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Dynamic ∏-Deletion
Instance: 

• Graphs G, H on same vertex set s.t de(G,H) ≤ k 

• A set S s.t G-S ∈ ∏

• An integer r

Question: Does H have a set T s.t dv(S,T) ≤ r and H-T ∈ ∏ ?

Parameter(s): k, r

k- edit parameter 

r- distance parameter



Dynamic Problem Parameterized Complexity
k r

Dominating Set 2k2 [DEFRS14], 2k (tight) W[2]-hard [DEFRS14]

Connected Dominating 
Set

4k [AEFRS15], 2k (tight) W[2]-hard [AEFRS15]

Vertex Cover
1.174k, 1.1277k (expo 
space), O(k) kernel

1.2738r, O(r2) kernel

Connected Vertex Cover 4k [AEFRS15], 2k W[2]-hard [AEFRS15]

Feedback Vertex Set
1.6667k (randomized), 

O(k) kernel
3.592r, O(r2) kernel

∏-Deletion
Fixed-parameter (in)tractability related to that 

of non-dynamic version
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T
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d(S,S ∪ T) = |T-S| ≤ |T-S| + |S-T| = d(S,T)

⇒ H-(S∪ T ∈ ∏)

∏ is hereditary 
(w.r.t induced subgraphs)

Existence of Incremental 
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⇒
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Dynamic ∏-Deletion
∏ is hereditary (w.r.t subgraphs) and membership in ∏ is poly-time decidable

Dynamic ∏-Deletion reduces in poly time to  ∏-Deletion

(G, H, S, k, r)

H-S ∈ ∏ To find
T ⊇ S s.t H-T ∈ ∏ 

solve ∏-Deletion on (H-S,r) 

(or)

⇒
FPT w.r.t sol size l
O*(f(l))

FPT w.r.t r and k
O*(f(r)) algorithm
O*(f(k)) algorithm

∏ includes all cliques

⇒p(l) vertices and q(l) edges kernel
2p(k) vertices and q(k)+ p2(k) edges kernel

2p(r) vertices and q(r)+ p2(r) edges kernel
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Dynamic Feedback Vertex Set

Forest + ≤ k edges

1.6667k randomized algorithm

O(k) edges kernel
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O*(1.174k) poly space algorithm 
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Concluding Remarks

• Viewed as extending partial solutions

• Other interesting parameters

• =k1 edge additions and =k2 edge deletions

• treewidth, vertex cover 

• Relation to reconfiguration problems and online problems 

• Interesting data structures
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Thank you :) 

Questions?


