Question: Does H have a solution T s.t dv(S,T) ≤ r?

Parameter(s): k, r

k- edit parameter

r- distance parameter

Dynamic ∏-Deletion
Instance:

• Graphs G, H on same vertex set s.t de(G,H) ≤ k

• A set S s.t G-S ∈ ∏

• An integer r

Question: Does H have a set T s.t dv(S,T) ≤ r and H-T ∈ ∏ ?

Parameter(s): k, r

k- edit parameter

r- distance parameter

Dynamic Problem Parameterized Complexity
k r

Dominating Set 2k2 [DEFRS14], 2k (tight) W[2]-hard [DEFRS14]

Connected Dominating
Set

4k [AEFRS15], 2k (tight) W[2]-hard [AEFRS15]

Vertex Cover
1.174k, 1.1277k (expo
space), O(k) kernel

1.2738r, O(r2) kernel

Connected Vertex Cover 4k [AEFRS15], 2k W[2]-hard [AEFRS15]

Feedback Vertex Set
1.6667k (randomized),

O(k) kernel
3.592r, O(r2) kernel

∏-Deletion
Fixed-parameter (in)tractability related to that

of non-dynamic version

Dynamic ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary

(w.r.t induced subgraphs)
Existence of Incremental

Solution
⇒

Dynamic ∏-Deletion

S

G-S ∈ ∏

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

Dynamic ∏-Deletion

S

G-S ∈ ∏ H-T ∈ ∏

T

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

Dynamic ∏-Deletion

S

G-S ∈ ∏ H-T ∈ ∏

T
S

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

Dynamic ∏-Deletion

S

G-S ∈ ∏ H-T ∈ ∏

T
S

⇒ H-(S∪ T ∈ ∏)

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

Dynamic ∏-Deletion

S

G-S ∈ ∏ H-T ∈ ∏

T
S

d(S,S ∪ T) = |T-S| ≤ |T-S| + |S-T| = d(S,T)

⇒ H-(S∪ T ∈ ∏)

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

Dynamic ∏-Deletion

S

G-S ∈ ∏ H-T ∈ ∏

T
S

d(S,S ∪ T) = |T-S| ≤ |T-S| + |S-T| = d(S,T)

⇒ H-(S∪ T ∈ ∏)

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

VC, FVS

Dynamic ∏-Deletion

S

G-S ∈ ∏ H-T ∈ ∏

T
S

d(S,S ∪ T) = |T-S| ≤ |T-S| + |S-T| = d(S,T)

⇒ H-(S∪ T ∈ ∏)

∏ is hereditary
(w.r.t induced subgraphs)

Existence of Incremental
Solution

⇒

VC, FVS CVC, DS, CDS

Dynamic ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l G

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG
S = ∅

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

NP-hard

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

⇒
NP-hard

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

⇒
NP-hard NP-hard

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

⇒
NP-hard

Not FPT w.r.t sol size l

NP-hard

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

⇒
NP-hard

Not FPT w.r.t sol size l

NP-hard

Not FPT w.r.t r

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

No poly kernel w.r.t sol size l

⇒
NP-hard

Not FPT w.r.t sol size l

NP-hard

Not FPT w.r.t r

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all independent sets

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

k=|E(H)| r=l

S = ∅

No poly kernel w.r.t sol size l No poly kernel w.r.t r

⇒
NP-hard

Not FPT w.r.t sol size l

NP-hard

Not FPT w.r.t r

Dynamic ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l G

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l HG

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l H
S = ∅

G

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l H

k=nC2-|E(H)| r=l

S = ∅
G

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l H

k=nC2-|E(H)| r=l

S = ∅

No poly kernel w.r.t sol size l

NP-hard

Not FPT w.r.t sol size l

G

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l H

k=nC2-|E(H)| r=l

S = ∅

⇒
No poly kernel w.r.t sol size l

NP-hard

Not FPT w.r.t sol size l

G

Dynamic ∏-Deletion
∏ is hereditary (w.r.t induced subgraphs) and includes all cliques

∏-Deletion reduces in poly time to Dynamic ∏-Deletion

H l H

k=nC2-|E(H)| r=l

S = ∅

⇒
No poly kernel w.r.t sol size l

NP-hard

Not FPT w.r.t sol size l

No poly kernel w.r.t r

NP-hard

Not FPT w.r.t r

G

Dynamic ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ (or)

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

(or)

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

FPT w.r.t sol size l
O*(f(l))

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all independent sets

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all independent sets

p(l) vertices and q(l) edges kernel

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all independent sets

⇒p(l) vertices and q(l) edges kernel

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all independent sets

⇒p(l) vertices and q(l) edges kernel 2p(k) vertices and q(k) edges kernel

2p(r) vertices and q(r) edges kernel

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all cliques

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all cliques

p(l) vertices and q(l) edges kernel

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all cliques

⇒p(l) vertices and q(l) edges kernel

Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏

solve ∏-Deletion on (H-S,r)

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all cliques

⇒p(l) vertices and q(l) edges kernel
2p(k) vertices and q(k)+ p2(k) edges kernel

2p(r) vertices and q(r)+ p2(r) edges kernel

Dynamic Feedback Vertex Set

Dynamic Feedback Vertex Set

Dynamic Feedback Vertex Set

Dynamic Feedback Vertex Set

Forest + ≤ k edges

Dynamic Feedback Vertex Set

Forest + ≤ k edges

O(k) edges kernel

Dynamic Feedback Vertex Set

Forest + ≤ k edges

1.6667k randomized algorithm

O(k) edges kernel

Dynamic Vertex Cover

Dynamic Vertex Cover
S

Dynamic Vertex Cover
S S

Dynamic Vertex Cover

At most k edges are not covered by S

S S

Dynamic Vertex Cover

At most k edges are not covered by S

S S

Graph has at most 2k vertices and k edges

Dynamic Vertex Cover

At most k edges are not covered by S

S S

Graph has at most 2k vertices and k edges

O*(1.174k) poly space algorithm

Dynamic Vertex Cover

At most k edges are not covered by S

S S

Graph has at most 2k vertices and k edges

O*(1.174k) poly space algorithm

O*(1.1277k) expo space algorithm

Dynamic Connected Vertex Cover

Dynamic Connected Vertex Cover
S

Dynamic Connected Vertex Cover
S S

Dynamic Connected Vertex Cover

At most k1 edges are not covered by S that has at most k2 components

S S

Dynamic Connected Vertex Cover

At most k1 edges are not covered by S that has at most k2 components

S S

A group Steiner tree problem with parameter k1+k2 ≤ k

Dynamic Connected Vertex Cover

At most k1 edges are not covered by S that has at most k2 components

S S

O*(2k) algorithm

A group Steiner tree problem with parameter k1+k2 ≤ k

Dynamic Dominating Set

Dynamic Dominating Set
D

Dynamic Dominating Set
D D

Dynamic Dominating Set
D D

At most k vertices are not dominated by D

Dynamic Dominating Set
D D

At most k vertices are not dominated by D

A set cover instance on k-element universe

Dynamic Dominating Set
D D

At most k vertices are not dominated by D

A set cover instance on k-element universe

O*(2k) algorithm

Dynamic Dominating Set
D D

At most k vertices are not dominated by D

A set cover instance on k-element universe

O*(2k) algorithm

Tight under the Set Cover Conjecture

Dynamic Connected Dominating Set

Dynamic Connected Dominating Set
D

Dynamic Connected Dominating Set
D D

Dynamic Connected Dominating Set
D D

At most k1 vertices are not dominated by D that has at most k2 components

Dynamic Connected Dominating Set
D D

At most k1 vertices are not dominated by D that has at most k2 components

A group Steiner tree problem with parameter k1+k2 ≤ k

Dynamic Connected Dominating Set
D D

At most k1 vertices are not dominated by D that has at most k2 components

O*(2k) algorithm

A group Steiner tree problem with parameter k1+k2 ≤ k

Dynamic Connected Dominating Set
D D

At most k1 vertices are not dominated by D that has at most k2 components

O*(2k) algorithm

Tight under the Set Cover Conjecture

A group Steiner tree problem with parameter k1+k2 ≤ k

Concluding Remarks

• Viewed as extending partial solutions

• Other interesting parameters

• =k1 edge additions and =k2 edge deletions

• treewidth, vertex cover

• Relation to reconfiguration problems and online problems

• Interesting data structures

References
Dynamic Problems in Parameterized Complexity Framework
• F. N. Abu-Khzam, J. Egan, M. R. Fellows, F. A. Rosamond, and P. Shaw. On the parameterized complexity

of dynamic problems. Theoretical Computer Science, 607, Part 3:426–434, 2015.
• R.G. Downey, J. Egan, M.R. Fellows, F.A. Rosamond, and P. Shaw. Dynamic dominating set and turbo-

charging greedy heuristics. J. Tsinghua Sci. Technol, 19(4):329–337, 2014.
• S. Hartung and R. Niedermeier. Incremental list coloring of graphs, parameterized by conservation.

Theoretical Computer Science, 494:86–98, 2013.

Vertex Cover
• J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further improvements. Journal

of Algorithms, 41(2):280–301, 2001.
• J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical Computer Science,

411(40-42):3736–3756, 2010.

Treewidth Bounds
• F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov. On two techniques of combining branching and

treewidth. Algorithmica, 54(2):181–207, 2009.
• J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. A bound on the pathwidth of sparse graphs with

applications to exact algorithms. SIAM Journal on Discrete Mathematics,23(1):407–427, 2009.

References
Feedback Vertex Set
• F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms via monotone local

search. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, STOC ’16.
ACM, 2016.

• T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex set. Information Processing
Letters, 114(10):556–560, 2014.

• S. Thomassé. A quadratic kernel for feedback vertex set, chapter 13, pages 115–119. 2009.

Set Cover and Group Steiner Tree
• M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, and M.

Wahlstrom. On problems as hard as CNF-SAT. ACM Transactions on Algorithms, 12(3), Article No.
41, 2016.

• F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for the dominating set
problem. In Graph-Theoretic Concepts in Computer Science, pages 245–256. Springer, 2004.

• N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT algorithms for connected feedback
vertex set. Journal of combinatorial optimization, 24(2):131–146, 2012.

Thank you :)

Questions?

