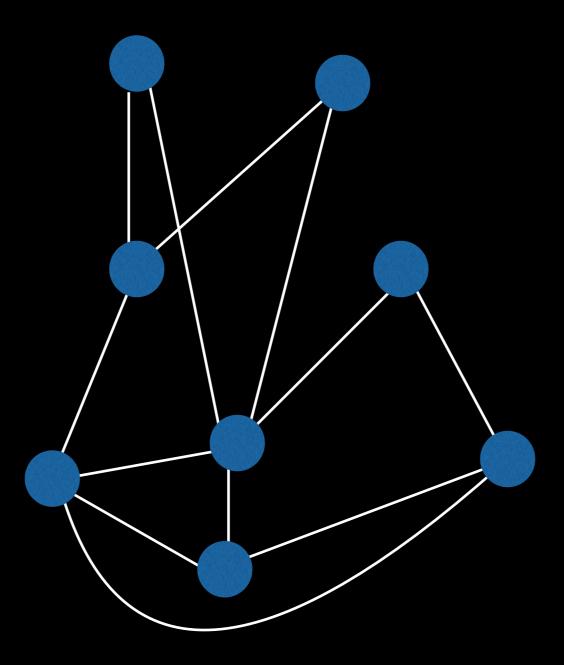
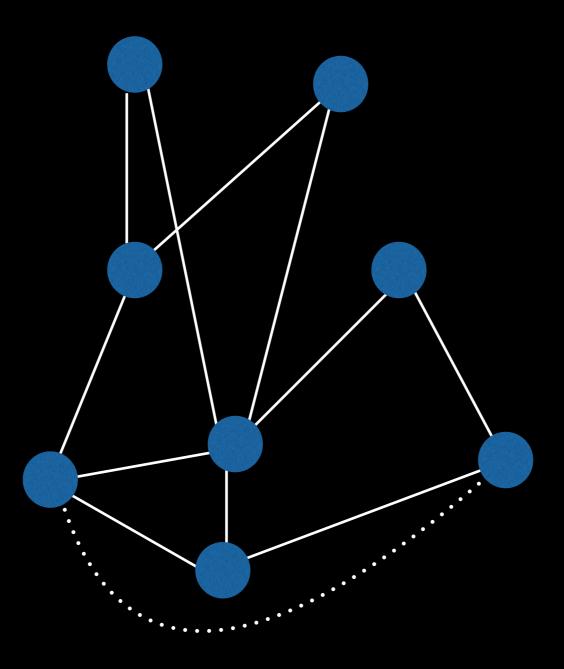
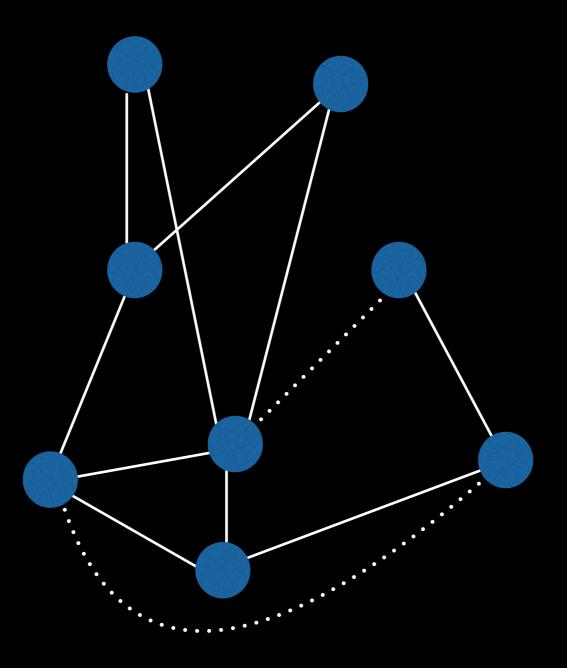
Dynamic Parameterized Problems

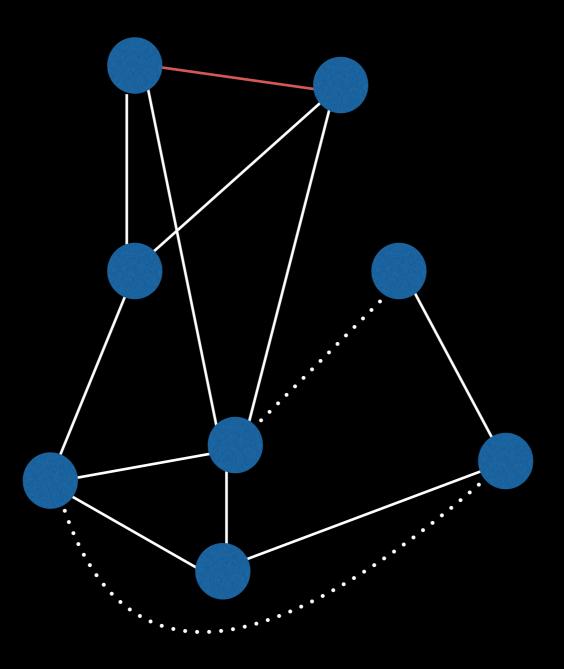
R. Krithika Abhishek Sahu Prafullkumar Tale The Institute of Mathematical Sciences, Chennai, India

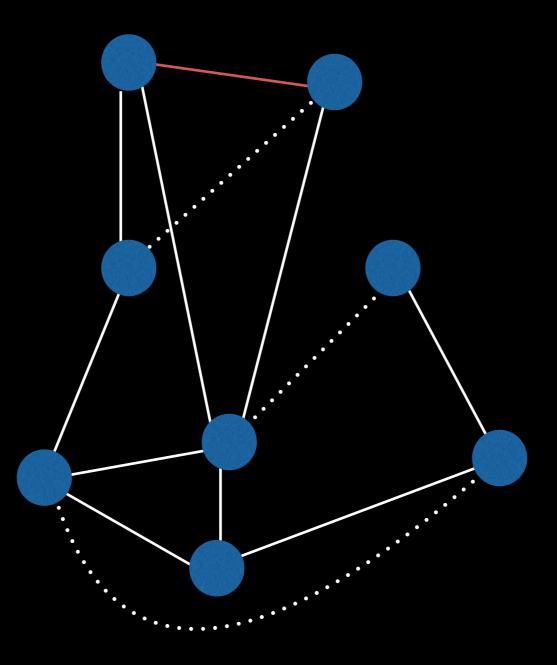
> IPEC 2016 Aarhus University, Denmark

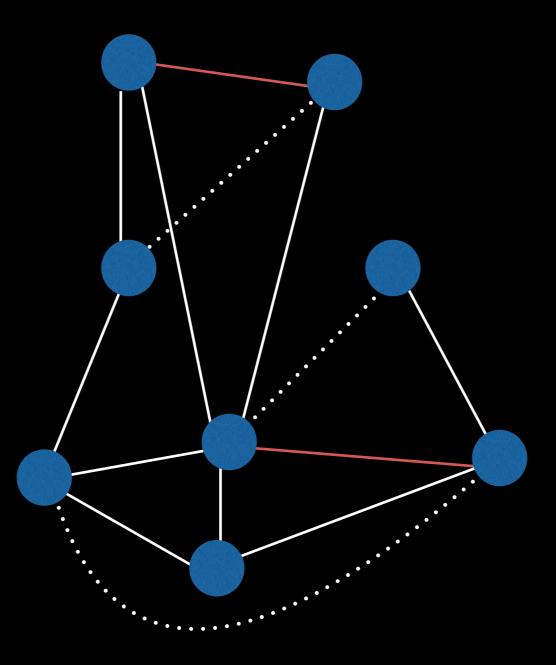


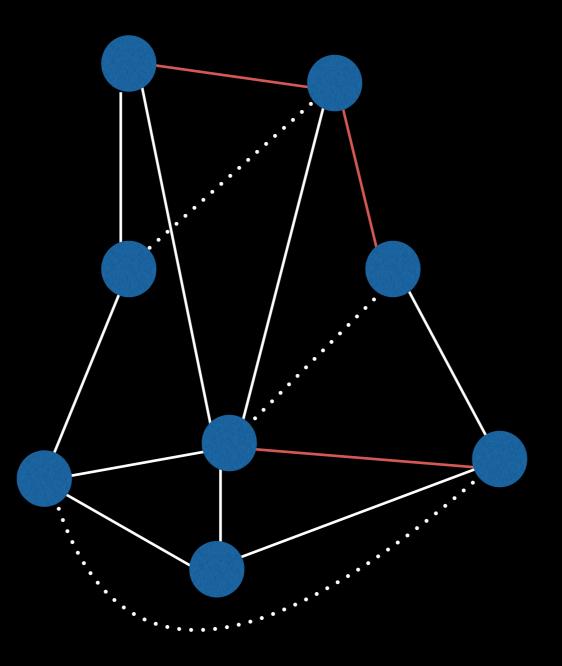


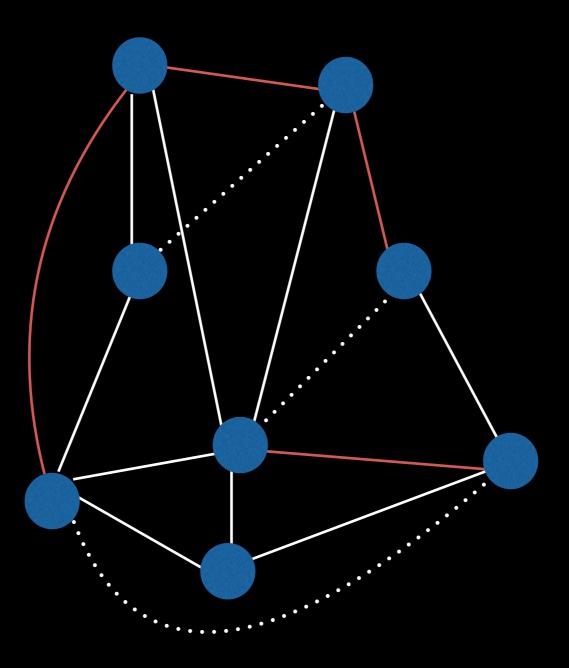


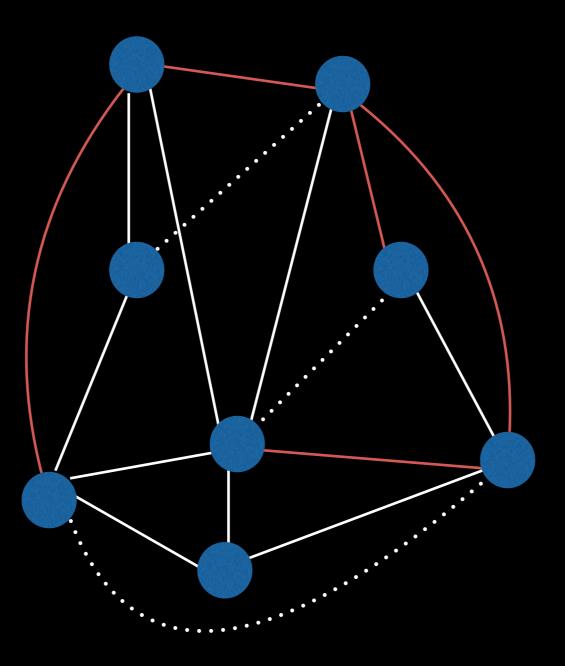


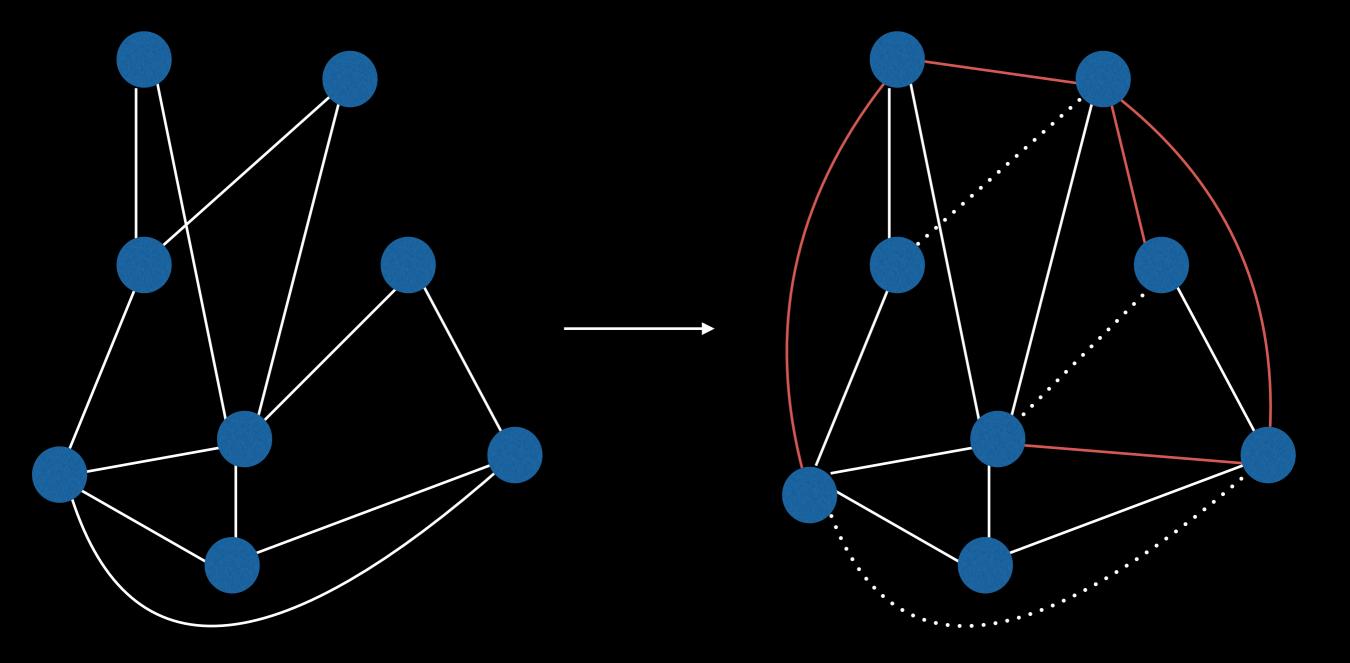




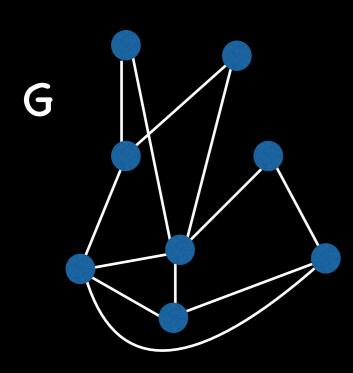


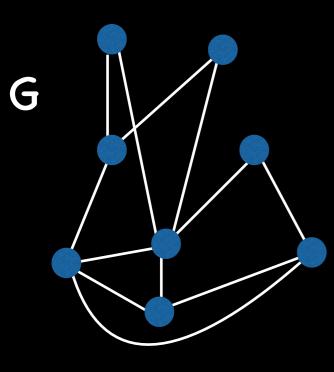


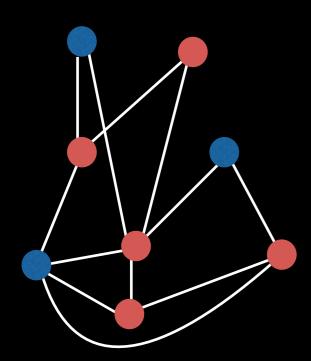


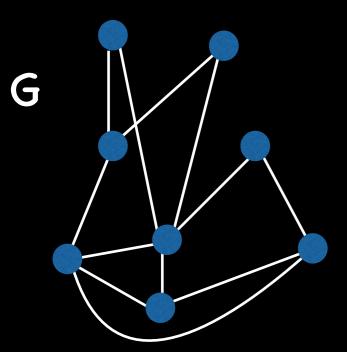


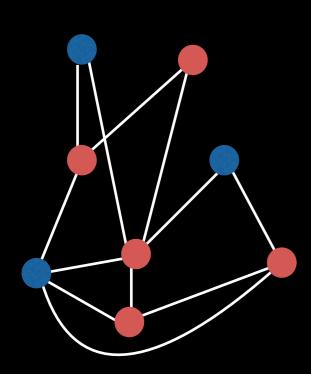
Current graph is at a distance 8 from the initial graph

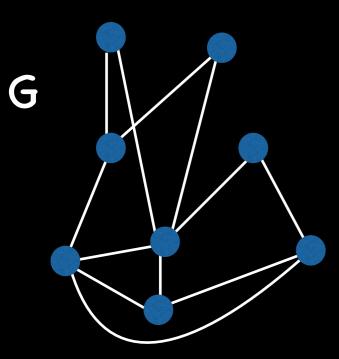


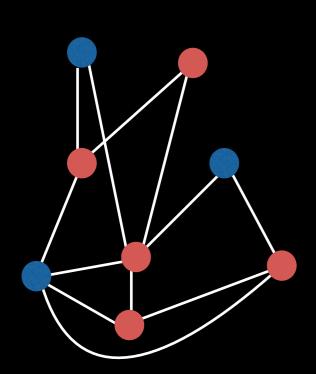


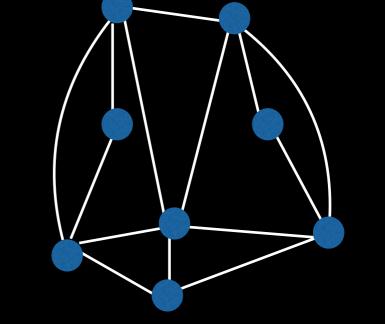




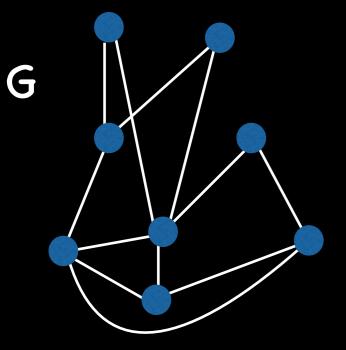




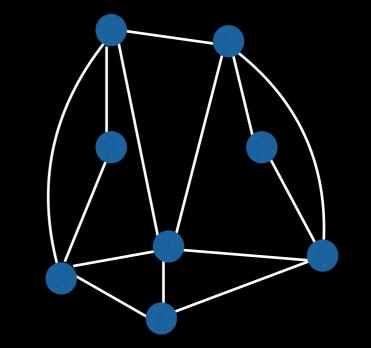




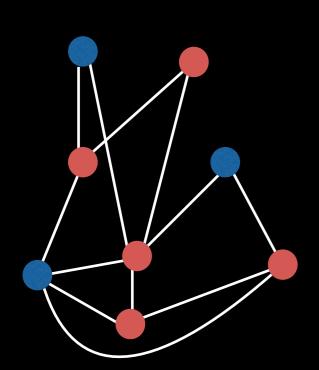
H

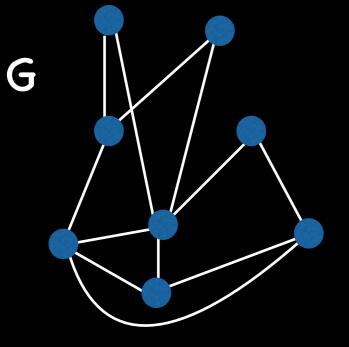


edit distance 8

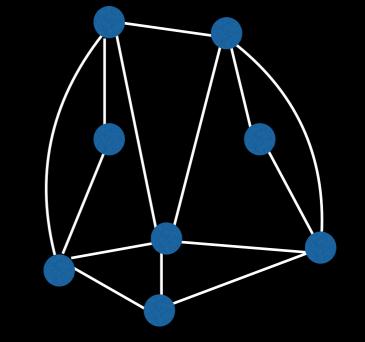


H

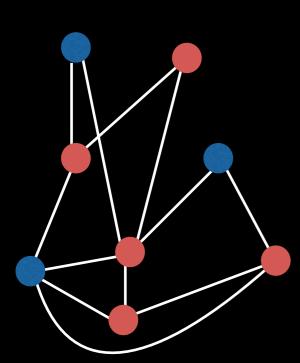




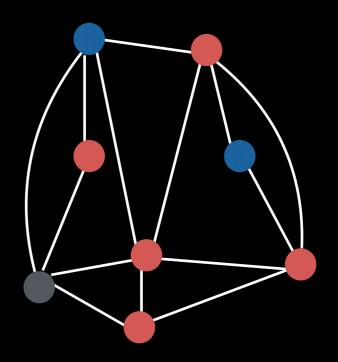
edit distance 8

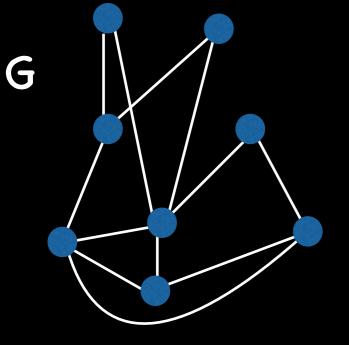


H



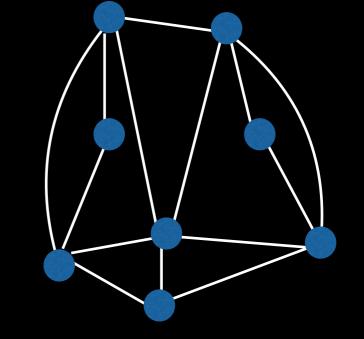
vertex cover of G



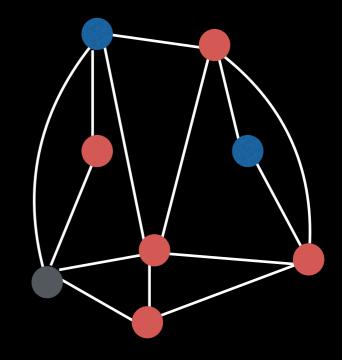


edit distance 8

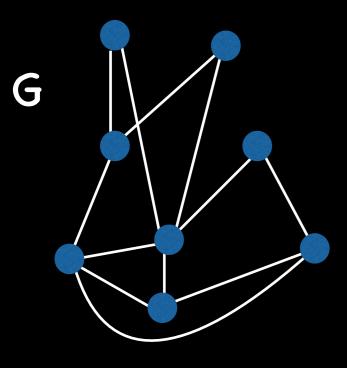
Hamming distance 1



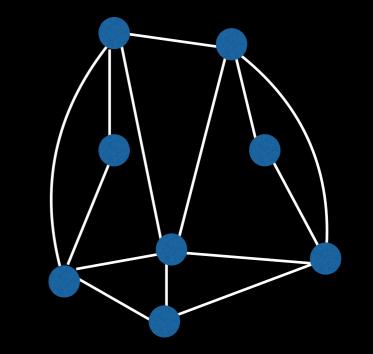
H



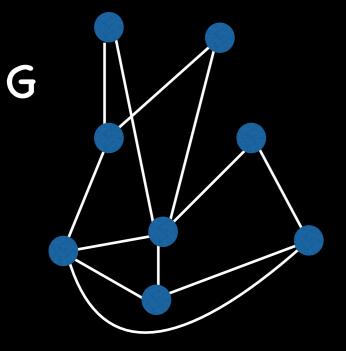
vertex cover of H



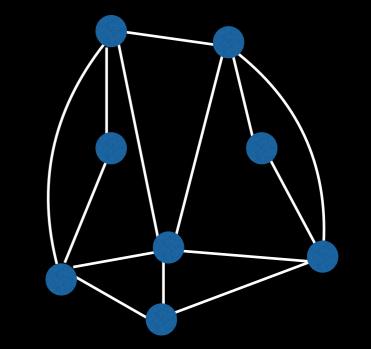
edit distance 8



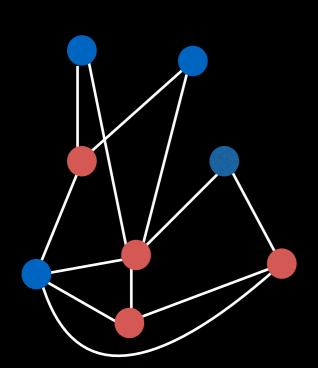
H

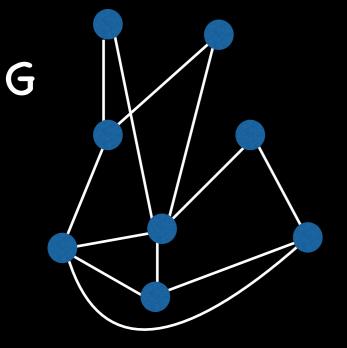


edit distance 8

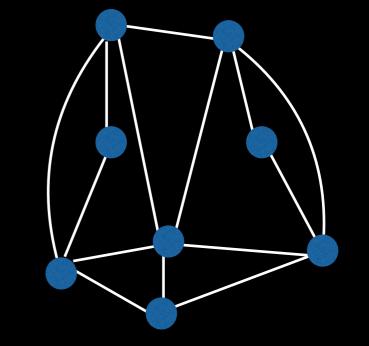


H

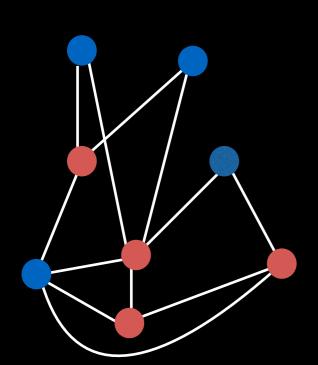




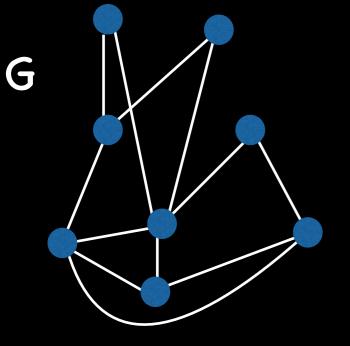
edit distance 8



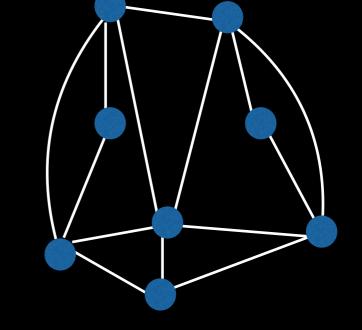
H



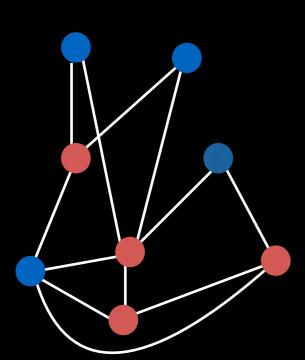
Hamming distance 2



edit distance 8



H



Hamming distance 2

vertex cover of G

Dynamic Problem Template

Dynamic Problem Template

Instance:

- Graphs G, H on same vertex set s.t $d_e(G,H) \leq k$
- A solution S of G
- An integer r

Question: Does H have a solution T s.t $d_v(S,T) \leq r$? Parameter(s): k, r

Dynamic Problem Template

Instance:

- Graphs G, H on same vertex set s.t $d_e(G,H) \leq k$
- A solution S of G
- An integer r

Question: Does H have a solution T s.t $d_v(S,T) \leq r$? Parameter(s): k, r

k- edit parameter

r- distance parameter

Instance:

- Graphs G, H on same vertex set s.t $d_e(G,H) \leq k$
- A set S s.t $G-S \in T$
- An integer r

Question: Does H have a set T s.t $d_v(S,T) \leq r$ and H-T $\in \Pi$? Parameter(s): k, r

k- edit parameter

r- distance parameter

Dynamic Problem	Parameterized Complexity	
	k	r
Dominating Set	2 ^{k²} [DEFRS14], 2 ^k (tight)	W[2]-hard [DEFRS14]
Connected Dominating Set	4 ^k [AEFRS15], 2 ^k (tight)	W[2]-hard [AEFRS15]
Vertex Cover	1.174 ^k , 1.1277 ^k (expo space), O(k) kernel	1.2738 ^r , O(r ²) kernel
Connected Vertex Cover	4 ^k [AEFRS15], 2 ^k	W[2]-hard [AEFRS15]
Feedback Vertex Set	1.6667 ^k (randomized), O(k) kernel	3.592 ^r , O(r ²) kernel
∏-Deletion	Fixed-parameter (in)tractability related to that of non-dynamic version	

 \Rightarrow

∏ is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs)

 $G-S \in \Pi$

S

Existence of Incremental Solution

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

 $G-S \in T$

 $H-T \in T$

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

 $G-S \in T$

 $H-T \in T$

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

 $G-S \in T$

 $H-T \in \Pi \implies H-(S \cup T \in \Pi)$

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

 $\mathsf{G}\mathsf{-}\mathsf{S}\in \Pi \qquad \qquad \mathsf{H}\mathsf{-}\mathsf{T}\in \Pi \qquad \Rightarrow \mathsf{H}\mathsf{-}(\mathsf{S}\cup\mathsf{T}\in \Pi)$

 $d(S,S \cup T) = |T-S| \le |T-S| + |S-T| = d(S,T)$

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

 $\mathsf{G}\mathsf{-}\mathsf{S}\in\mathsf{T}\qquad\qquad \mathsf{H}\mathsf{-}\mathsf{T}\in\mathsf{T}\qquad\Rightarrow\mathsf{H}\mathsf{-}(\mathsf{S}\cup\mathsf{T}\in\mathsf{T})$

 $d(S, S \cup T) = |T-S| \le |T-S| + |S-T| = d(S,T)$

VC, FVS

 \Rightarrow

TT is hereditary (w.r.t induced subgraphs) Existence of Incremental Solution

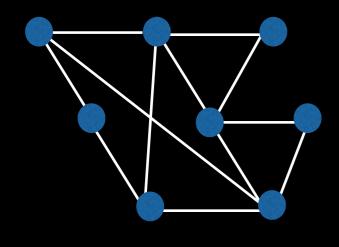
 $\mathsf{G}\mathsf{-}\mathsf{S}\in\mathsf{T}\qquad\qquad\mathsf{H}\mathsf{-}\mathsf{T}\in\mathsf{T}\qquad\Rightarrow\mathsf{H}\mathsf{-}(\mathsf{S}\cup\mathsf{T}\in\mathsf{T})$

 $d(S,S \cup T) = |T-S| \le |T-S| + |S-T| = d(S,T)$

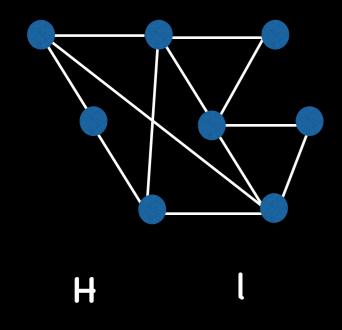
VC, FVS CVC, DS, CDS

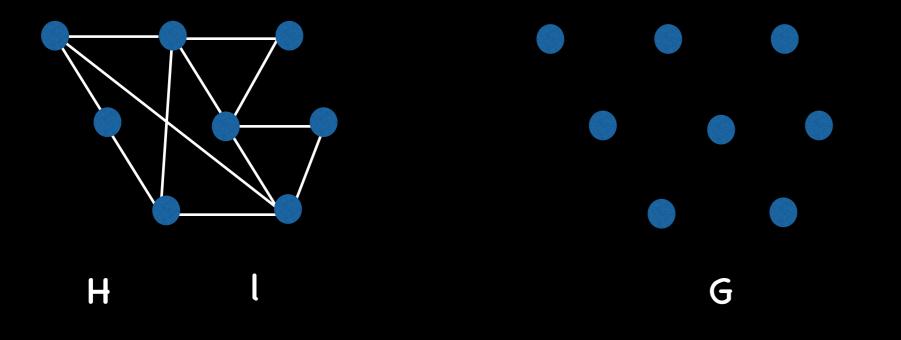
 Π is hereditary (w.r.t induced subgraphs) and includes all independent sets

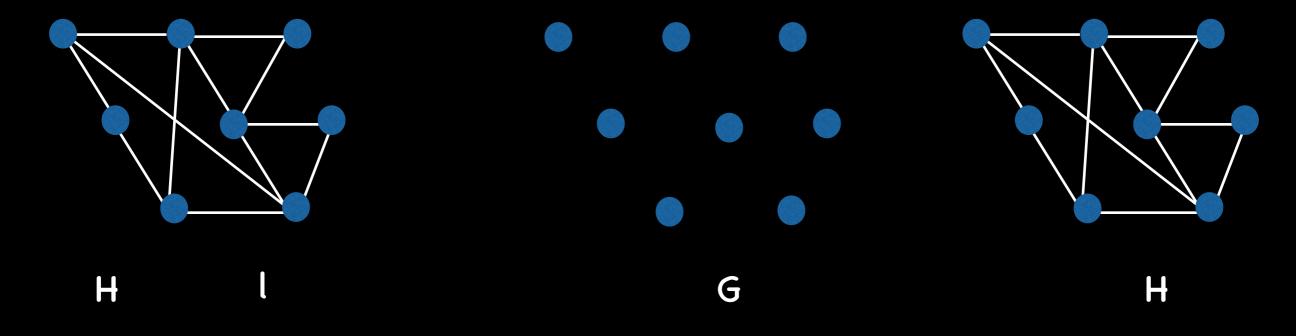
 Π is hereditary (w.r.t induced subgraphs) and includes all independent sets $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$

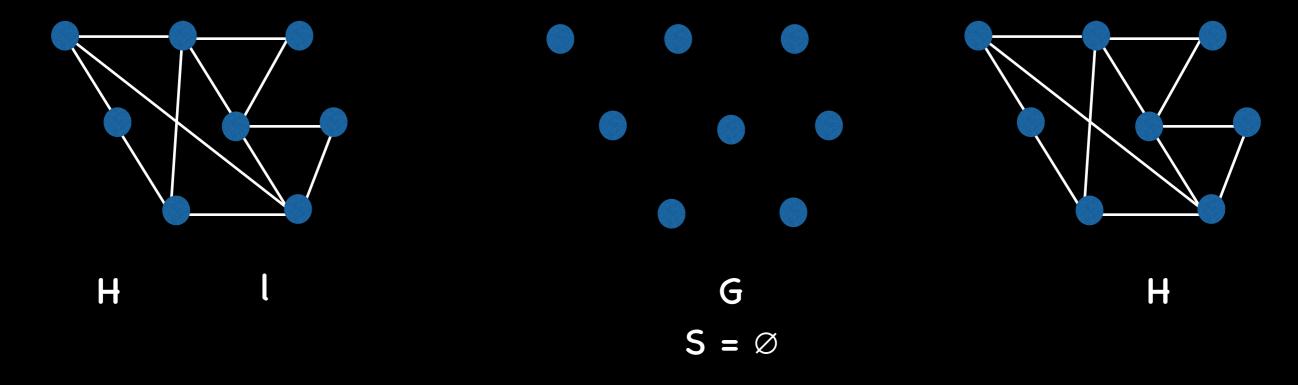


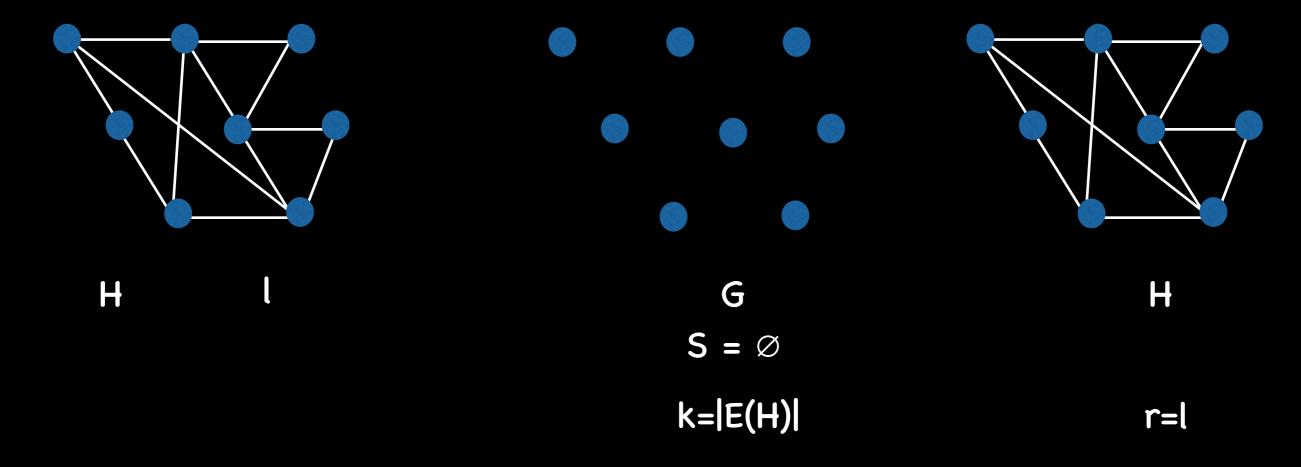
Η



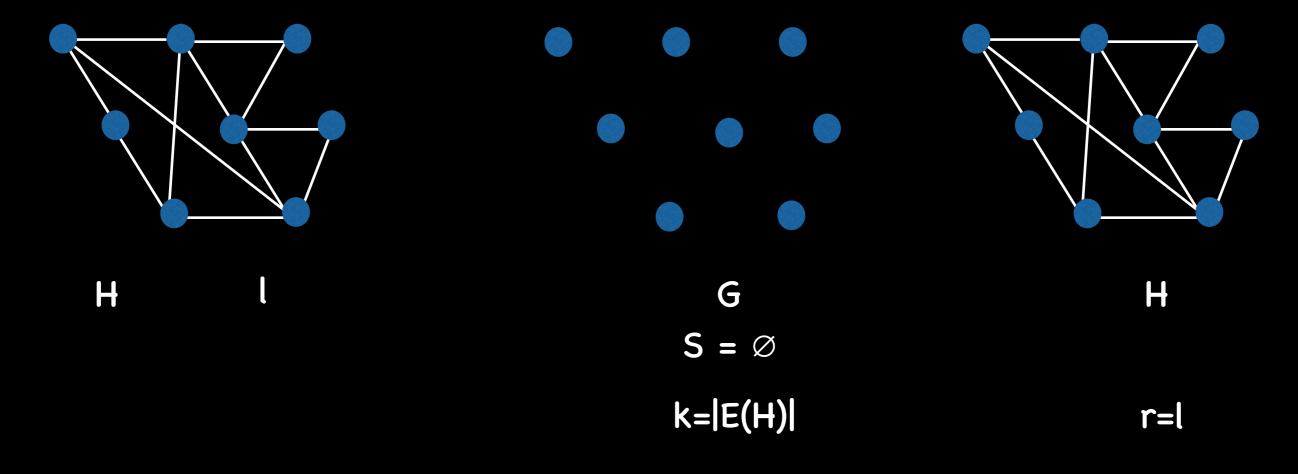






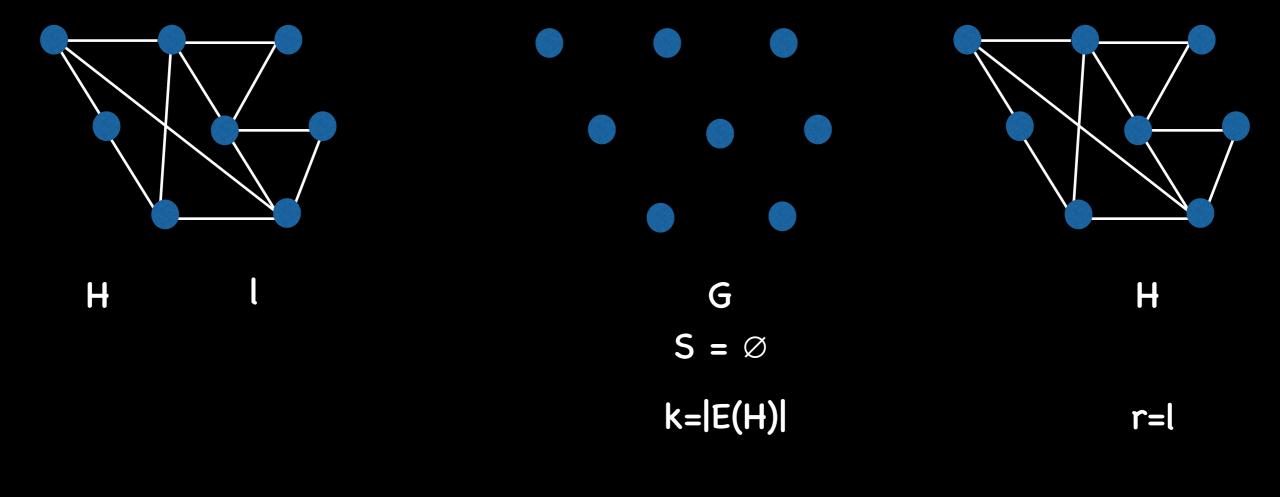


 Π is hereditary (w.r.t induced subgraphs) and includes all independent sets $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$

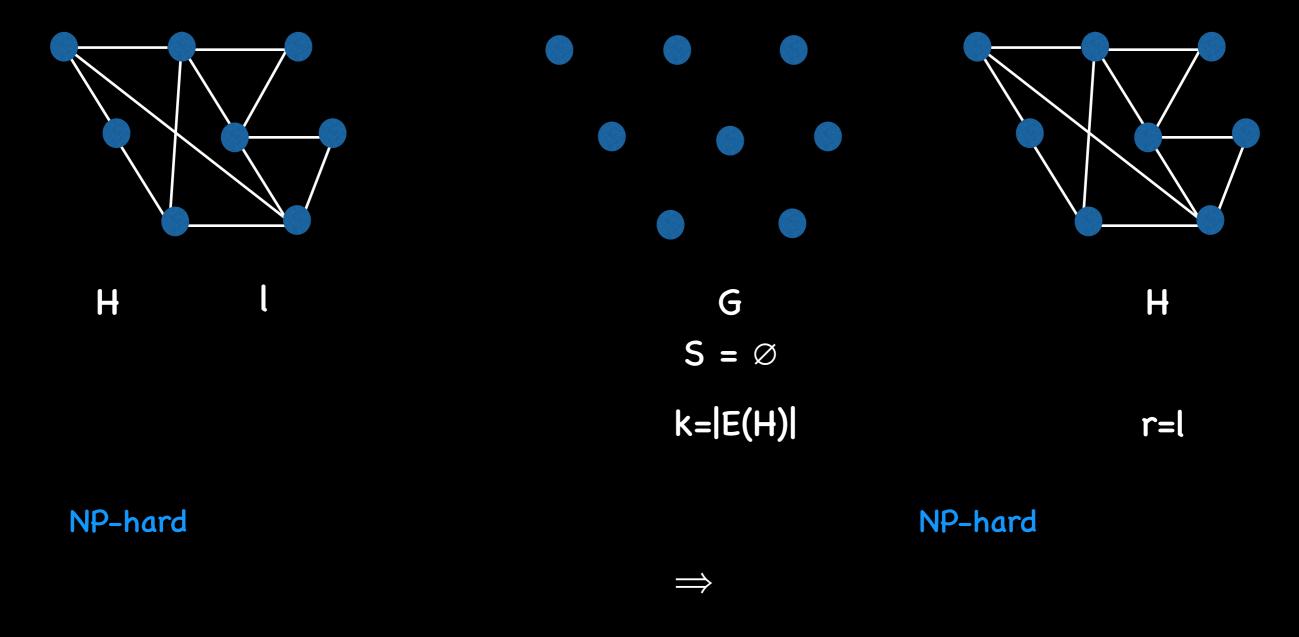


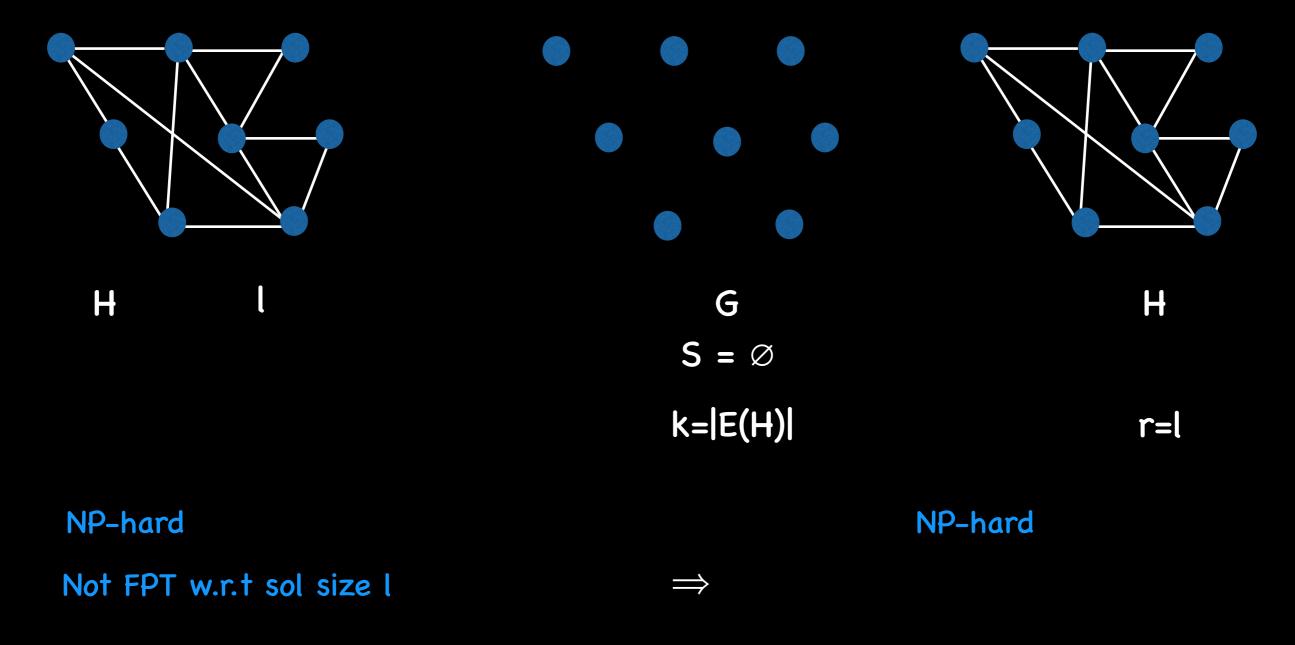
NP-hard

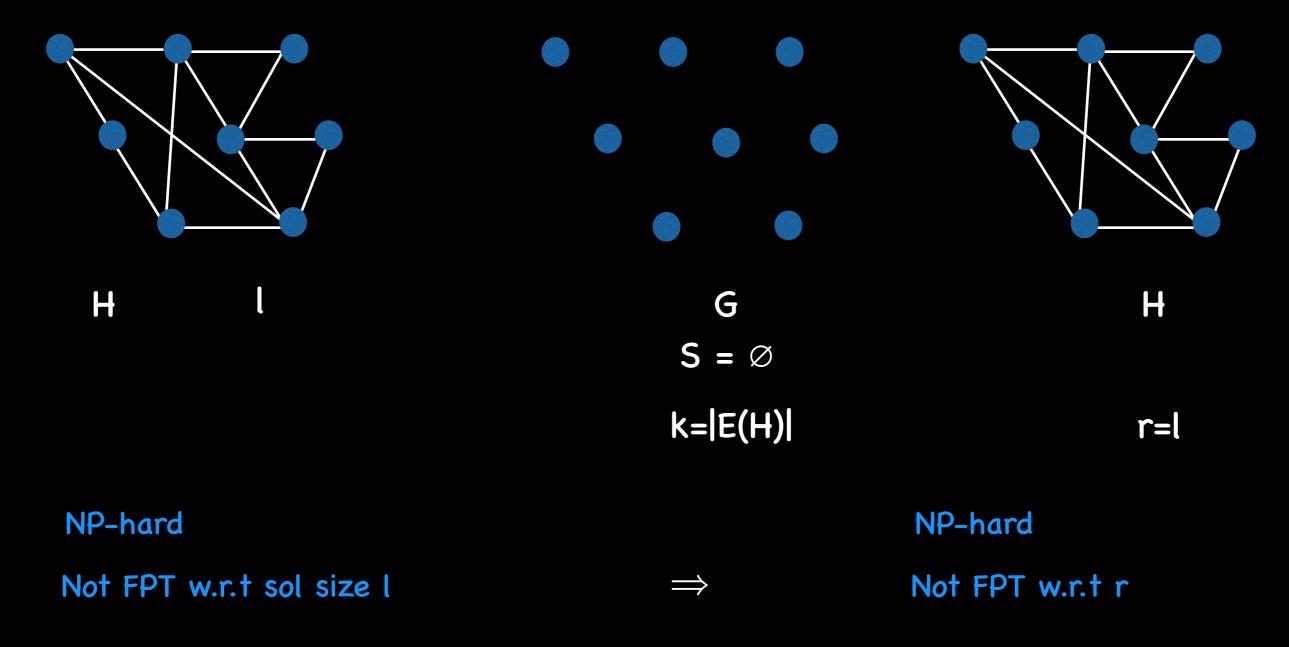
 Π is hereditary (w.r.t induced subgraphs) and includes all independent sets $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$

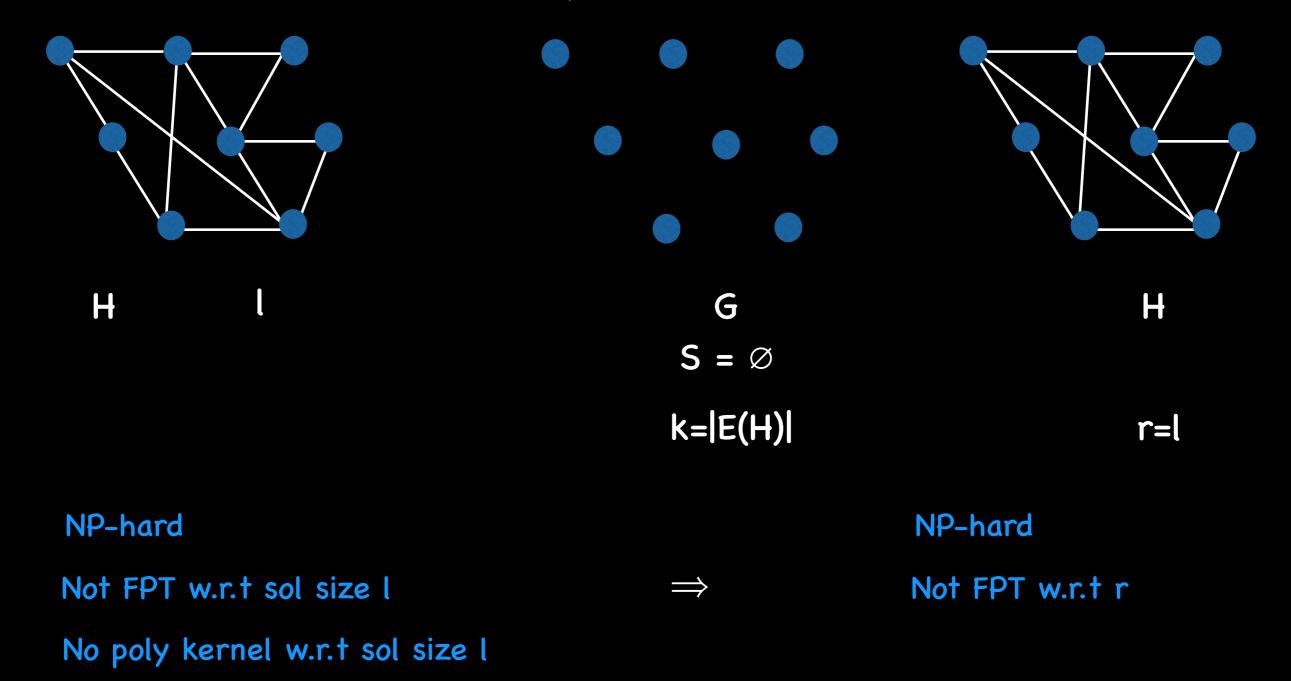


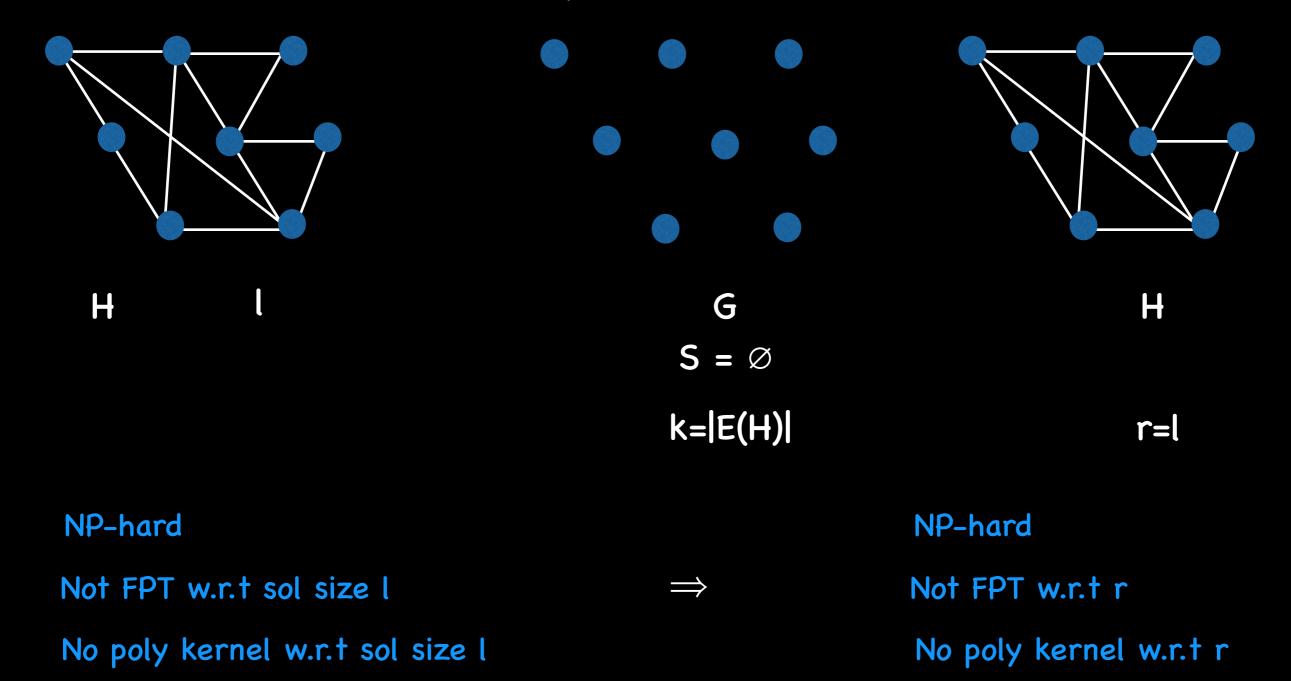
NP-hard





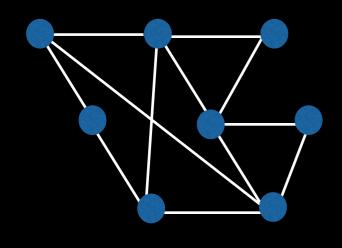




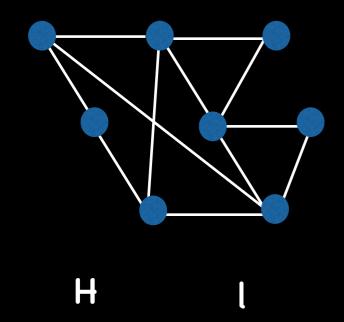


 Π is hereditary (w.r.t induced subgraphs) and includes all cliques

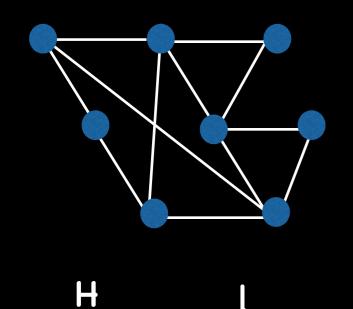
 Π is hereditary (w.r.t induced subgraphs) and includes all cliques Π -Deletion reduces in poly time to Dynamic Π -Deletion

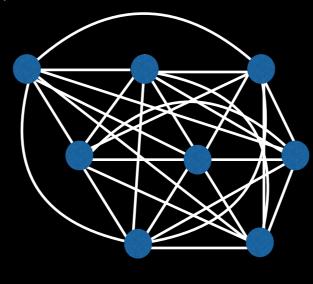


Η



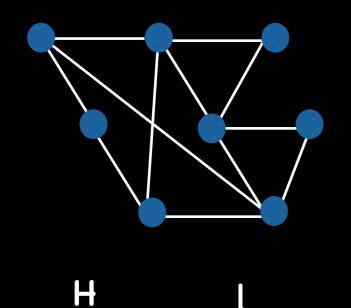
 Π is hereditary (w.r.t induced subgraphs) and includes all cliques $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$

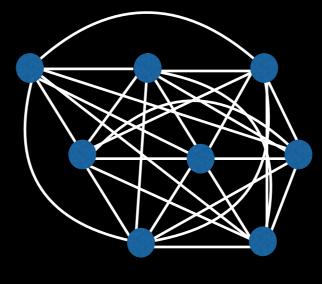




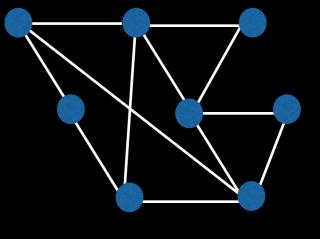
G

 Π is hereditary (w.r.t induced subgraphs) and includes all cliques $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$



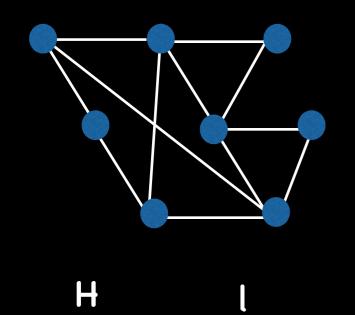


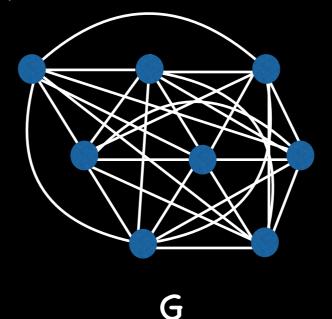
G



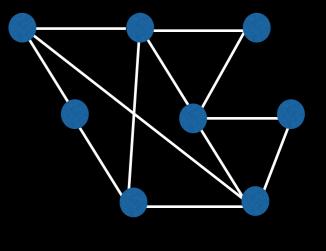
Η

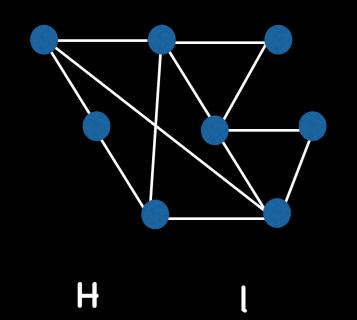
 Π is hereditary (w.r.t induced subgraphs) and includes all cliques $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$

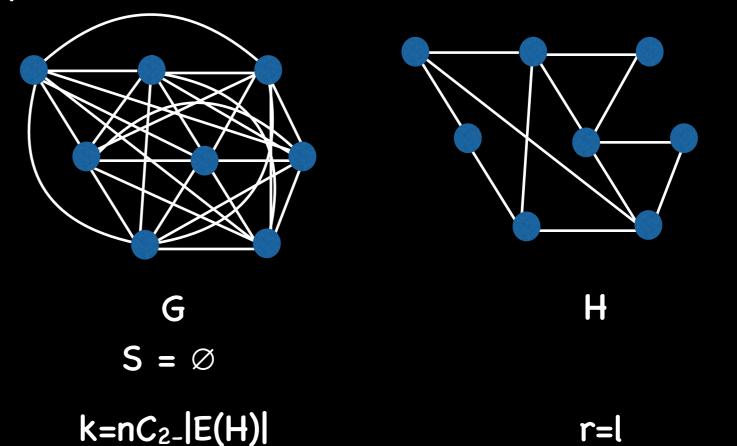




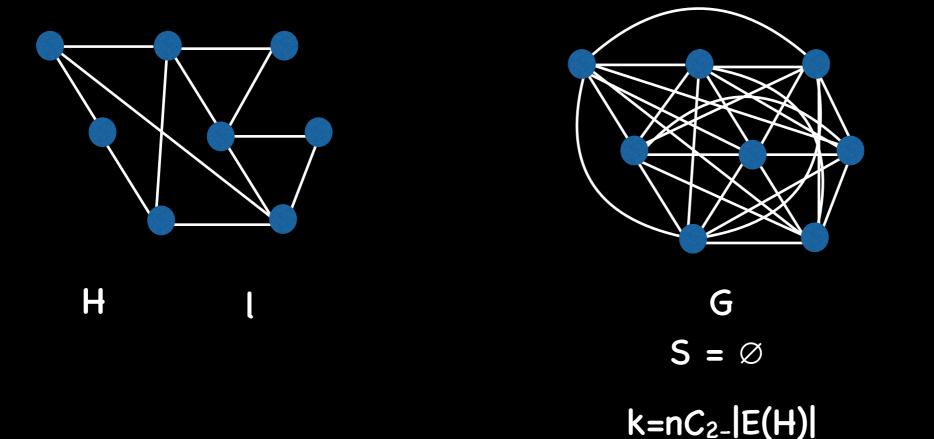
S = Ø







 Π is hereditary (w.r.t induced subgraphs) and includes all cliques $\Pi-Deletion$ reduces in poly time to Dynamic $\Pi-Deletion$



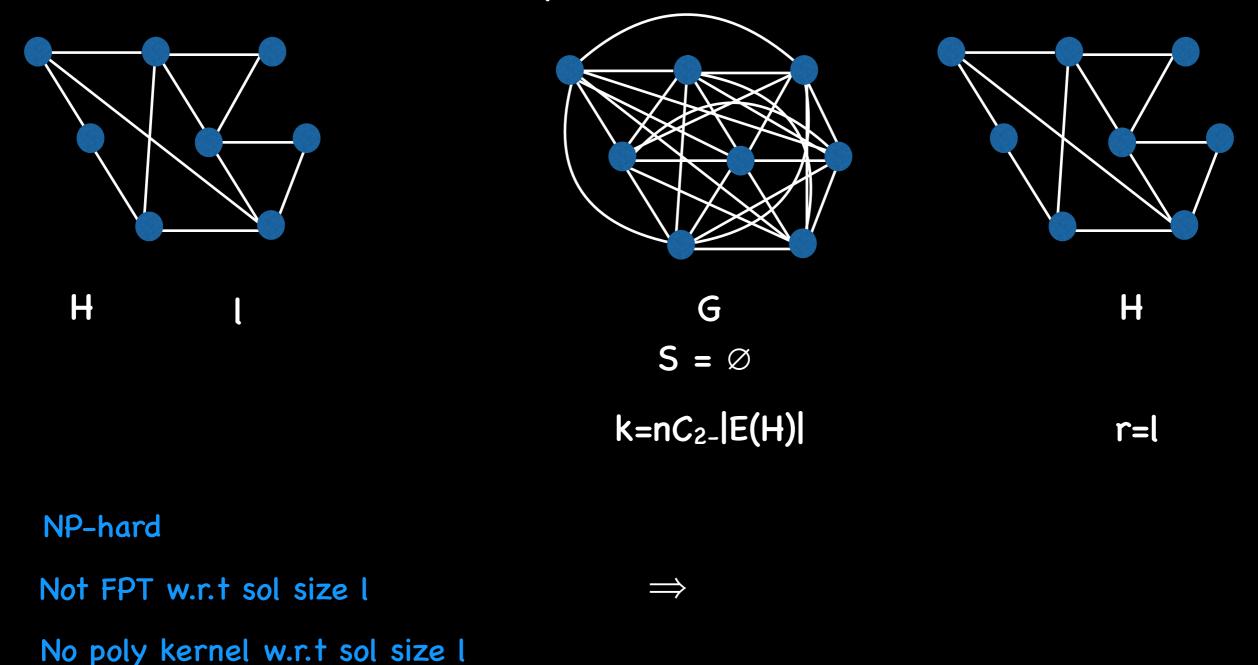
Η

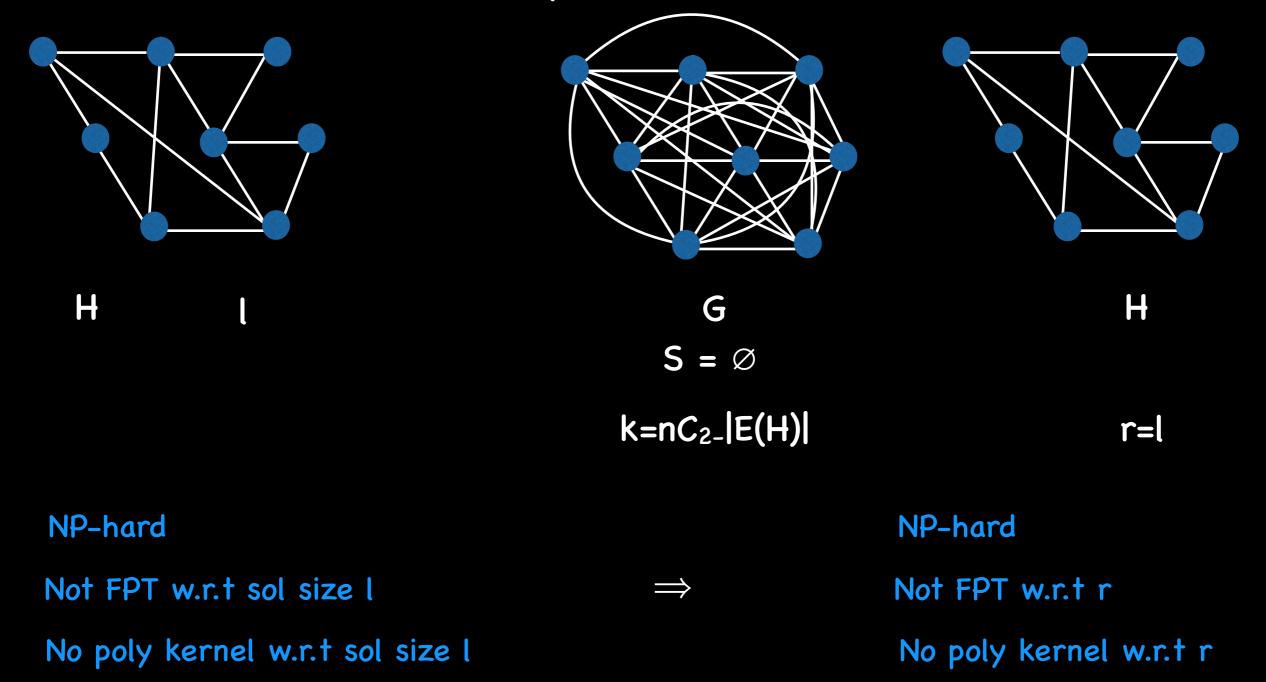
r=l

NP-hard

Not FPT w.r.t sol size l

No poly kernel w.r.t sol size l





 ${\rm I\!I}$ is hereditary (w.r.t subgraphs) and membership in ${\rm I\!I}$ is poly-time decidable

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic Π -Deletion reduces in poly time to Π -Deletion

 ${\rm I\!I}$ is hereditary (w.r.t subgraphs) and membership in ${\rm I\!I}$ is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r)

 ${\rm I\!I}$ is hereditary (w.r.t subgraphs) and membership in ${\rm I\!I}$ is poly-time decidable

Dynamic Π -Deletion reduces in poly time to Π -Deletion

(G, H, S, k, r)

 ${\rm I\!I}$ is hereditary (w.r.t subgraphs) and membership in ${\rm I\!I}$ is poly-time decidable

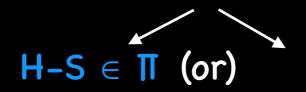
Dynamic Π -Deletion reduces in poly time to Π -Deletion

(G, H, S, k, r) H-S ∈ ∏

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic Π -Deletion reduces in poly time to Π -Deletion

(G, H, S, k, r)



 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r)

 $H-S \in \Pi \text{ (or) } To find$ $T \supseteq S s.t H-T \in \Pi$

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) H-S \in T (or) To find T \supseteq S s.t H-T \in T solve T-Deletion on (H-S,r)

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic Π -Deletion reduces in poly time to Π -Deletion

(G, H, S, k, r) H-S \in T (or) To find T \supseteq S s.t H-T \in T solve T-Deletion on (H-S,r)

FPT w.r.t sol size l O*(f(l))

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic Π -Deletion reduces in poly time to Π -Deletion

 \Rightarrow

(G, H, S, k, r) H-S \in T (or) To find T \supseteq S s.t H-T \in T solve T-Deletion on (H-S,r)

FPT w.r.t sol size l O*(f(l))

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) H-S $\in \Pi$ (or) To find $T \supseteq S s.t H-T \in \Pi$ solve Π -Deletion on (H-S,r) FPT w.r.t r and k

FPT w.r.t sol size l O*(f(l))

 \Rightarrow

 $O^*(f(r))$ algorithm $O^*(f(k))$ algorithm

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) $H-S \in \Pi$ (or) To find $T \supseteq S s. f H-T \in T$ solve Π -Deletion on (H-S,r) FPT w.r.t r and k FPT w.r.t sol size l O*(f(r)) algorithm \Rightarrow O*(f(k)) algorithm

T includes all independent sets

 $O^{*}(f(l))$

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) $H-S \in \Pi \text{ (or) } To \text{ find}$ $T \supseteq S \text{ s.t } H-T \in \Pi$ solve Π -Deletion on (H-S,r) FPT w.r.t r and k $O^*(f(l)) \qquad \Rightarrow \qquad O^*(f(k)) \text{ algorithm}$

 Π includes all independent sets

p(l) vertices and q(l) edges kernel

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic Π -Deletion reduces in poly time to Π -Deletion

(G, H, S, k, r) $H-S \in \Pi \text{ (or) } To \text{ find}$ $T \supseteq S \text{ s.t } H-T \in \Pi$ solve Π -Deletion on (H-S,r) FPT w.r.t sol size I $O^*(f(I)) \qquad \Rightarrow \qquad \begin{array}{c} FPT \text{ w.r.t } r \text{ and } k \\ O^*(f(r)) \text{ algorithm} \\ O^*(f(k)) \text{ algorithm} \end{array}$

T includes all independent sets

p(l) vertices and q(l) edges kernel \implies

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) $H-S \in \Pi$ (or) To find $T \supseteq S s. f H-T \in T$ solve Π -Deletion on (H-S,r) FPT w.r.t r and k FPT w.r.t sol size l O*(f(r)) algorithm \Rightarrow $O^{*}(f(l))$ O*(f(k)) algorithm T includes all independent sets

p(l) vertices and q(l) edges kernel \implies

2p(r) vertices and q(r) edges kernel 2p(k) vertices and q(k) edges kernel

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) $H-S \in \Pi \text{ (or) } To \text{ find}$ $T \supseteq S \text{ s.t } H-T \in \Pi$ solve Π -Deletion on (H-S,r) FPT w.r.t r and k $O^*(f(r)) \text{ algorithm}$

O*(f(k)) algorithm

FPT w.r.t sol size l O*(f(l))

T includes all cliques

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) $H-S \in \Pi \text{ (or) } To \text{ find}$ $T \supseteq S \text{ s.t } H-T \in \Pi$ solve Π -Deletion on (H-S,r) FPT w.r.t sol size I $O^{*}(f(I)) \qquad \Longrightarrow \qquad \begin{array}{c} FPT \text{ w.r.t } r \text{ and } k \\ O^{*}(f(k)) \text{ algorithm} \\ O^{*}(f(k)) \text{ algorithm} \end{array}$

T includes all cliques

p(l) vertices and q(l) edges kernel

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

Dynamic II-Deletion reduces in poly time to II-Deletion

(G, H, S, k, r) $H-S \in \Pi \text{ (or) } To \text{ find}$ $T \supseteq S \text{ s.t } H-T \in \Pi$ solve Π -Deletion on (H-S,r) FPT w.r.t sol size I $O^*(f(t))$ $\Rightarrow \qquad O^*(f(r)) \text{ algorithm}$ $O^*(f(k)) \text{ algorithm}$

T includes all cliques

 \Rightarrow

p(l) vertices and q(l) edges kernel

 Π is hereditary (w.r.t subgraphs) and membership in Π is poly-time decidable

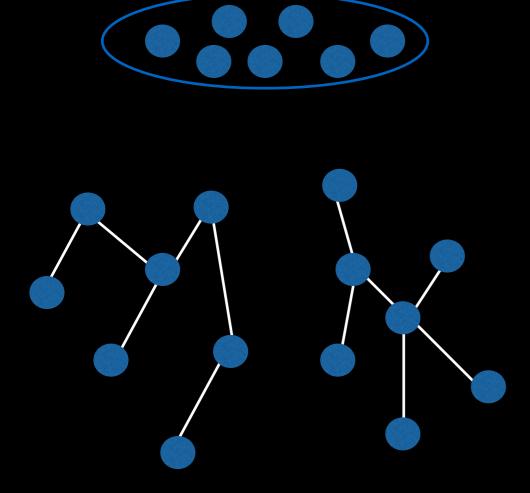
Dynamic II-Deletion reduces in poly time to II-Deletion

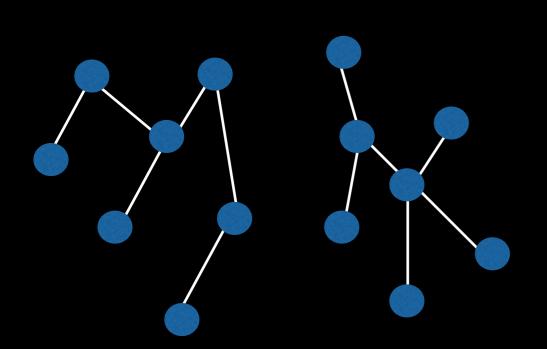
(G, H, S, k, r) $H-S \in \Pi$ (or) To find $T \supseteq S s. f H-T \in T$ solve Π -Deletion on (H-S,r) FPT w.r.t r and k FPT w.r.t sol size l O*(f(r)) algorithm \Rightarrow $O^{*}(f(l))$ O*(f(k)) algorithm T includes all cliques

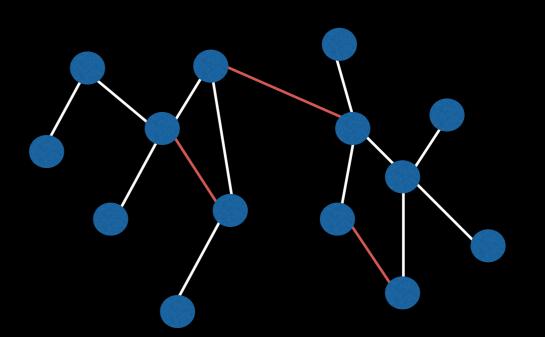
 \Rightarrow

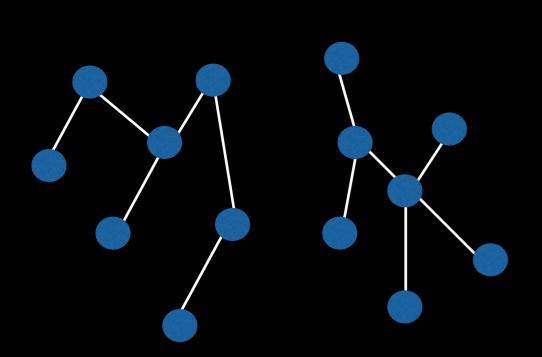
p(l) vertices and q(l) edges kernel

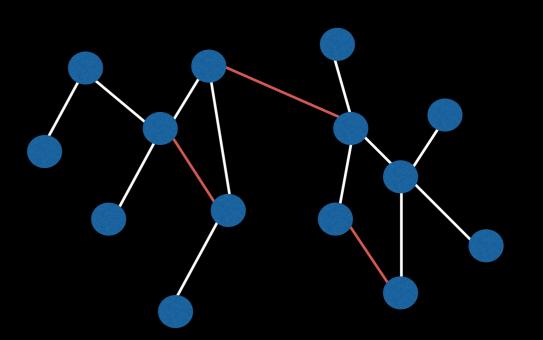
2p(r) vertices and q(r)+ p²(r) edges kernel 2p(k) vertices and q(k)+ p²(k) edges kernel



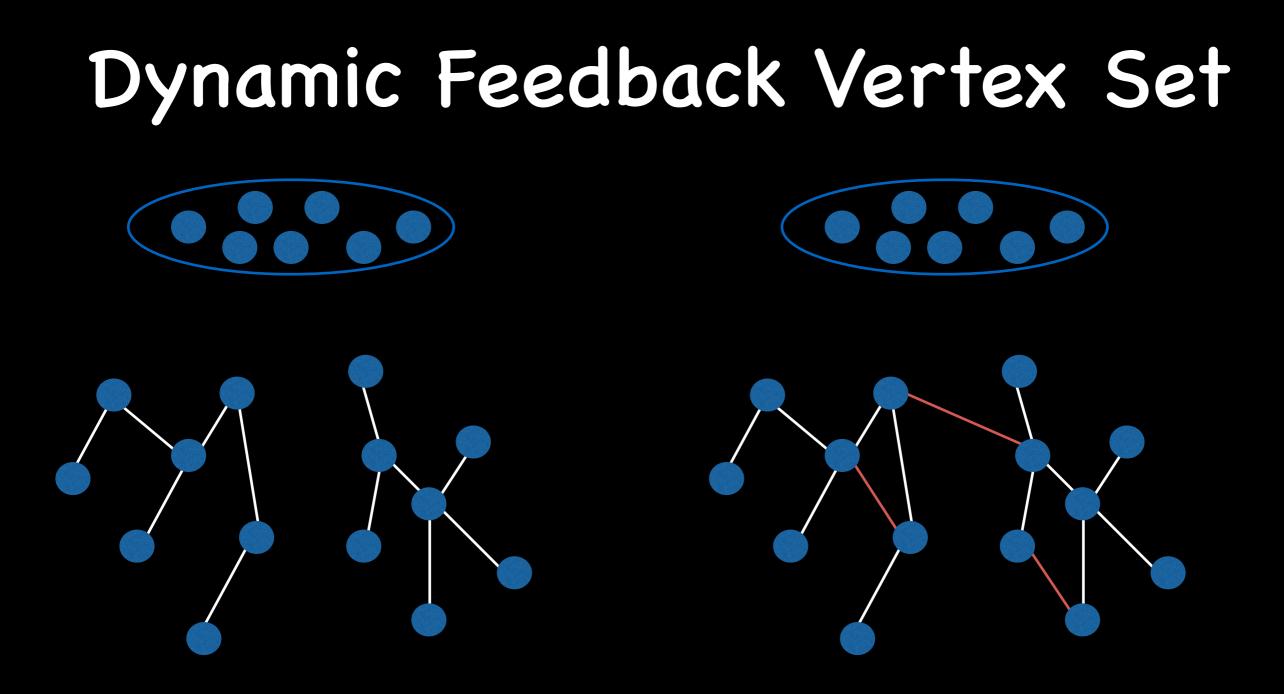






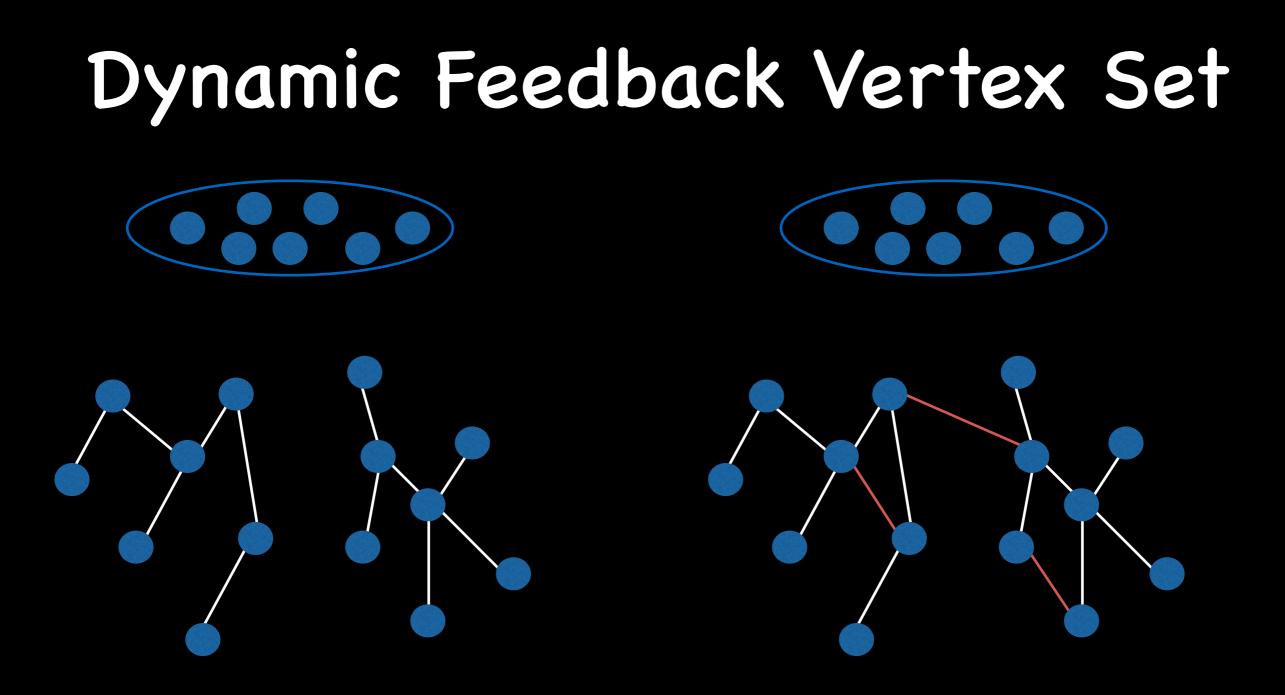


Forest + \leq k edges



Forest + \leq k edges

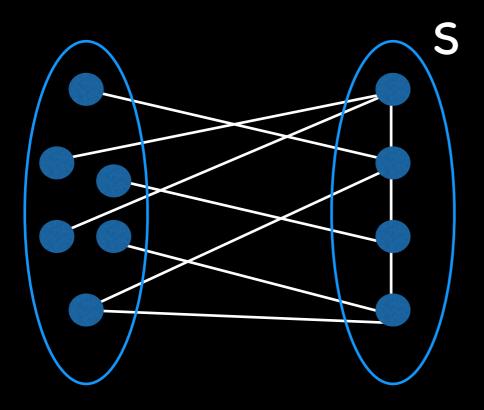
O(k) edges kernel

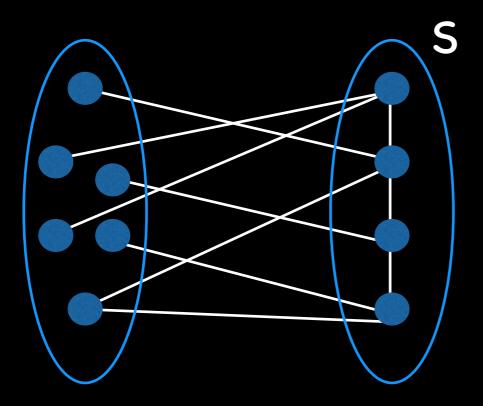


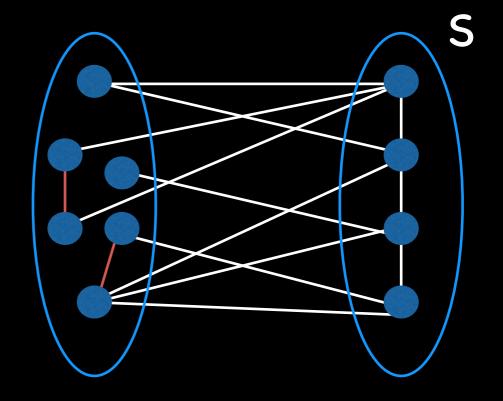
Forest + ≤ k edges

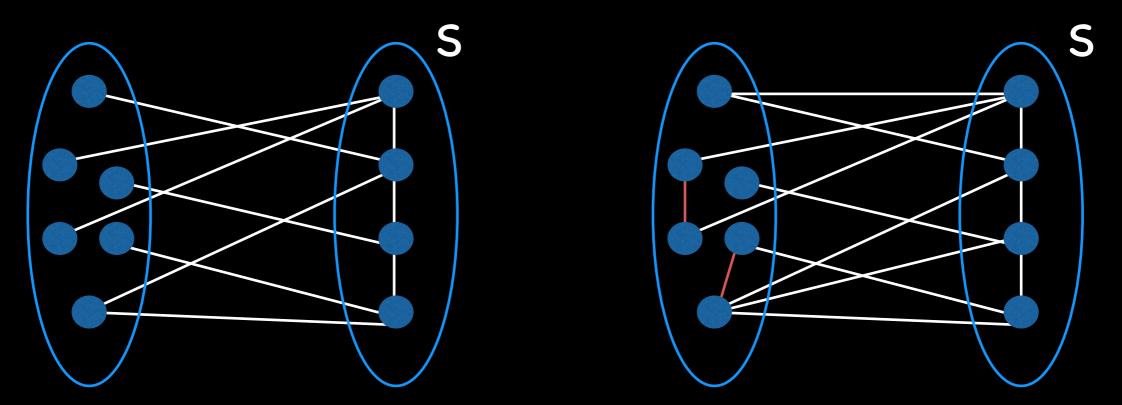
O(k) edges kernel

1.6667^k randomized algorithm

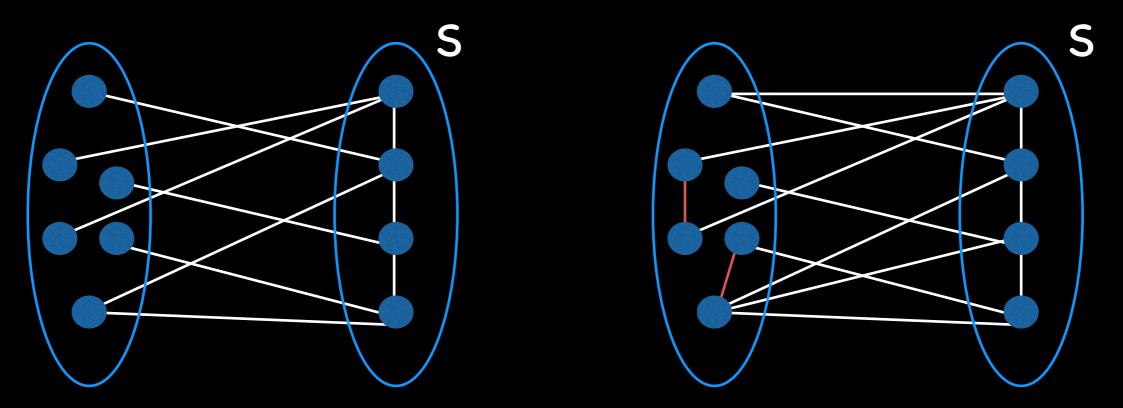






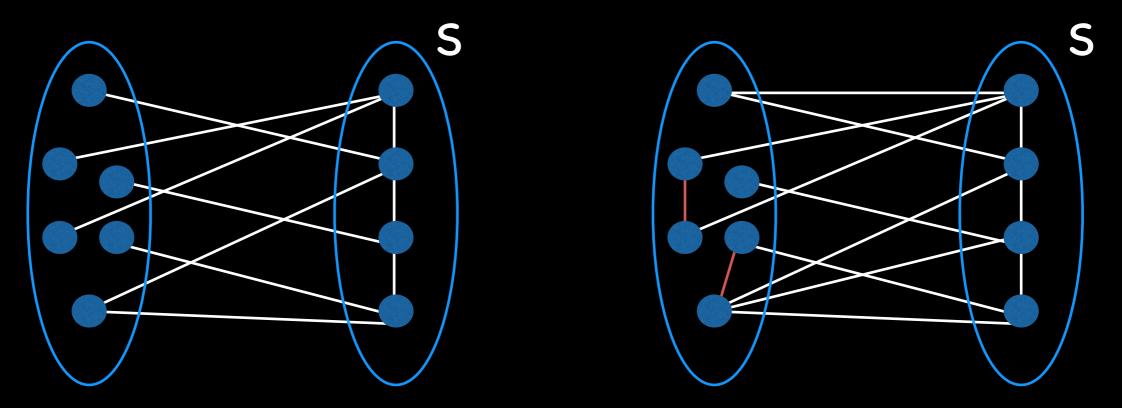


At most k edges are not covered by S



At most k edges are not covered by S

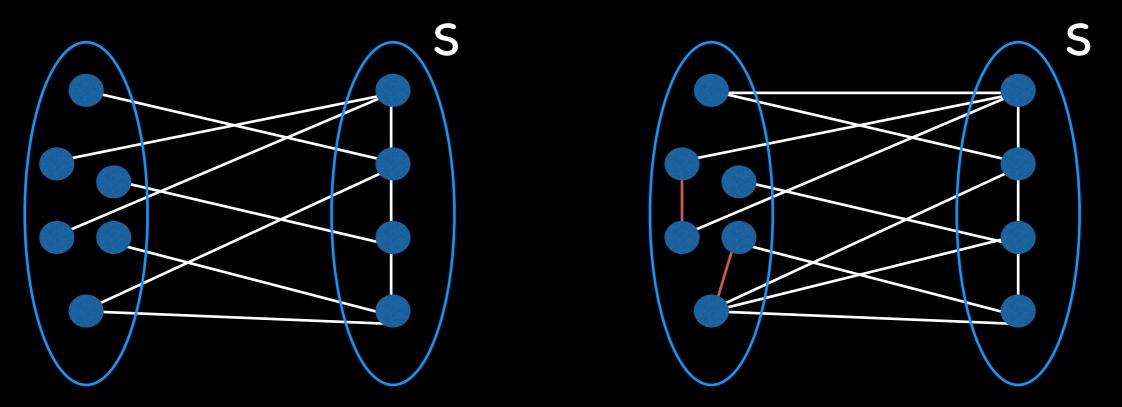
Graph has at most 2k vertices and k edges



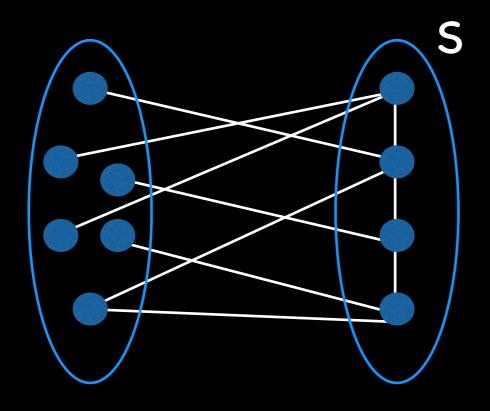
At most k edges are not covered by S

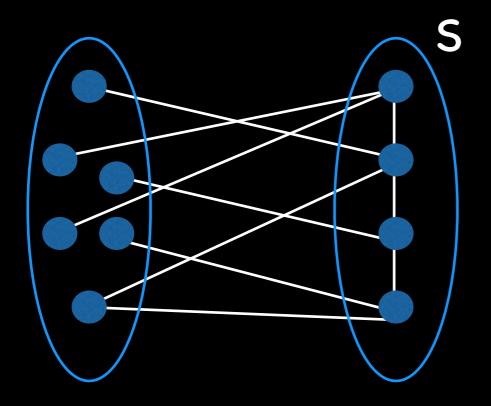
Graph has at most 2k vertices and k edges

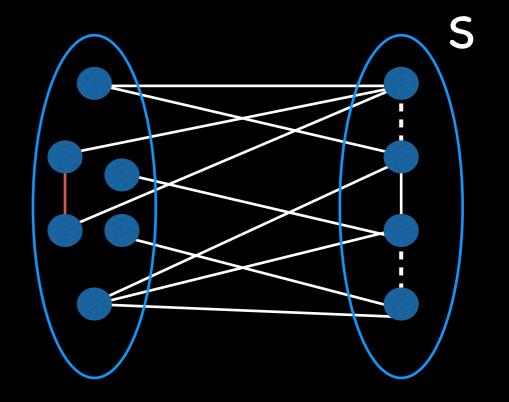
 $O^*(1.174^k)$ poly space algorithm

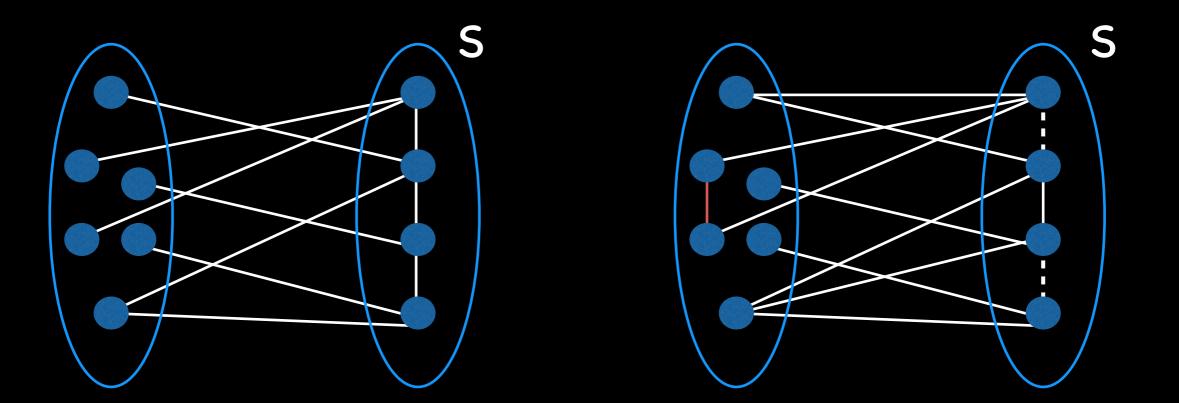


At most k edges are not covered by S Graph has at most 2k vertices and k edges O*(1.174^k) poly space algorithm O*(1.1277^k) expo space algorithm

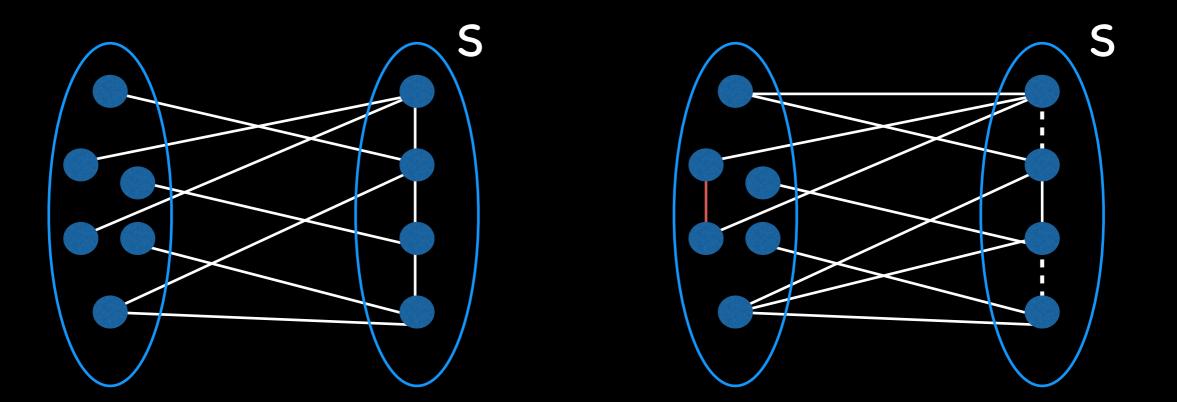






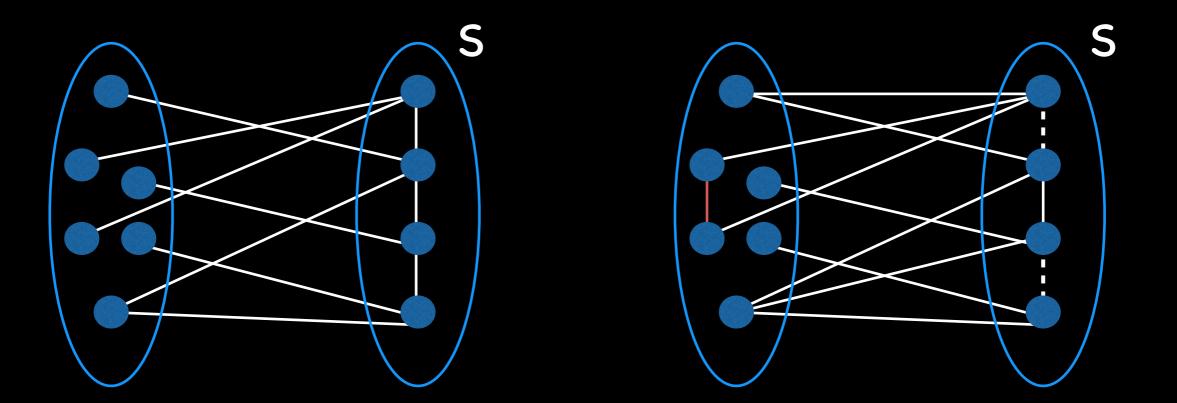


At most k_1 edges are not covered by S that has at most k_2 components



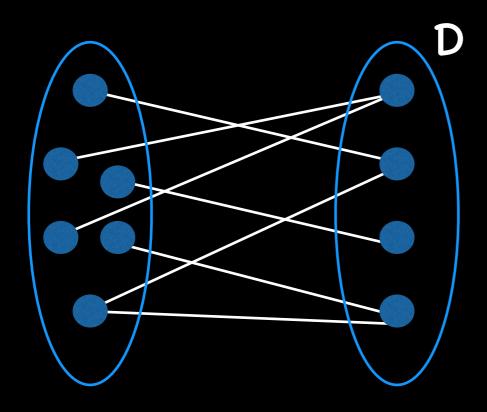
At most k_1 edges are not covered by S that has at most k_2 components

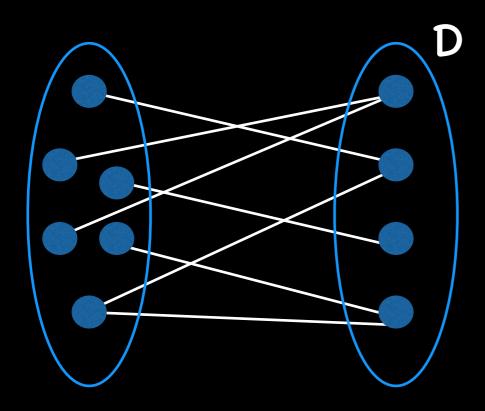
A group Steiner tree problem with parameter $k_1+k_2 \leq k$

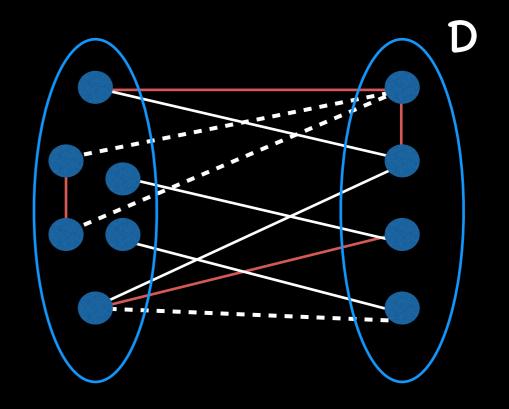


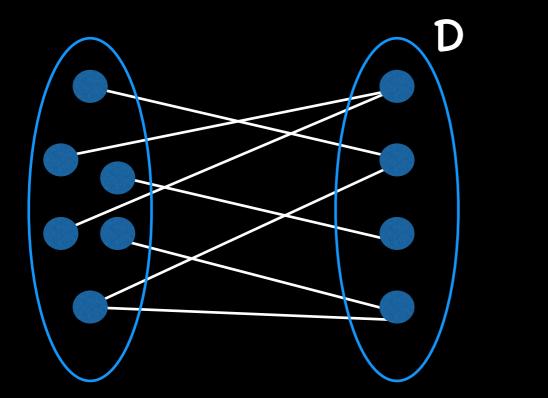
At most k_1 edges are not covered by S that has at most k_2 components

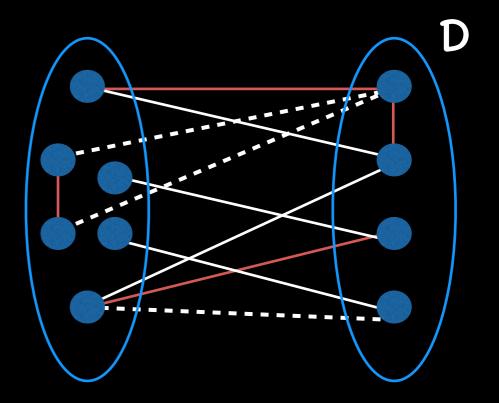
A group Steiner tree problem with parameter $k_1+k_2 \leq k$ O*(2^k) algorithm





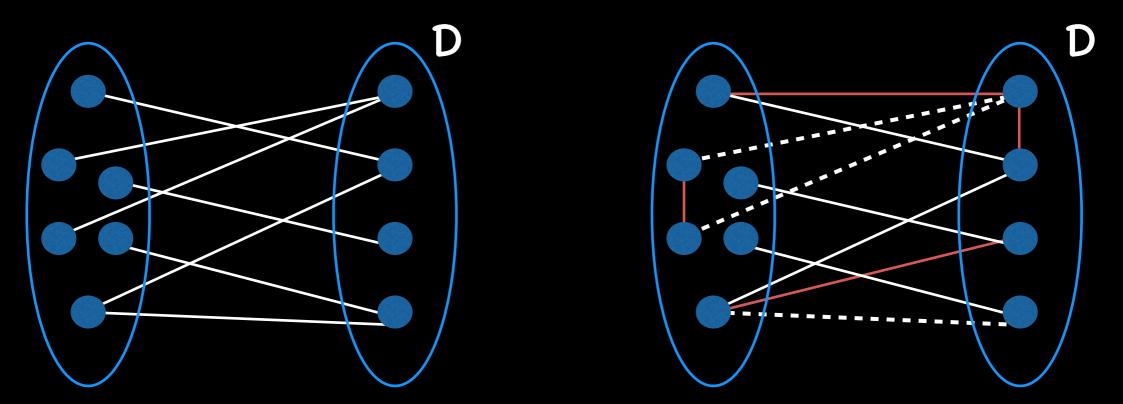






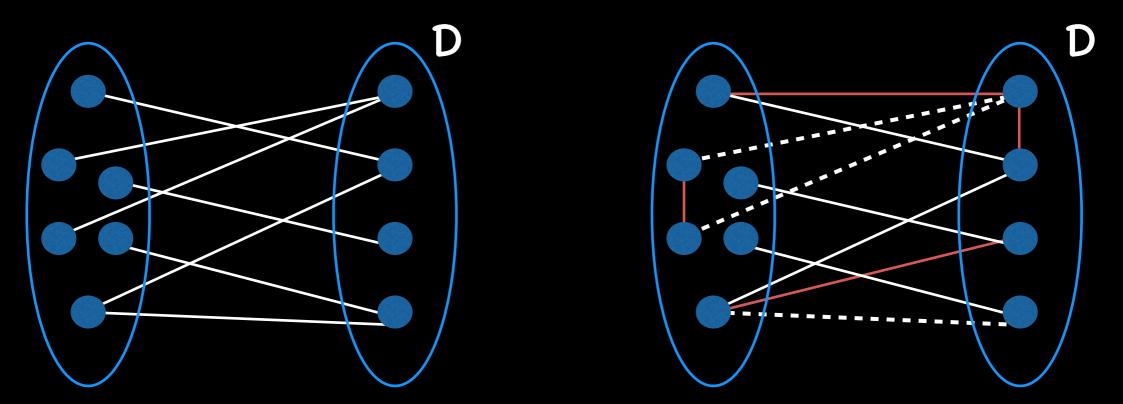
At most k vertices are not dominated by D

Dynamic Dominating Set



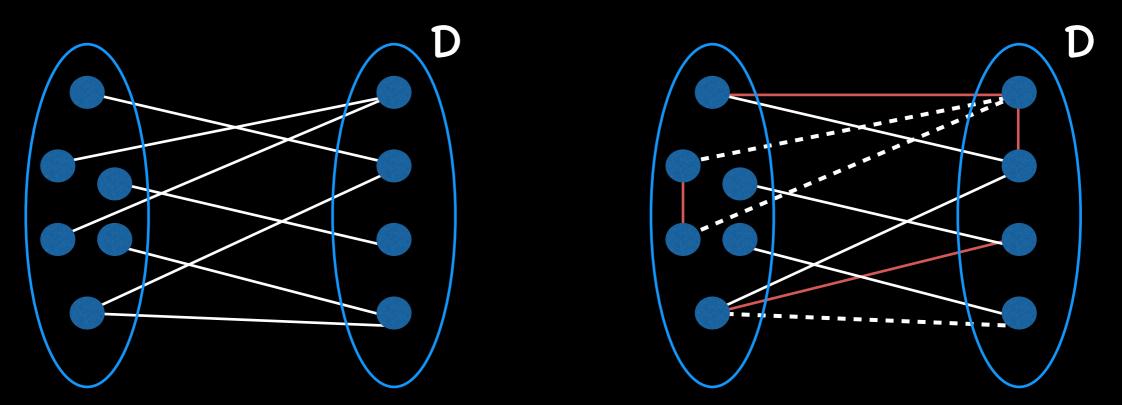
At most k vertices are not dominated by D A set cover instance on k-element universe

Dynamic Dominating Set

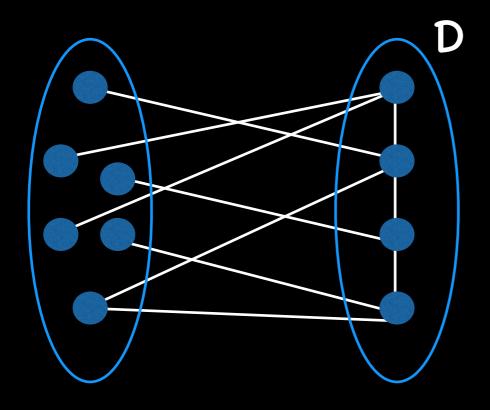


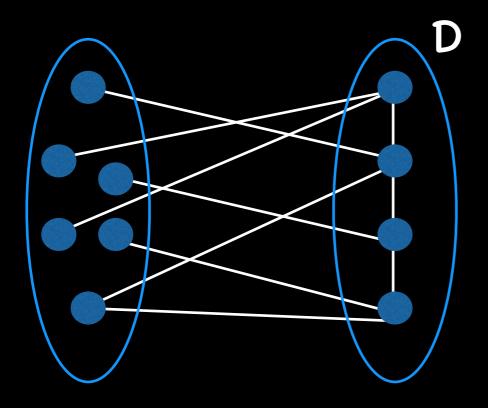
At most k vertices are not dominated by D A set cover instance on k-element universe O*(2^k) algorithm

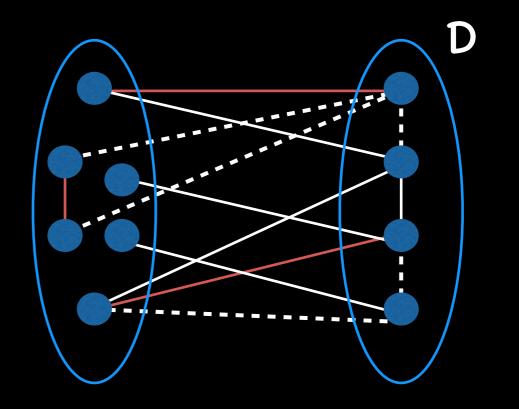
Dynamic Dominating Set

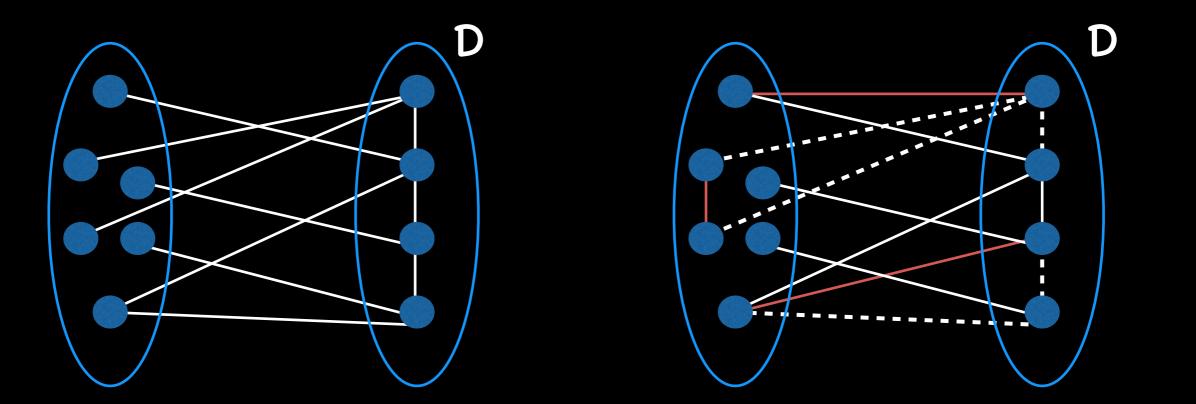


At most k vertices are not dominated by D A set cover instance on k-element universe $O^*(2^k)$ algorithm Tight under the Set Cover Conjecture

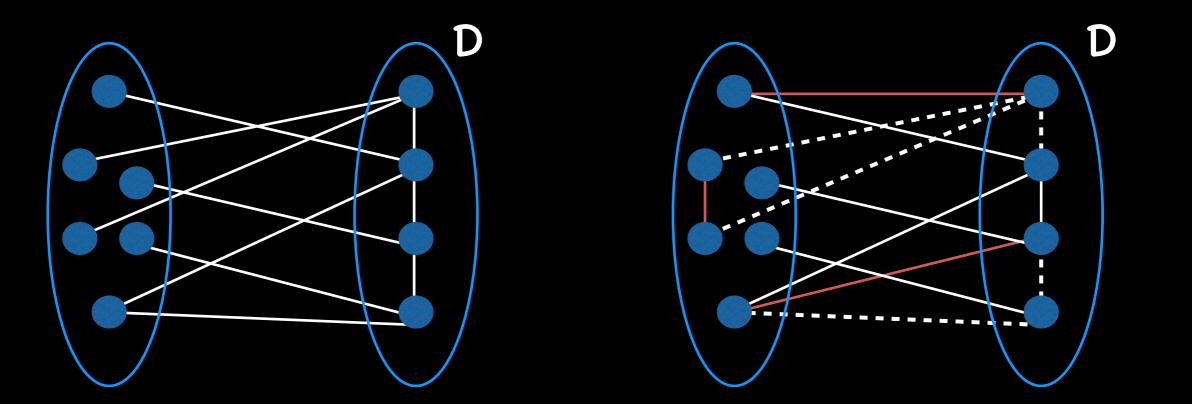






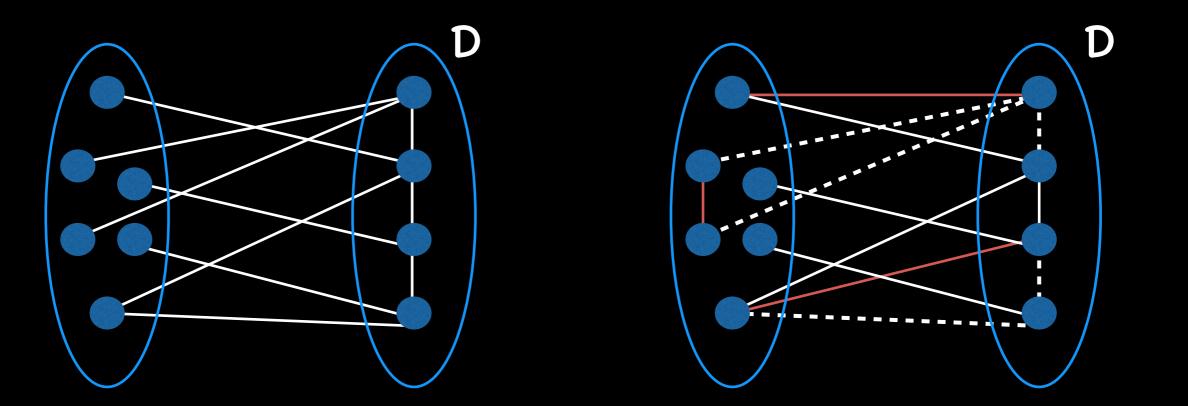


At most k_1 vertices are not dominated by D that has at most k_2 components



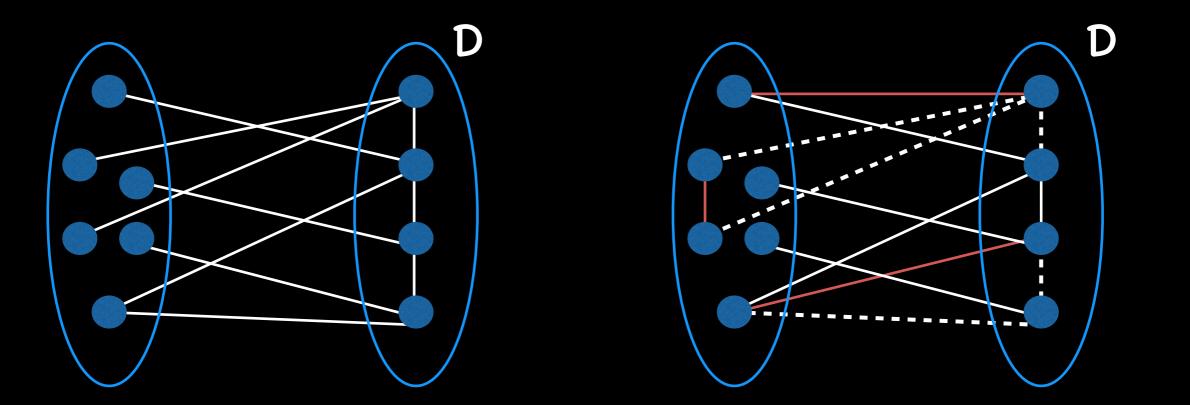
At most k_1 vertices are not dominated by D that has at most k_2 components

A group Steiner tree problem with parameter $k_1+k_2 \leq k$



At most k_1 vertices are not dominated by D that has at most k_2 components

A group Steiner tree problem with parameter $k_1+k_2 \le k$ O*(2^k) algorithm



At most k_1 vertices are not dominated by D that has at most k_2 components

A group Steiner tree problem with parameter k₁+k₂ ≤ k O*(2^k) algorithm Tight under the Set Cover Conjecture

Concluding Remarks

- Viewed as extending partial solutions
- Other interesting parameters
 - $=k_1$ edge additions and $=k_2$ edge deletions
 - treewidth, vertex cover
- Relation to reconfiguration problems and online problems
- Interesting data structures

References

Dynamic Problems in Parameterized Complexity Framework

- F. N. Abu-Khzam, J. Egan, M. R. Fellows, F. A. Rosamond, and P. Shaw. On the parameterized complexity of dynamic problems. Theoretical Computer Science, 607, Part 3:426–434, 2015.
- R.G. Downey, J. Egan, M.R. Fellows, F.A. Rosamond, and P. Shaw. Dynamic dominating set and turbocharging greedy heuristics. J. Tsinghua Sci. Technol, 19(4):329–337, 2014.
- S. Hartung and R. Niedermeier. Incremental list coloring of graphs, parameterized by conservation. Theoretical Computer Science, 494:86–98, 2013.

Vertex Cover

- J. Chen, I. A. Kanj, and W. Jia. Vertex cover: further observations and further improvements. Journal of Algorithms, 41(2):280–301, 2001.
- J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical Computer Science, 411(40–42):3736–3756, 2010.

Treewidth Bounds

- F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. Stepanov. On two techniques of combining branching and treewidth. Algorithmica, 54(2):181–207, 2009.
- J. Kneis, D. Mölle, S. Richter, and P. Rossmanith. A bound on the pathwidth of sparse graphs with applications to exact algorithms. SIAM Journal on Discrete Mathematics,23(1):407–427, 2009.

References

Feedback Vertex Set

- F. V. Fomin, S. Gaspers, D. Lokshtanov, and S. Saurabh. Exact algorithms via monotone local search. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing, STOC '16. ACM, 2016.
- T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex set. Information Processing Letters, 114(10):556–560, 2014.
- S. Thomassé. A quadratic kernel for feedback vertex set, chapter 13, pages 115–119. 2009.

Set Cover and Group Steiner Tree

- M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, and M. Wahlstrom. On problems as hard as CNF-SAT. ACM Transactions on Algorithms, 12(3), Article No. 41, 2016.
- F. V. Fomin, D. Kratsch, and G. J. Woeginger. Exact (exponential) algorithms for the dominating set problem. In Graph-Theoretic Concepts in Computer Science, pages 245–256. Springer, 2004.
- N. Misra, G. Philip, V. Raman, S. Saurabh, and S. Sikdar. FPT algorithms for connected feedback vertex set. Journal of combinatorial optimization, 24(2):131–146, 2012.

Thank you :) Questions?