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Abstract. A harmonious coloring of a graph is a partitioning of its
vertex set into parts such that, there are no edges inside each part, and
there is at most one edge between any pair of parts. It is known that
finding a minimum harmonious coloring number is NP-hard even in
special classes of graphs like trees and split graphs.
We initiate a study of parameterized and exact exponential time complex-
ity of harmonious coloring. We consider various parameterizations like by
solution size, by above or below known guaranteed bounds and by the ver-
tex cover number of the graph. While the problem has a simple quadratic
kernel when parameterized by the solution size, our main result is that
the problem is fixed-parameter tractable when parameterized by the size
of a vertex cover of the graph. This is shown by reducing the problem to
multiple instances of fixed variable integer linear programming.
We also observe that it is W [1]-hard to determine whether at most n− k
or ∆+ 1 + k colors are sufficient in a harmonious coloring of an n-vertex
graph G, where ∆ is the maximum degree of G and k is the parameter.
Concerning exact exponential time algorithms, we develop a 2nnO(1)

algorithm for finding a minimum harmonious coloring in split graphs
improving on the naive 2O(n logn) algorithm.

1 Introduction and Motivation

Graph Coloring is the problem of partitioning the vertex set of a graph to satisfy
some constraints. Coloring problems have been extensively studied in discrete
mathematics and theoretical computer science. Given a coloring χ of a graph G,
the set of vertices that receive the same color is said to be a color class. One of
the most well-known coloring problems is the chromatic number problem that
seeks the minimum number of colors required so that each color class induces
an independent set (i.e. no pair of vertices in a set is adjacent), and it is one
of Karp’s 21 NP-complete problems from 1972 [18]. Lawler gave an algorithm
for the problem running in time 2.4423nnO(1) on an n-vertex graph [19]. Later,
using the principle of inclusion-exclusion Björklund et al. [5] gave an algorithm
running in time 2nnO(1) on an n-vertex graph and this is the fastest known exact
algorithm for the problem.



Different variants of the graph coloring problem have been studied in the
literature. The Achromatic Number seeks the maximum number of colors
required so that each color class induces an independent set, and there is at least
one edge between every pair of color classes. A characterization for this problem
was given in [14] using which one can obtain an FPT algorithm for Achromatic
Number parameterized by the solution size (see Section 2.1 for definitions on
parameterized complexity). The Pseudo-Achromatic Number problem is a
generalization of Achromatic Number, and does not demand that each color
class induces an independent set. This problem is also FPT parameterized by
the solution size [7]. Another related problem is the b-Chromatic Number.
Here the objective is to color the vertices with the same properties as that in
Achromatic Number, but insist that in each color class there is a vertex that
has a neighbor in every other color class. This problem was introduced in [2].
The problem is W[1]-hard when parameterized by the solution size [22].

In 1989, Hopcroft and Krishnamoorthy [15] introduced the notion of harmo-
nious coloring. A harmonious coloring of a graph is a partition of the vertex
set into sets such that every set induces an independent set and additionally
between any pair of sets, there is at most one edge. The minimum number of
sets in such a partition is called the harmonious coloring number of the graph.
Determining whether a graph has harmonious coloring using at most k colors
is known to be NP-complete [15], even in trees [13], split graphs [3], interval
graphs[3,6] and several other classes of graphs [6,12,13,3,16,4]. Polynomial time
algorithms are known for some special classes of graphs [21], the most important
being for trees of bounded degree [11].

In this paper, we initiate the parameterized complexity of the problem under
natural parameterizations. With solution size k (the harmonious coloring number)
as a parameter, there is a simple kernel on O(k2) vertices and edges, and this is
discussed in Section 4.1. In this section, we also discuss parameterized complexity
of parameterizing above or below some known bounds for harmonious coloring
number. As the problem is NP-complete on trees, the problem parameterized
by the treewidth or feedback vertex set is trivially para NP-hard. Our main
result is that the problem is fixed-parameter tractable when parameterized by
the size of the minimum vertex cover of the graph. This is shown by solving
several (fixed-parameter tractable number of) bounded variable integer linear
programming problems. This is developed in Section 4.2. In Section 5, we discuss
exact exponential algorithms for harmonious coloring, and give an 2O(n) algorithm
in split graphs, improving on the naive 2O(n logn) algorithm. In Section 3, we
develop improved upper bounds on the harmonious coloring number in terms of
the vertex cover number and the maximum degree of the graph. Results marked
with a (?) have their proofs in the Appendix.

2 Preliminaries

We use N and Z to denote the set of natural numbers and set of integers,
respectively. For n ∈ N we use [n] to denote {1, . . . , n}. We use standard notations
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from graph theory [9]. By “graph” we mean simple undirected graph. The vertex
set and edge set of a graph G are denoted as V (G) and E(G) respectively.
The complement of a graph G, denoted by G, has V (G) as its vertex set and(
V (G)

2

)
\E(G) as its edge set. Here,

(
V (G)

2

)
denotes the family of two sized subsets

of V (G). The neighborhood of a vertex v is represented as NG(v), or, when the
context of the graph is clear, simply as N(v). The closed neighborhood of a vertex
v, denoted by N [v], is the subset N(v) ∪ {v}. For set U , we define N(U) as
union of N(v) all vertices v in U . If U = ∅ then N(U) = ∅. For two disjoint
subsets V1, V2 ⊆ V (G), E(V1, V2) is set of edges where one end point is in V1
and another is in V2. An edge in the set E(V1, V2) is said to be going across. A
trivial component of graph is a component which does not contain any edge. A
non-trivial component of a graph is a connected component of G that has at least
two vertices. The function dG : V (G)× V (G)→ N corresponds to the minimum
distance between a pair of vertices in the graph G. A d-degenerate graph is a
graph G where V (G) has an ordering in which any vertex has at most d neighbors
with indices lower than that of the vertex. For a graph G, a set S ⊆ V (G) is
called a vertex cover of G if G − S is an independent set. A graph G is called
a split graph if V (G) has a bipartition (V1, V2) such that G[V1] is an induced
clique and G[V2] is an induced independent set. In this case, (G[V1], G[V2]) is
called a split partition of G. Any split graph does not contain a 4-cycle (C4), a
5-cycle (C5) or the complement of a 4-cycle (2K2) as an induced subgraph. The
finite set of graphs {C4, C5, 2K2} is said to be a finite forbidden set of the class
of split graphs. Each graph in the finite forbidden set is referred to as a forbidden
structure.

A function h : V (G)→ [k], where k is a positive integer, is called a coloring
function. For a coloring function h and for any i ∈ [k], the vertex subset h−1(i)
is called the ith color class of h. If no edge has both its end points in the same
color class then coloring function is said to be proper. Harmonious coloring is a
proper coloring with additional property that there is at most one edge across
any two color classes. The minimum number of colors required for a harmonious
coloring of a graph G is denoted by hc(G). The restriction of a coloring function
h to a subset V ′ ⊆ V (G), denoted by h|V ′ , is a coloring function such that
h|V ′ : V ′ → [k], and h|V ′(u) = h(u) for each vertex u ∈ V ′. In this case, h is said
to be an extension of h|V ′ . For a subset V ′ ⊆ V (G), h(V ′) = {i|h−1(i)∩ V ′ 6= ∅}.

The technical tool we use to prove that Harmonious Coloring is fixed-
parameter tractable (defined in next section) by size of vertex cover is the fact that
Integer Linear Programming is fixed-parameter tractable parameterized
by the number of variables. An instance of Integer Linear Programming
consists of a matrix A ∈ Zm×p, a vector b ∈ Zm and a vector c ∈ Zp. The goal is
to find a vector x ∈ Zp which satisfies Ax ≤ b and minimizes the value of c · x
(scalar product of c and x). We assume that an input is given in binary and thus
the size of the input is the number of bits in its binary representation.

Proposition 1 ([17], [20]). An Integer Linear Programming instance of
size L with p variables can be solved using O(p2.5p+o(p) ·(L+logMx)·log(Mx ·Mc))
arithmetic operations and space polynomial in L+ logMx, where Mx is an upper
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bound on the absolute value a variable can take in a solution, and Mc is the
largest absolute value of a coefficient in the vector c.

2.1 Parameterized complexity

The goal of parameterized complexity is to find ways of solving NP-hard problems
more efficiently than brute force by associating a small parameter to each instance.
Formally, a parameterization of a problem is assigning a positive integer parameter
k to each input instance and we say that a parameterized problem is fixed-
parameter tractable (FPT) if there is an algorithm that solves the problem
in time f(k) · |I|O(1), where |I| is the size of the input and f is an arbitrary
computable function depending only on the parameter k. Such an algorithm is
called an FPT algorithm and such a running time is called FPT running time.
There is also an accompanying theory of hardness using which one can identify
parameterized problems that are unlikely to admit FPT algorithms. The hard
classes are W [i], i ∈ N. For the purpose of this paper, it is enough to know that
the Independent Set problem is W[1]-hard [10].

A parameterized problem is said to be in the class para-NP if it has a
nondeterministic algorithm with FPT running time. To show that a problem is
para-NP-hard, we need to show that the problem is NP-hard when the parameter
takes a value from a finite set of positive integers.

Another direction of research is in providing a refinement of the FPT class,
through the concept of kernelization. A parameterized problem is said to admit a
h(k)-kernel if there is a polynomial time algorithm (the degree of the polynomial
is independent of k), called a kernelization algorithm, that reduces the input
instance to an instance with size upper bounded by h(k), while preserving the
answer. If the function h(k) is polynomial in k, then we say that the problem
admits a polynomial kernel. For more on parameterized complexity, see the recent
book [8].

3 Upper and Lower Bounds and Structural Results

In this section, we give some general upper bounds of harmonious coloring number
based on other natural graph parameters and show some structural results which
are used later in our algorithms.

Observation 1 For a given graph G and two vertices u, v, if u and v belong to
the same harmonious color class then dG(u, v) > 2.

Definition 1 (Identify). For a graph G, identifying a vertex set U of V (G) is
the operation of deleting U , adding a new vertex w and the edge set {wx|x /∈
U,∃u ∈ U and xu ∈ E(G)}.

Observation 2 (?) For a graph G, let φ be a harmonious coloring. Suppose the
graph G′ is formed by identifying a color class of φ. Then hc(G) = hc(G′).
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Lemma 1 (?). Let G be a graph without isolated vertices, X be a vertex cover
of G, and let H be the auxiliary graph defined such that V (H) = V (G−X) and
for u, v ∈ V (H), uv ∈ E(H) if dG(u, v) = 2. A coloring function h of G, where
(i)h(X) ∩ h(V (G−X)) = ∅, (ii)h(i) 6= h(j) for all i 6= j ∈ X, is a harmonious
coloring of G if and only if h|V (G−X) is a proper coloring of H.

Let hc(G) denote the harmonious coloring number of a graph G, ∆(G) denote
the maximum degree of the graph, and vc(G) denote the vertex cover number of
G. We use ∆ if the graph G is clear from the context. We show the following
bound for general graphs.

Theorem 1. For any graph G with ∆ ≥ 2, ∆+ 1 ≤ hc(G) ≤ vc(G) +∆(∆− 1).

Proof. By Observation 1, any two vertices in the same harmonious color class
should be at a distance three or more from each other. This implies that for any
vertex u, every vertex in its closed neighbourhood gets a separate color. Since
this is true for a vertex with the highest degree, lower bound on harmonious
coloring follows.

We first construct a coloring with vc(G) +∆(∆− 1) + 1 many colors and then
apply a trick to save one color. Construct a coloring φ : V (G)→ [vc(G) +∆(∆−
1) + 1] in the following greedy fashion : Color each vertex in vertex cover with
separate color. For any vertex which has not been colored yet, use the smallest
available color which is not used either by vertex in vertex cover or a vertex which
is at distance 2. Since the number of neighbours is bounded by ∆, the number of
colors which are forbidden for the vertex is bounded by vc(G) +∆(∆− 1). Hence
for any vertex, we have at least one color available and φ can be defined over
entire V (G).

We now argue that φ is harmonious coloring. Since each vertex in the vertex
cover gets separate colors and these colors are not shared by other vertices, two
end points of an edge are colored differently making φ a proper coloring. Assume
that there are two different edges u1v1 and u2v2 such that φ(u1) = φ(u2) and
φ(v1) = φ(v2). Without loss of generality, let u1 be in the vertex cover. Since
color class which contains vertex cover is a singleton set, u1 = u2. If v1 is colored
first, then while coloring v2, the color used for v1 is forbidden as d(v1, v2) = 2.
Hence this situation will not happen when greedily coloring vertex set concluding
that φ is a harmonious coloring of graph G.

We now show how to save one color from this coloring using a similar idea from
[1]. Let X be the vertex cover. If our greedy coloring above used only ∆(∆− 1)
colors to color vertices of V (G) \X, then we are already done. Otherwise, pick
any vertex u in X. We recolor u using a color used by vertices in V (G)\X. Let u
be adjacent to i ≤ ∆− 1 vertices in X (If all neighbors of u are in X, then u can
be moved out of X, without loss of generality). Hence there are at most i(∆− 1)
vertices in V (G) \X which are at distance two from vertex u. There are at most
∆− i vertices adjacent to u in V (G)\X. Colors used by all these vertices can not
be used to recolor vertex u because of Observation 1 but u can be colored with any
other color. Thus the number of colors forbidden is i(∆−1)+∆−i = i(∆−2)+∆.
But i(∆− 2) +∆ ≤ (∆− 1)(∆− 2) +∆ = ∆(∆− 1)−∆+ 2 ≤ ∆(∆− 1) when

5



∆ ≥ 2 and hence we can always find a color to recolor vertex u reducing the
upper bound by 1. ut

The upper bound is tight for C4, a cycle on 4 vertices.

Theorem 2 (?). If G is a d-degenerate graph, then ∆+ 1 ≤ hc(G) ≤ vc(G) +
d(∆− 1) +∆(d− 1) + 1.

The following corollary follows from Theorem 2 as a forest is 1-degenerate.

Corollary 1. If G is a forest then ∆+ 1 ≤ hc(G) ≤ vc(G) +∆.

The upper bounds in Theorem 1 and Corollary 1 improve respectively the
bounds of Theorem 6 and Theorem 4 of [1].

4 Parameterized complexity of Harmonious Coloring

4.1 ‘Standard’ and ‘Above/Below guarantee’ parameterizations

In this subsection, we capture some easy observations on the parameterized
complexity of harmonious coloring under some standard parameterizations. We
start with the following theorem whose proof (given in appendix) follows from the
observation that if the number of edges is ‘large’, then the harmonious coloring
number has to be large.

Theorem 3 (?). Let G be a graph on n vertices and m edges. Harmonious
Coloring, parameterized by the number of colors used, is FPTwith a quadratic
kernel.

The proof of the above theorem suggests that the harmonious coloring number
of most graphs is large with respect to the number of vertices. The number of
vertices n is a trivial upper bound and Theorem 1 gives a lower bound of ∆+ 1
for the harmonious coloring number of a graph. So the natural question is: is it
FPT to determine whether one can harmoniously color using at most n− k or
∆+ k + 1 colors where the parameter is k. We prove the following theorem.

Theorem 4 (?). (i) It is W[1]-hard to determine whether a given n-vertex graph
has harmonious coloring number at most n− k where k is the parameter. (ii) It
is para-NP-hard to determine whether a given graph has a harmonious coloring
number at most ∆+ 1 + k where ∆ is the maximum degree of the graph, and k
is the parameter.

4.2 Parameterization by size of Vertex Cover

As the Harmonious coloring is NP-complete on trees, it is trivially para NP-
hard when parameterized by the treewidth of the graph or the feedback vertex set
size of the graph. In this section, we consider the structural parameterization by
the well-studied vertex cover number of the graph. We describe an FPT algorithm
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for Harmonious coloring when parameterized by the size of a vertex cover
of the input graph. We show that the problem reduces to several instances of
Integer Linear Programming. We assume that the input graph G has no
isolated vertices. Otherwise, for any harmonious coloring of the input graph G,
we can include the set of isolated vertices into any one of the color classes.

In case of structural parameters, sometimes it is necessary to demand a
witness of the required structure as part of the input. However, when the size
of a vertex cover is the parameter, this is not a serious demand. Suppose the
input parameter is `. We find a 2-approximation of the minimum vertex cover
of the input graph G(pp 11,[23]). If the size of the approximate vertex cover is
strictly more than 2`, then we have verified that the input parameter does not
correspond to a valid vertex cover number of G. Otherwise, the approximate
vertex cover is of size 2` and we can use this vertex cover as a witness. Thus, we
may assume that we are solving the following problem.

VC-Harmonious Coloring Parameter: |X|
Input: A graph G, a vertex cover X of G, a non-negative integer k
Question: Is there a harmonious coloring of G with k colors?

The idea is to enumerate over all the possible harmonious coloring of G[X]
and for each harmonious coloring, verify whether it can be extended to G using a
total of k colors. As we will see, the problem of extending harmonious coloring of
G[X] to the entire graph is equivalent to that of finding harmonious coloring of
the graph such that each color class contains at most one vertex from the vertex
cover. We first observe some properties of such a harmonious coloring.

In the remaining section, unless stated otherwise, G is the input graph with
vertex cover X of size ` and I = V (G) \X is an independent set.

Observation 3 (?) If there is a harmonious coloring of G such that each color
class contains at most one vertex from the set X then the size of a color class is
at most `+ 1.

For each vertex u in I we associate a brand.

Definition 2. The brand of a vertex v in I with respect to X is the set N(v).

The number of different brands is upper bounded by the number of nonempty
subsets of X which is 2`− 1. For vertices u, v in I if brand(u)∩ brand(v) 6= ∅ then
dG(u, v) = 2 and by Observation 1 these two vertices can not belong to the same
harmonious color class. For S ⊆ X, we define set I(S) = {v ∈ I|brand(u) = S}.

Consider a harmonious coloring h : V (G) → [k] and two vertices u, v in I,

such that brand(u) = brand(v). Let h(u) = i and h(v) = j. Define a coloring h̃ on

V (G) as h̃(w) = h(w) for all w in V (G) \ {u, v}, and h̃(u) = j and h̃(v) = i.

Observation 4 (?) For a given harmonious coloring h of G, let u, v be two

vertices in I such that brand(u) = brand(v). If coloring h̃ is as defined above then

h̃ is also a harmonious coloring of G.
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Thus we can characterize a harmonious color class based on the brand of the
vertices which are part of it. Once the brands which make up the color class are
fixed, it does not matter which vertex having that brand is chosen for the color
class. This leads us to the definition of a type of a potential color class.

Definition 3 (type). A type Z with respect to X is a `+ 1 sized tuple where the
first entry is subset of X of cardinality at most 1, and each of the remaining `
entries is either ∅ or a distinct brand of a vertex in I.

A type Z can be represented as (Y ;S1, S2, . . . , S`) where Y is either an empty
set or a singleton set from X. All the entries in this tuple are subsets of X
but we distinguish the first entry from the remaining entries. The number of

different types is at most ` ·
(
2`

`

)
, which is at most ` · 2`2 . Any color class C which

contains at most one vertex from the vertex cover and at most ` vertices from
the independent set can be labeled with some type.

Definition 4 (Color Class of type Z). Let h be a harmonious coloring of G
such that each color class contains at most one vertex from X, and let Z =
(Y ;S1, S2, . . . , S`) be a type defined with respect to X. Color class C of h is of
type Z if C ∩X = Y and for every u ∈ C ∩ I there exists Si in type Z such that
brand(u) = Si.

Not all the types can be used to label a harmonious color class. We define the
notion of valid types to filter out such types.

Definition 5 (Valid type). A type Z = (Y ;S1, S2, . . . , S`) is said to be valid if
all the sets in the family {N [Y ], S1, S2, . . . S`} are pairwise disjoint.

The validity constraints imply that if a vertex set is labeled with a valid type
Z, then for any u, v in that set, the minimum distance between u and v is strictly
greater than 2. Only the valid types can be used to label harmonious color classes.

Definition 6 (Compatible types). Two valid types Z = (Y ;S1, S2, . . . , S`)
and Z ′ = (Y ′;S′1, S

′
2, . . . , S

′
`) are said to be compatible with each other if |Y ∩

(S′1 ∪ S′2 ∪ · · · ∪ S′`)|+ |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S`)| ≤ 1.

The compatibility condition of types encodes that the number of edges running
across two harmonious color classes is at most 1. Two harmonious color classes C
and C ′ can be of type Z and Z ′ respectively only if these two types are compatible
with each other.

Lemma 2. Let C and C ′ are two disjoint sets of V (G) of valid types Z =
(Y ;S1, S2, . . . , S`) and Z ′ = (Y ′;S′1, S

′
2, . . . , S

′
`) respectively. |E(C,C ′)| ≤ 1 if

and only if Z and Z ′ are campatible with each other.

Proof. (⇒) If |E(C,C ′)| = 0 then there is no edge across C ′ and C and hence
|Y ∩ (S′1 ∪ S′2 ∪ · · · ∪ S′`)| = |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S`)| = 0 making types Z
and Z ′ compatible. Consider the case when |E(C,C ′)| = 1. With out loss of
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generality, let x ∈ C ∩X and z′ ∈ C ′ and xz′ is the edge across C and C ′. For
any u in C \ X, E({u}, Y ′) = ∅ implying N(u) ∩ Y ′ = ∅ which is equivalent
to |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S`)| = 0. Since xz′ is the only edge across C and C ′,
|Y ∩ (S′1 ∪ S′2 ∪ · · · ∪ S′`)| is 0 or 1 depending on whether z′ is in X or not. In
either case, types Z and Z ′ are compatible.

(⇐) If |Y ∩ (S′1 ∪ S′2 ∪ · · · ∪ S′`)| = |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S`)| = 0 then there
is no edge across C and C ′ whose one end point is outside vertex cover X. Since
Y and Y ′ has cardinality of at most 1, |E(C,C ′)| ≤ 1. So now we are in a case
where |Y ∩ (S′1 ∪ S′2 ∪ · · · ∪ S′`)|+ |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S`)| = 1. Without loss
of generality, assume that |Y ∩ (S′1 ∪ S′2 ∪ · · · ∪ S′`)| = 1. This imply that there
is an edge whose one end point is in Y and another end point is in C ′ \ Y ′.
Also, |Y ′ ∩ (S1 ∪ S2 ∪ · · · ∪ S`)| = 0 implies that there is no edge with one
end point incident on Y ′ and another end point in C \ Y . The only thing that
remains to argue that in this situation E(Y, Y ′) = ∅. If this is not the case then
Y ∩N(Y ′) 6= ∅. But there exists S′i such that Y ∩ S′i 6= ∅. Since Y is singleton
set, this implies N(Y ′) ∩ S′i 6= ∅ which contradicts the fact that type Z ′ is valid.
Hence E(Y, Y ′) = ∅ which concludes the proof of |E(C,C ′)| ≤ 1. ut

For a given graph G and a vertex cover X of G, we construct a set Z consisting
of all types with respect to X which are valid. For every subset Z ′ of Z such that
any two types in Z ′ are compatible with each other, we construct an instance
JZ′ of Integer Linear Programming as follows.

We define a variable zi as the number of color class of type Zi used in the
coloring. In the following objective function, we encode the aim of minimizing
number of color classes used.

minimize

|Z′|∑
i=1

zi

For every S ⊆ X and j ∈ [|Z ′|] define

bSj = 1 if there is brand S in type Zj ; otherwise 0

There are at most |I(S)| many vertices of brand S.

|Z′|∑
j=1

zj · bSj = |I(S)| ∀S ⊆ X (1)

For every x ∈ X and j ∈ [|Z ′|] define

cxj = 1 if {x} is the first entry in type Zj ; otherwise 0

There can be at most one color class which contains vertex x in X.

|Z′|∑
j=1

zj · cxj = 1 ∀x ∈ X (2)
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Corollary 2. An instance JZ′ can be solved in time 2O(2`
2
·`3)nO(1).

Proof. The number of variables in instance JZ′ is |Z ′| which is upper bounded

by ` · 2`2 . The maximum value, any variable zi can take, is n and the largest
value any coefficient in the objective function can take is 1. The coefficients in
the constraints are upper bounded by n. The number of constraints is at most

2` + `. By Proposition 1, instance JZ′ can be solved in time 2O(2`
2
·`3)nO(1). ut

Recall that for a given graph G and its vertex cover X, Z is the set of all
valid types with respect to X and Z ′ is a subset of Z such that any two types in
Z ′ are compatible with each other.

Lemma 3 (?). Given a graph G with a vertex cover X, an integer k, there
exists a harmonious coloring of G with at most k colors and each color class
contains at most one vertex from X if and only if there exists Z ′ ⊆ Z such that
the minimum value for an instance IZ′ is at most k.

This leads us to the main theorem of this section.

Theorem 5 (?). Harmonious Coloring, parameterized by the size of a vertex
cover of the input graph, is fixed-parameter tractable.

While it is an interesting open problem to improve the bound of the FPT
algorithm, we show that when the input graph is a forest, the bound can be
substantially improved to show the following.

Theorem 6 (?). Given a forest G, a vertex cover X of size `, we can find the

minimum harmonious number, and the corresponding coloring of G in 2O(`2)nO(1)

time.

The main reason for the improved bound is that the number of brands for vertices
in V (I) comes down to at most 2`− 1 (from 2` − 1). Also, except for ` brands,
all others have at most one vertex having that brand. Furthermore, we can run
through some careful choices and avoid solving the integer linear programming.
The details are in Appendix.

5 Exact algorithm on Split Graphs

As the number of vertices is a trivial upper bound for the harmonious coloring
number, a naive algorithm to find the minimum harmonious number runs through
all the nn possible colorings to find the minimum number. It is know that
Harmonious Coloring on Split graphs is NP-Complete. In this section, we
give an exact algorithm for Harmonious coloring on the class of split graphs
improving on this 2n logn bound to 2nnO(1). We make use of a relation between a
harmonious coloring of a split graph and a proper coloring of an auxiliary graph
to obtain our improved algorithm. We can relate the number of colors required
for a harmonious coloring of the graph G with that for a harmonious coloring of
its non-trivial component.

10



Observation 5 (?) Let G be an input split graph with E(G) 6= ∅ and let C be a
non-trivial component of G. Then hc(G) = hc(C).

Proposition 2 ([21]). For any harmonious coloring h of G and a split-partition
(K, I), each vertex in K must be given a distinct color.

As a corollary to Lemma 1, we obtain the following relation in split graphs.

Corollary 3 (?). Let G be a connected split graph with a split-partition (K, I),
and let H be the auxiliary graph defined from G as in the statement of Lemma 1. A
coloring function h is a harmonious coloring of G if and only if (i)h(C)∩h(I) = ∅,
(ii) each vertex of K gets distinct color, and (iii)h|I is a proper coloring of H.

Theorem 7. Given a split graph G, there is an algorithm, running in 2nnO(1)

time, that computes the minimum harmonious coloring of graph G.

Proof. By Observation 5, we can assume that G is a connected graph. Let (K, I)
be a split partition of G. By Proposition 2, in any harmonious coloring of G,
each vertex of K must get a distinct color. Also, by connectivity, each vertex in
V (I) must be adjacent to a vertex in V (K). Hence, in any harmonious coloring
of G, the vertices of V (I) must be colored distinctly from the vertices of V (K).
From Corollary 3, the minimum proper coloring of the auxiliary graph H gives
the minimum harmonious coloring of G extending the coloring of K. Thus, it is
enough to find the minimum proper coloring of H, which can be done in time
2nnO(1) using the algorithm of Björklund et al. [5]. ut

We obtain an improved FPT algorithm for split graphs as a corollary.

Corollary 4 (?). Given a split graph G and a non-negative integer k, we can
determine whether G has a harmoniously coloring with at most k colors in
2O(k2)nO(1) time.

6 Conclusions

We have shown that the harmonious coloring problem is fixed-parameter tractable
when parameterized by the harmonious coloring number or the vertex cover
number. While improving the bounds for our FPT algorithms is a natural open
problem, we end with the following specific open problems.

– When parameterizing by k, the harmonious coloring number, can the kernel
size of O(k2) be improved?

– When parameterizing by the vertex cover number `, is there a c`nO(1) algo-
rithm, for some constant c, at least on trees?
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A Missing proofs from Section 3

Proof of Observation 2

Proof. Let C∗ be the color class of φ which has been identified to a vertex w∗.
In one direction, φ can be modified naturally to become harmonious coloring of
G′ and hence hc(G′) ≤ hc(G).

In the other direction, let ψ′ be any harmonious coloring ofG′. Let C1, C2, . . . , CL

be the color classes formed by same. Without loss of generality, let w∗ belong to
the color class C1. We define a coloring function ψ on V (G) such that ψ(u) = ψ′(u)
if u 6= w∗, and ψ(u) = ψ′(w∗) if u is in color class C∗. Thus, the color classes of ψ
are C1∪C∗, C2, . . . , CL. By definition of C∗, ψ is a proper coloring as every color
class is still an independent set. We prove that ψ is also harmonious coloring.
Suppose not. Then there are two color classes with more than one edge going
across. Since ψ′ was a harmonious coloring of G′, it must be the case that one of
this pair of color classes is C1 ∪ C∗. Suppose the other color class is Ci and two
edges going across are (u1, v1), (u2, v2). It must also be true that one of the edges
going across has an endpoint in C∗. Without loss of generality, suppose that
u1 ∈ C∗, u2 ∈ C1 ∪ C∗, v1, v2 ∈ Ci. By definition of identifying a vertex subset,
in the color classes C1 and Ci, of ψ′ on V (G′), the edges (w, v1) and (u2, v2) (or
(w, v2) in case u2 is also in C∗) are going across. This contradicts the fact that
ψ′ is a harmonious coloring of G′. Therefore, ψ must be a harmonious coloring
of G. Hence hc(G) ≤ hc(G′). ut

Proof of Lemma 1

Proof. First, suppose the function h is a harmonious coloring of G. Since we
have assumed that the graph G has no isolated vertices, each vertex in V (G−X)
must be adjacent to a vertex in X. By the first property of h, the vertices of
V (G−X) must be colored distinctly from the vertices of X. For contradiction’s
sake, let h|V (G−X) not be a proper coloring of H. Then there is an edge (u, v) in
E(H) such that both end vertices are given the same color. This edge is present
because, in G there was a vertex w ∈ X such that (u,w), (w, v) ∈ E(G). The
definition of h|V (G−X) implies that h(u) = h(w). Hence, due to te edges (u,w)
and (w, v), h cannot be a harmonious coloring of G. Thus, h|V (G−X) is a proper
coloring of H.

For the converse, let h be a coloring function of G such that h(X)∩ h(V (G−
X)) = ∅, and each vertex of X gets a distinct color under h, and h|V (G−X) is
a proper coloring of H. We prove that h must be a harmonious coloring of G.
Suppose not. This is possible when (a) an edge of E(G) is not properly colored
by h, or (b) there is a pair of color classes that have more than one edges going
across. Suppose that an edge in E(G) is not properly colored. This edge must
be present between a vertex v ∈ X and a vertex w ∈ V (G−X). By definition,
h(v) 6= h(w), and this contradicts the assumption that the edge is not properly
colored. Therefore, h is a proper coloring of G. Next, suppose there is a pair i, j,
such that the color classes Vi and Vj have at least 2 edges going across. That is,
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there are vertices u1, u2 ∈ Vi and v1, v2 ∈ Vj such that (u1, v1), (u2, v2) ∈ E(G).
As h is a function where each vertex in X gets a distinct color, both vertices in
each of the color classes cannot belong to X. Also, a vertex of X cannot take the
color of a vertex of V (G−X). Since there are no isolated vertices, an edge in
E(G) must have one end point in X while the other end point is in V (G−X).
Therefore, the only possibilities are that u1 = u2 ∈ X while v1 6= v2 ∈ V (G−X)
or v1 = v2 ∈ X while u1 6= u2 ∈ V (G−X). Without loss of generality, let it be
the case that u1 = u2 ∈ X and v1 6= v2 ∈ V (G−X). Then, in the auxiliary graph
H, (v1, v2) ∈ E(H). Since h|V (G−X) is a proper coloring of H, this contradicts
the fact that v1 and v2 belong to the same color class of the function h. Thus, it
must be the case that h is a harmonious coloring of G. ut

Proof of Theorem 2

Proof. We apply a similar greedy algorithm as in the Theorem 1. With d-
degeneracy sequence of graph G, we are able to bound the number of colors
which are forbidden by d(∆− 1) +∆(d− 1) which for small d is a better bound
than ∆(∆−1). Let σ = v1v2 . . . vn be d-degeneracy order of graph G. For a given
vertex v, left-adjacent vertices are those adjacent vertices which precedes v and
right-adjacent vertices are those which follows v in the ordering σ. The number
of left-adjacent vertices is upper bounded by d for any vertex.

We construct a coloring φ : V (G) → [vc(G) + d(∆ − 1) + ∆(d − 1) + 1] in
the following way. Color each vertex in vertex cover with separate color. For
remaining vertices, we color them in the order in which they appear in σ. For any
vertex which has not been colored yet, use the smallest available color which is not
used either by vertices in the vertex cover or a vertex which is at distance 2 from
it. Number of colors which are used to color the neighborhood of left-adjacent
vertices is at most d(∆ − 1). The number of right-adjacent vertices is upper
bounded by ∆. All the vertices which are colored precede vertex v and hence all
of its right-adjacent vertices. Number of vertices which are colored and part of
neighbourhood of right-adjacent vertices is at most ∆(d− 1). For any vertex we
have at least one color available and hence φ is defined over V (G).

The argument that φ(G) is a harmonious coloring is identical to that presented
in Theorem 1. ut

B Missing proofs from Section 4.1

Proof of Theorem 3

Proof. From the definition, it must be the case that
(
k
2

)
≥ m, as otherwise it is

a NO instance. Thus, given the parameter k, we check if
(
k
2

)
≥ m. If not, then

we return NO. Otherwise, delete all the isolated vertices of the graph (as they
can be inserted into any color class). Now our input graph has at most

(
k
2

)
edges

and at most 2
(
k
2

)
vertices. Thus, the trivial brute force algorithm runs in time

2O(k2 log k)nO(1). Notice that we also have a kernel with at most k2/2 edges and
k2 vertices. ut
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Proof of Theorem 4

Proof. In [15], an NP-hardness reduction was given from the Independent Set
problem to the harmonious coloring problem, we provide it for completeness.
Given a graph G on n vertices, and an integer k as the instance of the Indepen-
dent Set problem, we construct G′ as follows. The vertex set consists of the
vertex set of G, a new universal vertex v (that is made adjacent to all vertices of
V (G)) and a set K of k other vertices. Regarding edges, we maintain the original
edges of G, and make the new vertex v adjacent to every vertex of G. The set K
of vertices is made into a clique. Now it is easy to see that G has an independent
set of size k if and only if G′ can be harmoniously colored with at most n + 1
colors. As the number of vertices in G′ is N = n + 1 + k, we have that G has
an independent set of size k if and only if G′ has a harmonious coloring with
at most N − k colors where N is the number of vertices of G′. This shows this
problem is W [1]-hard as independent set problem is W [1]-hard.

The same reduction shows the problem of determining whether G can be
harmoniously colored with at most ∆+ 1 colors is NP -complete (as ∆(G′) = n)
and so the problem of determining whether one can harmoniously color a graph
with at most ∆+ 1 + k vertices is para-NP-hard. ut

Proof of Observation 3

Proof. The graph G does not have any isolated vertex. Hence, every vertex in
V (G) \X is connected to at least one vertex in X. Assume that there are `+ 1
vertices from V (G) \X in one color class. By pigeon hole principle, at least two
vertices must have a common neighbor in X. This contradicts Observation 1.
Therefore, any harmonious color class can have at most ` many vertices from
V (G) \X and at most 1 vertex from X. ut

Proof of Observation 4

Proof. If two vertices have the same brand then they have identical neighborhoods.
Since h is proper coloring of G, N(u) ∩ h−1(i) = N(v) ∩ h−1(i) = ∅ implying

that h̃−1(i) is an independent set. Using similar arguments, ĥ−1(j) is also an

independent set. For k1 in [k] \ {i, j}, ĥ−1(k1) = h−1(k2) and hence h̃ is a proper
coloring of V (G).

To prove that h̃ is a harmonious coloring, we show that there is at most one
edge between any two color classes. Since N(u) = N(v), for any k1, k2 ∈ [k],

|E(h−1(k1), h−1(k2))| = |E(ĥ−1(k1), ĥ−1(k2))|. Since h is a harmonious coloring,
|E(h−1(k1), h−1(k2))| ≤ 1 which concludes the proof. ut

Proof of Lemma 3

Proof. (⇒) Consider a harmonious coloring φ : V (G) → [k] such that every
color class contains at most one vertex from set X ′. We will construct Z ′ such
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that minimum value for an instance IZ′ is at most k. Let C be one of the color
classes. By Observation 3, there are at most ` vertices from I in C. If there
exists u, v in C ∩ I then by Observation 1, d(u, v) > 2 and hence brand(u)∪
brand(v) = ∅. If there exists x in C ∩X then by Observation 1, d(u, x) > 2 and
brand(u)∪N(x) = ∅. Hence we can label each color class with one of the types in
Z. Let Z ′ be an inclusion-wise minimal set which contains all the types of color
classes. For any two types Z1 and Z2 in Z ′, look at the corresponding color classes
C1 and C2 which are of types Z1 and Z2 respectively. Since φ is harmonious
coloring, |E(C1, C2)| ≤ 1 and hence by Lemma 2 two types are compatible.

If we substitute zi equal to the number of color classes of type Zi then it is
easy to see that all the constraints specified in instance JZ′ are satisfied. The
value of objective function is upper bounded by number of color classes which is
k.
(⇐) For subset Z ′ of Z and some assignment of (z1, z2, . . . , z|Z′|) in {1, 2, . . . , n}|Z′|,
constraints 1 and 2 are satisfied and objective function of JZ′ attains the value
at most k. Using this solution of integer linear programming, we will construct a
harmonious coloring φ of graph G which uses at most k colors.

For vertex x in X, since constraint (2) is satisfied, there exists a unique
j ∈ [Z ′] such that zj = 1 and cxj = 1. Assign φ(x) = 1. This constraint holds
true for all the elements in X which gives unique assignment for each element
in X. For u in I, let brand(u)= S. Since constraint (1) is satisfied, there are
exactly I(S) many type Zi in Z ′ such that zi is not equal to zero and brand(u) is
contained in type Zi. Assign φ(u) = i. For every u in I(S) we can assign unique
i. Because of validity of constraints (1) and (2), every vertex gets assigned some
value and hence φ is defined over V (G).

We now prove that coloring φ is harmonious coloring. Notice that every type
is valid in Z ′ and hence every class formed by coloring φ is an independent set.
Any two types in Z ′ are compatible and hence by Lemma 2, classes associated
with these types have at most one edge running across. This is true for any two
color classes. The number of color classes is exactly equal the value of objective
function of this instance which is at most k. This concludes the proof. ut

Proof of Theorem 5

Proof. Input of an instance contains a graph G its vertex cover X of size `
and an integer k. For a given vertex cover X, fix a harmonious coloring φ
on G[X]. Let C1, C2, . . . , Ck′ are the color classes. Identify each of these color
classes into singleton vertex v1, v2, . . . , vk′ respectively to obtain graph G′. Set
X ′ = {v1, v2, . . . , vk′} is a vertex cover of G′. By Observation 2, any harmonious
coloring of G′ is also a harmonious coloring of G. Moreover a harmonious coloring
φ̂ of G′ with the property that in every color class there is at most one vertex
from set X ′, is coloring of G which respects φ on G[X]. Hence it is sufficient to

find coloring φ̂ on graph G′.
For G′ and vertex cover X ′ construct Z, a set of all valid type with respect to

X ′. For every subset Z ′ of Z check whether any two types in Z are compatible
or not. If they are compatible then construct an instance JZ′ of integer linear
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programming. If there exists a subset Z ′ such that the optimal value of JZ′ is
at most k then return Y ES. Otherwise, we know that there is no harmonious
coloring φ̂ on G′ with desired properties. The correctness of this step follows
from Lemma 3.

We now argue about the running time of algorithm. There are 2O(` log `) many
possible harmonious coloring of graph G. For a fixed coloring φ, we construct

G′, X ′ and Z ′ in time 2O(`2) · nO(1). There are 22`
2
·` many subsets Z ′ of Z.

By Corollary 2, for each subset Z ′, an instance JZ′ can be solved in time

2O(2`
2
·`2) · nO(1). Combining all these results, the running time of algorithm is

2O(2`
2
·`3) · nO(1). ut

C Proof of Theorem 6

Recall that the graph G−X induces an independent set. We will denote G−X
as I. Recall the definition of brands for vertices from Definition 2. First we argue
that the number of brands of vertices is at most 2`− 1 if G is a forest.

Observation 6 Consider a brand where the vertex of I has at least 2 neighbors
in X. There can only be a single vertex of this brand.

Proof. Suppose there are two vertices u, v with a brand such that both vertices
have at least two common neighbors w, x in X. Then {u, v, w, x} form a cycle in
G. Since G is a forest, this is not possible. Hence, the claim holds. ut

Observation 7 The number of brands where the vertex of I has at least 2
neighbors in X is at most `− 1.

Proof. Since G is a forest, contracting an edge in G results in a graph that is still
a forest. Consider a vertex v ∈ V (I) which has a brand such that v has at least 2
neighbors in X. By Observation 6, v is the unique vertex with that brand. Select
a neighbor x ∈ X of v and contract the edge (v, x). The new vertex formed due
to this contraction is called x. This contraction results in a graph that is still
a forest. Each contraction introduces edges between x and the other vertices in
the brand of v. We continue this process till there are no vertices, with a brand
having at least two neighbors in X. The graph G′ obtained at the end of this
series of contractions must still be a forest. This implies that G′[X] is also a
forest. Therefore, other than the original edges of E(G), at most `− 1 new edges
could have been added to E(G′[X]) due to the contractions. Each contraction
introduced at least one new edges in the graph induced on X. Thus, the number
of contractions is at most `− 1. This also means that the number of brands where
a vertex of I has at least 2 neighbors in X is at most `− 1. ut

Now we show the following

Lemma 4. Given a forest G, a vertex cover X of size ` such that each vertex in
V (G) \X has exactly one neighbor in X, and a harmonious coloring h of G[X]
that colors all vertices of X distinctly, we can find the minimum harmonious
coloring of G extending h in 2O(`2)nO(1) time.
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Proof. Due to Observation 3, each color class is of size at most ` + 1, for any
harmonious coloring function h̃ of G. Also, as each vertex of I = V (G) \X has
exactly one neighbor in X, there are at most ` brands. At most one vertex from
each brand can participate in any of the ` color classes of X, and at most `
vertices of I can participate in one class (due to Observation 3). Also due to
Observation 4, for a brand with exactly one vertex from X, it does not matter
which vertex of this brand is included in this color class. So we first guess out of
the brands in I, which ones use a color used by any of ` vertices of X. Hence,
there are at most 2` choices of extensions for each of the color class of X resulting
in at most 2`

2

extensions of the color classes of X using vertices from I.
The remaining vertices of I need to be colored with colors different from those

of X with the only condition that no pair of vertices from a brand is colored
the same. So we can construct an auxiliary graph where the (remaining) vertices
of each brand induces a clique, and so the coloring problem on the remaining
vertices of I results in the chromatic number problem on a disjoint union of
cliques that can be solved in polynomial time.

ut

Proof. (of Theorem 6) As in the proof of Theorem 5, we enumerate over all
possible harmonious colorings of X, and then we will use Lemma 4. But for that,
we need to ensure that X and the harmonious coloring of X satisfy the hypothesis
of Lemma 4. Let Y be the set of vertices in I that have at least two neighbors in
X. Let X1 = X ∪ Y . Clearly X1 is a vertex cover of G, and by Observation 7,
|X1| ≤ 2`− 1 and X1 is a vertex cover such that every vertex in V (G) \X1 has
exactly one neighbor in X1 and hence X1 satisfies the hypothesis of Lemma 4.
So we now use X1 instead of X in Lemma 4. To ensure that the harmonious
coloring of X1 colors all vertices of X1 distinctly, we simply identify the color
classes of X1 in the harmonious coloring of X1 as in the proof of Theorem 5.
Now for each such harmonious coloring of G[X1], we use Lemma 4 to determine
an extension to G using the minimum number of colors. The number of possible
harmonious colorings of X1 is 2O(` log `). This, along with the result of Lemma 4,
gives an algorithm with the required running time. ut

D Missing proofs of Section 5

Proof of Observation 5

Proof. We first show that G can have at most one non-trivial component. Suppose
G has two non-trivial components, C1 and C2. By definition, there is an edge
(u1, v1) ∈ E(C1) and and edge (u2, v2) ∈ E(C2). The graph G[{u1, v1, u2, v2}]
forms a 2K2, which is a forbidden structure for a split graph. Hence, a split graph
can have at most one non-trivial component.

Now, we know that all the components of G, except C, are isolated vertices.
First, a harmonious colouring of G, when restricted to the vertices in V (C), gives
a harmonious colouring of C. Thus, what remains is to show that a harmonious
coloring of C can be extended to a harmonious coloring of G without using any
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extra colors. Let h be a harmonious coloring of C. Pick any one color, which
has been used in C, and color all the trivial components of G. This gives us a
coloring function h′ for G, where h′|C = h. Notice that, any edge of E(G) is an
edge of E(C). Since h is a proper coloring of C, h′ is a proper coloring of G.
Suppose there is a pair of color classes of h′, which has two edges e1, e2 ∈ E(G)
going across. Since both edges must belong to E(C), this contradicts the fact
that h is a harmonious coloring of C. Therefore, h′ is a harmonious coloring of
G, and the number of colors used by h′ and h are the same. ut

Proof of Corollary 3

Proof. First, suppose the function h is a harmonious coloring of G. Because of
Proposition 2, |V (K)| ≤ k. Also, since we have assumed that the graph G is
connected, each vertex in V (I) must be adjacent to a vertex in V (C). Hence, in
any harmonious coloring of G, the vertices of V (I) must be colored distinctly
from the vertices of V (K). Thus, by Lemma 1, h|I is a proper coloring of H.

The other direction of the proof follows from the sufficiency condition in
Lemma 1. ut

Proof of Corollary 4

Proof. By Theorem 3, if n > k(k − 1) we can immediately say NO. Otherwise,
n ≤ k(k − 1) and we run the exact algorithm given in Theorem 7. This gives us
the required running time. ut
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