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Introduction

Proper-Coloring
Input: A graph G
Question: Find minimum int k such that graph G can be partitioned
into k independent sets? (such that there is at least one edge between
any two partitions)
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Introduction

Harmonious-Coloring
Input: A graph G
Question: Find minimum int k such that graph G can be partitioned
into k independent sets such there is at most one edge between any two
partitions
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Introduction

Hopcroft and Krishnamoorthy introduced the notion of harmonious
coloring in 1989.

NP-complete on general graphs [4]

NP-complete even in trees, split graphs, interval graphs [2]

No exact algorithm is known which is better than 2O(n log n)

Polynomial time algorithms for tree of bounded degree, path, cycles,
grids [3].
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Parameterized complexity

Goal is to find better ways of solving NP-hard problems

Associate (small) parameter k to each instance I

Restrict the combinatorial explosion to a parameter k .

Parameterized problem (I , k) is fixed-parameter tractable (FPT) if
there is an algorithm that solves the problem in time f (k) · |I |O(1). [1]

Vertex Cover(G , k) O(2k · n2)

Feedback Vertex Set(G , k) O(3.6181k · nc)

Independent Set(G , k) No f (k) · |I |O(1) algorithm

Proper Coloring(G , k) No f (k) · |I |O(1) algorithm
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Kernelization

Goal is to bound the size of instance with some function of parameter.

A parameterized problem admits a h(k)-kernel if there is a polynomial
time algorithm that reduces the input instance to an equisatisfiable
instance with size upper bounded by h(k).

Vertex Cover(G , k) O(k)

Feedback Vertex Set(G , k) O(k3)

Independent Set(G , k) No such h(k) exists

Proper Coloring(G , k) No such h(k) exists

Theorem

A parameterized problem Q is FPT iff it admits a kernelization algorithm.
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Structural Paramaterization

Associating right parameter is an art.

Obvious choice : solution size.

Structural parameters:
I tree-width (tw): measures the resemblance of a graph to a tree
I feedback vertex set (fvs): minimum # vertices needs to be deleted to

obtain forest
I vertex cover (vc): minimum # vertices needs to be deleted to obtain

independent set
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FPT algorithms for Harmonious Coloring

Harmonious Coloring Parameter: k
Input: A graph G , an int k
Question: Is there a harmonious coloring of G with k colors?

If (G , k) is YES instance, # color classes is at most k

# edges in graph G ≤
(k
2

)
# vertices in graph G ≤ 2

(k
2

)
(Assuming no isolated vertex)

Theorem

Harmonious Coloring admits a kernel with O(k2) vertices and O(k2)
edges.
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FPT algorithms for Harmonious Coloring

Structural Paramaterization

Harmonious Coloring is NP-hard on trees.

For trees, tw = 1 and fvs = 0.

f (tw) · nc or f (fvs) · nc algorithm would imply polynomial time
algorithm for NP-hard problem.

Para-NP-hard

VC-Harmonious Coloring Parameter: |X |
Input: A graph G , a vertex cover X of G , an int k
Question: Is there a harmonious coloring of G with k colors?
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FPT algorithms for Harmonious Coloring

Any Harmonious coloring of graph G

If N(u) = N(v) then following is also a valid Harmonious coloring
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FPT algorithms for Harmonious Coloring

For every S ⊆ X , define I (S) = {u ∈ I |N(u) = S}

Observation

Every vertex in I (S) is identical with respect to any harmonious coloring
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FPT algorithms for Harmonious Coloring
Fix coloring on vertex set X .

Observation

If there is a harmonious coloring of G such that each color class contains at
most one vertex from the set X then the size of a color class is at most
`+ 1.

Definition (brand)

The brand of a vertex v in I with respect to X is the set N(v).

# brands ≤ 2` − 1

Definition (type)

A type Z with respect to X is a `+ 1 sized tuple where the first entry is
subset of X of cardinality at most 1, and each of the remaining ` entries is
either ∅ or a distinct brand of a vertex in I .

A type Z ≡ (Y ; S1,S2, . . . ,S`). # types ≤ ` ·
(2`
`

)
≤ ` · 2`2 .
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FPT algorithms for Harmonious Coloring

Definition (Color Class of type Z )

Color class C of harmonious coloring h is of type Z = (Y ; S1, S2, . . . , S`) if
C ∩ X = Y and for every u ∈ C ∩ I there exists Si in type Z such that
brand(u) = Si .

Z be the collection of all compatible color classes
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FPT algorithms for Harmonious Coloring

Objective function

minimize

|Z′|∑
i=1

zi

we encode the aim of minimizing number of color classes used.
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FPT algorithms for Harmonious Coloring

For every S ⊆ X and j ∈ [|Z ′|] define

bS
j = 1 if there is brand S in type Zj ; otherwise 0

There are at most |I (S)| many vertices of brand S .

|Z′|∑
j=1

zj · bS
j = |I (S)| ∀S ⊆ X (1)
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FPT algorithms for Harmonious Coloring

For every x ∈ X and j ∈ [|Z ′|] define

cx
j = 1 if {x} is the first entry in type Zj ; otherwise 0

There can be at most one color class which contains vertex x in X .

|Z′|∑
j=1

zj · cx
j = 1 ∀x ∈ X (2)
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FPT algorithms for Harmonious Coloring

minimize

|Z′|∑
i=1

zi

such that
|Z′|∑
j=1

zj · bS
j = |I (S)| ∀S ⊆ X (3)

|Z′|∑
j=1

zj · cx
j = 1 ∀x ∈ X (4)
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FPT algorithms for Harmonious Coloring

Theorem

An Integer Linear Programming instance of size L with p variables
can be solved using

(p2.5p+o(p) · (L + log Mx) · log(Mx ·Mc))

arithmetic operations and space polynomial in L + log Mx , where Mx is an
upper bound on the absolute value a variable can take in a solution, and Mc

is the largest absolute value of a coefficient in the vector c.

In previous ILP, # variables is ≤ ` · 2`2 ; # constraints 2` + `; Mx = n and
Mc = 1
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FPT algorithms for Harmonious Coloring

Theorem

Harmonious Coloring, parameterized by the size of a vertex cover of
the input graph, is fixed-parameter tractable.
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Exact Algorithms

Split Graph – G with a split partition (K , I ).

Observation

Each vertex in K must be given a distinct color which no vertex from I can
share.

Observation

For u, v ∈ V (G ), if d(u, v) = 2 they can’t be in the same color class.

For given instance (G , k), concentrate on coloring I with k − |K | many
colors.
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Exact Algorithms

Construct an auxiliary graph G ′

Lemma

φ is Harmonious coloring of G iff φI is proper coloring of G ′.

Theorem

Harmonious Coloring on Split graphs can be solved in O(2n) time.
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Other Variations of Coloring

q-Proper Partition into q-independent Minimization
sets viz color classes

Harmonious At most one edge between Minimization
any two color classes.

Achromatic At least one edge between Maximization
any two color classes.

b-Chromatic Each color class there is a vertex Maximization
that has a neighbor in every
other color class.

Grundy Worst performance of Maximization
greedy algorithm.
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Open Problems

Coloring tw FVS VC

q-Proper Coloring O(ktw ) FPT 2O(k)

Harmonious Coloring para NP-hard para NP-hard FPT

Achromatic Coloring para NP-hard para NP-hard Open

b-Chromatic Coloring Open Open Open

Grundy Coloring Open Open FPT
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Thank you!
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