
Exact and Parameterized Algorithms for
(k, i)-coloring

Diptapriyo Majumdar1, Rian Neogi2, Venkatesh Raman1, and Prafullkumar
Tale1

1 The Institute of Mathematical Sciences, Chennai, HBNI, India.
{diptapriyom|vraman|pptale}@imsc.res.in

2 NIIT University, Neemrana, Rajasthan, India. rianneogi@gmail.com

Abstract. Graph coloring problem asks to assign a color to every vertex
such that adjacent vertices get different color. There have been different
ways to generalize classical graph coloring problem. Among them, we
study (k, i)-coloring of a graph. In (k, i)-coloring, every vertex is assigned
a set of k colors so that adjacent vertices share at most i colors between
them. The (k, i)-chromatic number of a graph is the minimum number
of total colors used to assign a proper (k, i)-coloring. It is clear that
(1, 0)-coloring is equivalent to the classical graph coloring problem. We
extend the study of exact and parameterized algorithms for classical
graph coloring problem to (k, i)-coloring of graphs. Given a graph with n
vertices and m edges, we design algorithms that take
– O(2kn · nO(1)) time to determine the (k, 0)-chromatic number.
– O(4n · nO(1)) time to determine the (k, k-1)-chromatic number.
– O(2kn · kim · nO(1)) time to determine the (k, i)-chromatic number.

We prove that (k, i)-coloring is fixed parameter tractable when parame-
terized by the size of the vertex cover or the treewidth of the graph. We
also provide some observations on (k, i)-colorings on perfect graphs.

1 Introduction

We investigate efficient parameterized and exact exponential algorithms for a
variant of graph coloring called (k, i)-coloring. Given a positive integer k, and
a non-negative integer i ≤ k, the (k, i)-coloring of a graph is a an assignment
of a set of k colors to every vertex such that every pair of adjacent vertices
shares at most i colors [10]. Motivation to pursue this problem comes from coding
theory. An (n, d, w) constant-weight binary code is a set of binary vectors of
length n, such that each vector contains w ones and any two vectors differ in
at most d positions. One of the most basic questions in coding theory is given
n,w, d, what is the largest possible size of an (n, d, w) constant-weight binary
code? This question has been studied for almost five decades and remains open
for any value of n,w, d [1]. It has been proved that the largest possible size of an
(n, d, w) constant-weight binary code is closely related to the (k, i)-coloring of a
complete graph on n vertices [5]. If the total number of distinct colors used by a
(k, i)-coloring is q, then we say that the graph G has a proper (k, i)-coloring using

q colors. Notice that setting k = 1, i = 0 gives the classical graph coloring problem.
The minimum number of colors needed to assign (single) color to vertices so that
every adjacent pair gets different colors is called chromatic number of a graph G
and it is denoted by χ(G). We denote the minimum number of colors needed to
assign a proper (k, i)-coloring of graph G as χi

k(G) and call it (k, i)-chromatic
number of a graph. The precise definition of the problem is given below.

(k, i)-Coloring
Input: Graph G, integer q
Question: Does there exist a (k, i)-coloring of G using at most q colors?

This problem was first introduced by Mendez-Diaz and Zabala [10]. In the same
paper authors provided a heuristic approach and a linear programming model
for this problem. There are other types of tuple coloring problems generalizing
the classical graph coloring problem. For arbitrary k and for i = 0, it is called
k-tuple coloring. This idea of tuple coloring was also independently introduced
by Hilton et al. [2], Stahl [18], Bollobas and Thomason [4]. Tuple-Coloring was
generalized in a different way by Brigham and Dutton [6] where every vertex is
assigned k colors and adjacent vertices share exactly i colors.

Computing the chromatic number of a graph has been considered as one of
the notoriously difficult problems. This generalization makes the problem even
harder. There exists a polynomial time algorithm to compute the chromatic
number of a perfect graph. In the case of (k, i)-chromatic number, polynomial
time algorithms are known only in case of simple cycles, cactus [5] and bipartite
graphs [10]. No polynomial time algorithm is known for finding (k, i)-chromatic
number even on well structured graphs like complete graphs for all values of
n, k, i. We prove some simple connections of this parameter to the (standard)
chromatic number and initiate a study of exact and parameterized complexity
of the problem under different parameterizations. A brute force algorithm for
testing if χ(G) ≤ q takes qn · nO(1) time. A series of improvements led to the
current best runtime of O(2n · nO(1)) time [13] to compute χ(G). Similarly, a
brute force exact algorithm to determine whether χi

k(G) ≤ q will run through
all possible q colorings which will assign an arbitrary set of k colors to a vertex.
Then, a vertex can be assigned

(
q
k

)
color-sets and there are n vertices in the

graph. So, this brute force algorithm will take
(
q
k

)n ·nO(1) time. For (k, 0)-coloring
and (k, 1)-coloring, we provide an improved exact exponential algorithm (using
efficient algorithm for the classical set cover problem) and then generalize it for
any (k, i)-coloring. We provide the following exact algorithms in Section 4. Given
a graph with n vertices and m edges, we design algorithms that take

– O(2kn · nO(1)) time to determine the (k, 0)-chromatic number.

– O(4n · nO(1)) time to determine the (k, k-1)-chromatic number.

– O(2kn · kim · nO(1)) time to determine the (k, i)-chromatic number.

Concerning parameterized complexity results, we first observe that for standard
parameterization (where the parameter is the number of colors), classical graph

2

coloring is para-NP-hard (see Section 2 for definitions). So, it is clear that (1, 0)-
Coloring is also para-NP-hard when it is parameterized by the number of
colors. But, it is not clear whether (k, i)-Coloring is para-NP-hard for any
other values of k and i when the parameter is the number of colors. We follow
the modern trend and resort to structural parameterizations where the problem
is parameterized by some structure in the input. Specifically we consider the
(k, i)-Coloring problem parameterized by the size of vertex cover of the graph.
We also give efficient FPT algorithm for the problem on bounded treewidth
graphs.
We organize this paper as follows. We state preliminaries and terminologies
regarding (k, i)-coloring in Section 2. In Section 3, we provide some observations
about (k, i)-coloring on perfect graphs and prove a conjecture stated in [10].
Sections 4 and 5 contain exact and fixed parameter tractable algorithms for
(k, i)-coloring respectively.

2 Preliminaries

All graphs considered here are finite, undirected and simple. For a graph G, its
vertex set is denoted by V (G) and its edge set is denoted by E(G). Vertex u
is said to be adjacent to vertex v is uv ∈ E(G). For a vertex v ∈ V (G), its
open neighborhood, NG(v), is the set of all vertices adjacent to it. The closed
neighborhood NG[v] = {v} ∪ NG(v). We drop the subscript if it is clear from
context. For a set X ⊆ V (G), the subgraph of G induced by X is denoted by
G[X] and it is defined with vertex set X and edge set {uv ∈ E(G) : u, v ∈ X}.
The subgraph obtained after deleting X is denoted by G \X. Number of vertices
in a maximum induced clique of a graph G is denoted by ω(G). Kn denotes a
clique on n vertices. For a positive integer q, we denote the set {1, 2, . . . , q} by
[q]. The family of all the k-sized subsets of [q] is denoted by [q]k. A function
f : V (G) → [q] is called a coloring function of graph G. If for all edges uv,
f(u) 6= f(v), we say that f is proper coloring of graph G. The smallest integer
q for which it is possible to properly color all vertices of graph G is called its
chromatic number and it is denoted by χ(G). (k, i)-coloring is a generalization of
proper coloring and defined as follows.

Definition 1. A coloring function f : V (G)→ [q]k is called proper-(k, i)-coloring
of a graph G if for any edge uv ∈ E(G), |f(u) ∩ f(v)| ≤ i.

In Coloring problem, input is a graph G, integer q and the question is whether G
can be properly colored using at most q colors. Analogously, in (k, i)-Coloring
problem, input is a graph G, integer q and the question is whether G can be
(k, i)-colored using at most q colors. Notice that, we consider the case when k, i
are fixed constants and not part of input. In Set Cover problem, input is a
universe U and a family F of its subsets and the question is to find cardinality
of minimum sized subset F ′ of F which covers U . F ′ covers U if every element
of U is present in at least one set in F ′.
Parameterized Complexity: The goal of parameterized complexity is to find

3

ways of solving NP-hard problems more efficiently than brute force by associating
a small parameter to each instance. Parameterization of a problem is assigning a
positive integer parameter p to each input instance. We say that a parameterized
problem is Fixed-Parameter Tractable (FPT) if there is an algorithm that solves
the problem in time f(p) · |I|O(1), where |I| is the size of the input and f is
an arbitrary computable function depending only on the parameter p. Such an
algorithm is called an FPT algorithm, and the runtime of the algorithm is also
sometimes called as FPT running time. A parameterized problem is said to be in
the class para-NP if it has a nondeterministic algorithm with FPT running time.
To show that a problem is para-NP-hard, we need to show that the problem
is NP-hard even when the parameter takes a value from a finite set of positive
integers. For example Coloring problem parameterized by solution size is para-
NP-hard as determining 3-colorability of a graph NP-hard. We refer interesting
reader to [9], [11] for further discussions on parameterized complexity.
Structural Parameterization: Vertex cover of a graph is set X ⊆ V (G)
such that for every edge uv at least one of u or v is contained in X. In other
words, G − X is an independent set. A tree decomposition of a graph G is a
pair T = (T, {Xt}t∈V (T)), where T is a tree whose every node t is assigned a
vertex subset Xt ⊆ V (G), called a bag, such that the following three conditions
hold : (i)

⋃
t∈V (T)Xt = V (G). (ii) For every uv ∈ E(G), there exists a node t

of T such that bag Xt contains both u and v. (iii) For every u ∈ V (G), the
set Tu = {t ∈ V (T) | u ∈ Xt} induces a connected subtree of T . The width
of tree decomposition T = (T, {Xt}t∈V (T)) equals maxt∈V (T){|Xt| − 1}. The
treewidth of a graph G, denoted by tw(G), is the minimum possible width of a
tree decomposition of G.

3 Elementary Results

In this section we state some observations related to (k, i)-coloring of general
graph and on perfect graphs.

3.1 (k, i)-coloring on general graph

We omit the simple proof of the following two observations.

Observation 1 For a given graph G and its (k, i)-coloring function f : V (G)→
[q]k, let C ⊆ [q] be the set of any i + 1 colors. If U := {u ∈ V (G)| C ⊆ f(u)}
then U is an independent set in the graph.

Observation 2 For a given graph G and its induced subgraph H, χi
k(H) ≤

χi
k(G).

Observation 3 (?) 3 For a given graph G, the following bounds hold –

1. 2k − i ≤ χi
k(G) when G has an edge.

2. χi
k(G) ≤ χ0

k−i(G) + i.
3. χ0

k(G) ≤ k · χ0
1(G).

3 Results marked with a ? have their proofs in the full version of this paper.

4

3.2 Perfect graphs and (k, i)-coloring

Perfect graphs were defined by Berge in 1960 [3] as follows:

Definition 2. Graph G is a perfect graph if for each of its induced subgraphs H,
χ(H) = ω(H).

A hole is an induced cycle of length at least four. An antihole is a graph
whose complement is a hole. It is easy to see that if G is perfect graph then it
does not contain an induced hole or an antihole of length greater than or equal
to 5. Berge conjectured the following statement in 1961 which has been resolved
in a celebrated result in 2002 [8].
Strong perfect graph conjecture: G is a perfect graph if and only if G does
not have induced odd holes or odd anti-holes of length greater than or equal to 5.
In [10], authors have introduced a concept of (k, i)-perfect graphs. We first define
(k, i)-clique number which will be used in defining (k, i)-perfect graphs.

Definition 3. The (k, i)-clique number of a graph G is the (k, i)-chromatic
number of its largest induced clique and it is denoted by ωi

k(G).

In other words, ωi
k(G) = χi

k(Kω(G)). (k, i)-perfect graphs are defined as follows.

Definition 4. A graph G is a (k, i)-perfect graph if for each of its induced
subgraphs H, χi

k(H) = ωi
k(H).

For (k, i) = (1, 0) this definition coincides with the Berge’s definition. Authors
of [10] conjectured the following statement and proved the if implication.

Conjecture 5.1: G is (k, 0)-perfect for k ≥ 1 if and only if G does not have
induced odd holes or antiholes of length greater than or equal to 5.

Proposition 1 (Lemma 5.1 of [10]). The odd holes of length greater than or
equal to 5 and their complements are not (k, 0)-perfect graphs.

With the following Lemma and using the proof of strong perfect graph conjecture,
we prove the reverse direction concluding that this conjecture is true.

Lemma 1 (?). If G is a perfect graph then χi
k(G) = χi

k(Kω(G)).

Lemma 2 (?). If graph G does not have induced odd holes or odd antiholes of
length greater than or equal to 5 then G is (k, 0)-perfect graph.

4 Exact Algorithms

For a given graph G, integer q and a coloring function f : V (G)→ [q]k, one can
check whether or not f is a proper (k, i)-coloring of G in O(|E(G)| · k) time.
For a given integer q, there are

(
q
k

)
many choices of k-tuples, which a function

5

f can assign to a vertex v in V (G). Hence the number of different coloring
functions is

(
q
k

)n
. By Observation 3, χi

k(G) ≤ kχ(G) and we know that χ(G) ≤ n.
Brute force algorithm exhaustively searches through the all possible coloring
functions f : V (G)→ [q]k for values of q ∈ [kn] and returns the minimum value
of q for which it finds a valid (k, i)-coloring of graph G. This algorithm runs in
time O(2nk log(nk) · nO(1)). We present an exact algorithm which runs in time
O(2knnO(1)) to find (k, 0)-chromatic number of graph G. We generalize the idea
to present an algorithm running in time O(2kn ·kimnO(1)) to find (k, i)-chromatic
number. This algorithm out performs the brute force algorithm mentioned above
when the number of edges in graph are linearly bounded by the number of vertices.
Finally, we present an algorithm running in time O(4n) to find (k, k-1)-chromatic
number of a graph (which is an NP-complete problem [10]). Note that running
time of this algorithm is independent of k.

4.1 Computing (k, 0)-Chromatic Number

In (k, 0)-coloring, adjacent vertices should be assigned disjoint color-sets. Such
coloring is also known as k-tuple coloring and it is proved to be NP-complete for
any value of k ≥ 3 [14].

For a given graph G, construct an auxiliary graph G′ as follows: Graph G′

contains k copies of graph G indexed by integers {1, 2, . . . , k}. Every vertex
u ∈ V (G) has its k copies {u1, u2, . . . , uk} in graph G′. Construct clique, Ku

k ,
in G′ on the vertices {u1, u2, . . . , uk} for every vertex u ∈ V (G). If there is an
uv ∈ E(G), make each vertex in Ku

k adjacent with every vertex in Kv
k . In other

words, Ku
k ∪Kv

k is a clique of size 2k. This finishes the construction. Note that
the graph G′ has kn vertices.

Lemma 3. χ0
k(G) = χ(G′)

Proof. Let f ′ : V (G′)→ [χ(G′)] be an optimal proper coloring of graph G′. We
define a function f : V (G)→ [χ(G′)]k as f(u) = {f ′(u1) | u1 ∈ Ku

k }. We argue
that f is a valid (k, 0)-coloring of G. Since f ′ is a proper coloring of G′, for
u1, u2 ∈ Ku

k , f ′(u1) 6= f ′(u2) and hence |f(u)| = k for all u ∈ V (G). Suppose f is
not a valid coloring and there exists edge uv ∈ E(G) such that |f(u) ∩ f(v)| > 0.
Hence there exists two vertices u1 ∈ Ku

k and v1 ∈ Kv
k such that f ′(u1) = f ′(v1).

Since uv ∈ E(G), by construction Ku
k ∪Kv

k is a clique. This is contradiction to
the fact that f ′ is proper coloring of G′. This proves that χ0

k(G) ≤ χ(G′).
We now prove that χ(G′) ≤ χ0

k(G). Let f : V (G)→ [q]k be an optimal (k, i)-
coloring for graph G where q = χ0

k(G). We construct function f ′ : V (G′)→ [q]
by constructing a bijective map between the vertices in Ku

k and f(u). For any
edge u′v′ ∈ E(G′), either u′v′ ∈ Ku

k for some u or u′ ∈ Ku
k and v′ ∈ Kv

k and
uv ∈ E(G). In first case, f ′(u) 6= f ′(v) as f ′ is bijection from Ku

k to f(u). In
second case, since |f(u)∩f(v)| = 0, and f ′(u) ∈ f(u), f ′(v) ∈ f(v), f ′(u) 6= f ′(v).
This implies that χ(G′) ≤ χ0

k(G) which concludes the proof. ut

Proposition 2 ([16]). For an n-vertex graph G, there exists an algorithm
running in time O(2n · nO(1)) which computes its chromatic number.

6

Combining Lemma 3 with Proposition 2, we obtain the following result.

Theorem 1. For an n-vertex graph G, there exists an algorithm running in time
O(2kn · nO(1)) which computes its (k, 0)-chromatic number.

4.2 Computing (k, i)-Chromatic Number

We generalize the idea used in the above construction to obtain the (k, i)-chromatic
number of the given graph G. Now instead of one, we construct O(k2im) many
auxiliary graphs each of which is on kn vertices.

For every edge e = uv ∈ E(G), select an index set Ie ⊆ [k] of cardinality i.
Let (I1, I2, . . . , Im) be a m-tuple of indices selected. For every such m-tuple, we
first construct an auxiliary graph G′ as in Section 4.1. If uv ∈ E(G) then delete
an edge ulvl from graph G′ for all l ∈ Ie. Let G be the set of different graphs
created using this operation. The number of such m-tuples are bounded by

(
k
i

)m
and hence |G| ≤ O(kim). Notice that if uv ∈ E(G) then there are at most i-many
vertices in Ku

k which are not adjacent to some vertex in Kv
k .

Lemma 4 (?). χi
k(G) = minG′∈G{χ(G′)}

Combining Lemma 4 with Proposition 2 and the bound on G, we obtain the
following result.

Theorem 2. For an n-vertex, m-edges graph G, there exists an algorithm run-
ning in time O(2kn · kim · nO(1)) which computes its (k, i)-chromatic number.

4.3 Computing (k, k-1)-Chromatic Number

For a given graph G, we construct an instance of Set Cover by setting U = V (G)
and F as the family of all independent sets of V (G). Notice that |F| ≤ 2n. Let r
be the cardinality of a minimum solution of the Set Cover instance for (U,F).

Claim. If k − i = 1 and q is the smallest integer such that r ≤
(

q
i+1

)
then

χi
k(G) = q.

Proof. Suppose F ′ ⊆ F is an optimum solution for Set Cover of cardinality r.
Define an injective function ψ : F ′ → [q]i+1 by assigning each set S in F ′ an i+ 1
sized set from [q]. Since r ≤

(
q

i+1

)
, such injective function is possible. We now

define a function f : V (G)→ [q]k as f(v) = ψ(S) where S is any set in F ′ such
that u ∈ S. Since F ′ is a cover of V (G), for every vertex u this function assigns k
colors to each vertex. We now prove that this is indeed a proper (k, i)-coloring of
graph. Suppose not, then there exists an edge uv such that |f(u) ∩ f(v)| ≥ i+ 1.
Since |f(u)| = |f(v)| = k = i + 1, this implies f(u) = f(v). By construction it
implies that u, v are contained in same set S. This is contradiction to the fact
that S is an independent set. Hence f is proper (k, i)-coloring of graph G. This
implies that χi

k(G) ≤ q.
Suppose there exists a (k, i)-coloring f ′ : V (G) → [q′] of graph G using q′ < q

7

colors. By Observation 1, for any set X of [q′] which is of cardinality i +
1, set U := {u | X ⊆ f ′(u)} is an independent set of graph G. We say
that color set X characterizes vertex set U . Construct F ′′ = {U | ∃X ⊆
[q] of cardinality i+ 1 which characterizes U}. Since there are at most

(
q

i+1

)
such

color set X, |F ′′| ≤
(

q′

r+1

)
< r as q is the smallest integer such that r ≤

(
q

i+1

)
.

This contradicts the fact that r is cardinality of a minimum solution of Set
Cover. Hence our assumption is wrong and q ≤ χi

k(G) which completes the
proof. ut

Proposition 3. [13] For any given instance (U,F) of Set Cover problem,
there exists an algorithm which solves it in time O(2nn|F|) where |U | = n.

Combining the above claim, Proposition 3 and using the bound that |F| ≤ 2n,
we get following result.

Theorem 3. For an n-vertex graph G, there exists an algorithm running in time
O(4n · nO(1)) which computes its (k, k-1)-chromatic number.

5 Fixed-Parameter Algorithms

Parameterization of a problem is assigning a positive integer, called parameter,
to each of its input instance. One of the most natural choice for a parameter
is the solution size which in this case is the number of colors needed for (k, i)-
coloring. For a given graph G, it is NP-hard to determine whether it can be
colored with at most 3 colors. This implies that Coloring parameterized by
number of colors in para-NP-hard. Hence we can not expect (k, i)-Coloring to
be FPT when parameterized by the number of colors. But, Coloring is FPT
when parameterized by several structural properties of the input graph. Notion of
treewidth was introduced by Roberson and Seymour. It is known that Coloring
parameterized by treewidth of graph and number of colors is FPT. Structural
Parameterizations of classical graph coloring problem was studied by Jansen and
Kratsch [15] (also studied in [7, 12]). They proved that when input is a graph G
with its vertex cover Y ⊆ V (G) and the parameter is |Y |, finding the chromatic
number of G is FPT. In this section, We generalize these results of classical graph
coloring problem to (k, i)-coloring problem.

5.1 (k, i)-Coloring Parameterized by Vertex Cover

In this sub-section, we present an FPT algorithm for finding χi
k(G) when param-

eterized by size of a vertex cover of the input graph.
In case of structural parameters, sometimes it is necessary to demand a

witness of the required structure as part of the input. However, when the size
of a vertex cover is the parameter, this is not a serious demand. If given only
a input graph, one can find a 2-approximation of the minimum vertex cover of
the input graph G(pp 11, [17]). Thus, we may assume that we are solving the
following problem.

8

(k, i)-Coloring Parameter: |Y |
Input: Graph G, Y ⊆ V (G) such that Y is a vertex cover of G
Output: χi

k(G)

Theorem 4. For an n-vertex graph G and its vertex cover Y , there exists an
algorithm running in time O(2k|Y | log(k|Y |) · kn2) which computes χi

k(G).

Proof. For a given graph G on n vertices, the algorithm iterates over all possible
(k, i)-colorings of G[Y]. Since χi

k(G[Y]) ≤ k · |Y |, there are O(2k|Y | log(k|Y |)) many
such possible colorings. For every valid (k, i)-coloring f of G[Y], we extend this
coloring function to the rest of the graph in the greedy fashion. For every vertex
u ∈ V (G) \ Y , f assigns k smallest colors to u such that for any v ∈ N(u),
|f(u) ∩ f(v)| ≤ i. Since u is in an independent set, all of its neighbors have been
assigned colors before function assigns k colors to u. This extension of valid
coloring can be computed in O(kn2) time to obtain a (k, i)-coloring of graph G.
The algorithm returns the minimum number of colors used over all the valid (k, i)-
coloring of graph G. The running time of this algorithm is O(2k|Y | log(k|Y |) · kn2)
which is FPT when parameterized by cardinality of vertex cover. We now argue
the correctness of the algorithm.
If the algorithm returns q as the minimum number of colors used over all the
valid (k, i)-colorings of graph G, by construction it is clear that χi

k(G) ≤ q.
We now prove that q ≤ χi

k(G) using contradiction. Suppose χi
k(G) < q. This

implies that for every (k, i)-coloring f of V (G) which is obtained as extension
of valid (k, i)-coloring of G[Y], there exists a vertex u such that q ∈ f(u). Let
f∗ : V (G) → [χi

k(G)]k is a optimum (k, i)-coloring of graph G. Since we are
iterating over all possible coloring of G[Y], one of them is f∗|Y . Let f ′ is an
greedy extension of f∗|Y to entire graph. Hence there exists a vertex v such that
q ∈ f ′(v). By Observation 2, χi

k(G[N [v]]) ≤ χi
k(G). Since f ′ is obtained greedily

as extension of f∗|Y , for every k-sized set X of {1, 2, . . . , χi
k(G)}, there exists

u ∈ N(v) such that |X ∩ f∗(u)| ≥ i+ 1 which forced algorithm to use a color in
{χi

k(G), . . . , q} while constructing extension of f∗|Y . This contradicts the fact
that f∗|N [v] is a valid (k, i)-coloring of N [v] which uses at most χi

k(G) colors. ut

5.2 q-(k, i)-Coloring Parameterized by Treewidth

In this sub-section, we present an FPT algorithm for finding whether χi
k(G) is

at most q when parameterized by treewidth of input graph. Notice that, unlike
previous section, we assume that q is fixed and it is not part of input. Formally,
we study the following problem.

q-(k, i)-Coloring Parameter: tw
Input: Graph G with its tree decomposition T of width tw
Output: Is χi

k(G) ≤ q?

We know that given a tree decomposition T ′ = (T ′, {Yt}t∈V (T ′)), it can be
converted into a nice tree decomposition T = (T, {Xt}t∈V (T)) in polynomial time

9

(for definition and other details, see Chapter 7 of [9]) where every node is one of
the following types and has at most 2 children. For a nice tree decomposition, we
distinguish one vertex r of T which will be the root of T .
Root Node: r is the root node where Xr = ∅.
Leaf Node: If t ∈ V (T) is a leaf node, then Xt = ∅.
Introduce Node: If t ∈ V (T) is an introduce node then t′ is the only child of t
in T and Xt = Xt′ ∪ {u} where u /∈ Xt′ .
Forget Node: If t ∈ V (T) is a forget node then t′ is the only child of t in T and
Xt = Xt′ \ {u} where u ∈ Xt′ .
Join Node: If t ∈ V (T) is a join node then t1 and t2 are the children of t in T
and Xt = Xt1 = Xt2 .

We compute and store two values for every node t ∈ V (T). These are C(t)
and D(t) and they are defined as follows.

C(t) = {f : Xt → [q]k|f is a proper (k, i)-coloring of G[Xt]}.
D(t) = {f ∈ C(t)|f is extendable to a proper (k, i)-coloring of Gt}.
We can compute C(t) for every t ∈ V (T) independent of their children. But,

D(t) needs to be computed by using D(t1),D(t2) where t1, t2 are children of t.
Leaf Node: When a node t ∈ V (T) is a leaf node, then Xt = ∅. So, C(t) = {∅}.
D(t) = C(t).
Introduce Node: When a node t ∈ V (T) is an introduce node with only child
t′, and let Xt = Xt′ ∪ {u} for u /∈ Xt′ .
D(t) = {f ∈ C(t)|∃g ∈ D(t′) such that g ≡ f |X′

t
}. Correctness is clear from

construction as only feasible colorings are stored and all of them extend to a
feasible coloring of the induced subgraph.
Forget Node: When a node t ∈ V (T) is a forget node with only child t′ and let
Xt = Xt′ \ {u} for u ∈ Xt′ . We say that D(t) is the projection of all the members
of D(t′) at t. Formally D(t) = {f ∈ C(t)|f ≡ g|Xt

where g ∈ D(t′)}. Correctness
of this is clear because Gt = Gt′ .
Join Node: When a node t ∈ V (T) is a join node with children t1 and t2, then
Xt = Xt1 = Xt2 . We say D(t) = D(t1) ∩ D(t2).
It is clear that if f ∈ D(t), then f ∈ D(t1) and f ∈ D(t2). So, D(t) ⊆ D(t1)∩D(t2)
as (k, i)-coloring is feasible for induced subgraphs. Gt1 and Gt2 are induced
subgraphs of Gt. We now justify that f ∈ D(t1) ∩D(t2) ⊆ D(t). Let f ∈ D(t1) ∩
D(t2). Then f is a proper (k, i)-coloring in Gt1 and also Gt2 . By connectivity
property (Property T3 in Chapter 7 of [9]) of tree decomposition, we know that
there is no edge between two vertices one of which is in Gt1 \Xt1 and the other
is in Gt2 \Xt2 . So, f ∈ D(t) as well.
Now, we describe how to compute D(t) from D(t1) and D(t2) where t1, t2 are the

children of t. C(t) can be computed in
(
q
k

)tw+1
time for every t ∈ V (T) and this

is independent of its children in the tree decomposition. We have the following
lemma.

Lemma 5. For every t ∈ V (T), D(t) and C(t) can be computed in O∗(
(
q
k

)tw
)

time.

10

Proof. We prove this statement for each type of nodes.
Leaf Node: t ∈ V (T) is a leaf node. Then, |Xt| = 0 and hence it is trivial as
D(t) = C(t).
Introduce Node: Let t ∈ V (T) be an introduce node where Xt = Xt′ ∪ {u}. u
is the only new vertex in where a color of k tuple has to be assigned. For every
R ∈

(
[q]
k

)
, for every f ′ ∈ D(t′), we check if f ′ can be extended to f : Xt → [q]k

by assigning R to t. This takes
(
q
k

)
· |D(t′)| =

(
q
k

)tw+1
time.

Forget Node: Let t ∈ V (T) be a forget node where Xt = Xt′ \ {u}. u is
the vertex which was in t′ but not in t. Then, we copy all the colorings of
D(t′) to D(t) where color tuple of the vertex u is not mentioned and then
remove the redundant copies. Removing redundant copies can also be done in

O(|D(t′)| log2 |D(t′)|) = O(
(
q
k

)tw · poly(n, tw, k)) time by sorting all the members
of D(t) in lexicographic order and identifying repetitions.
Join Node: Let t ∈ V (T) be a join node where Xt = Xt1 = Xt2 . If we compute
the intersection of two sets in a very naive way, then we will spend |D(t1)| · |D(t2)|
time. That’s why we again sort both D(t1) and D(t2) separately and then
compute the intersection in O(|D(t1)| + |D(t2)|) time. This procedure takes

O(|D(t)| · log2 |D(t)|) = O(
(
q
k

)tw · poly(n, tw, k)) time as t is a join node. ut

The following theorem follows from the above lemma.

Theorem 5. Given an n-vertex graph G with its tree decomposition of width tw,
q-(k, i)-Coloring can be solved in time O(qk·tw · nO(1)).

Proof. From Lemma 5, D(t) and C(t) can be computed in time O(
(
q
k

)tw · nO(1))
time. Let the root node of the tree decomposition be r. We say that the instance
is a Yes-Instance if and only if D(r) 6= ∅. Clearly when D(r) 6= ∅, there exists
a proper (k, i)-coloring of G using at most q colors. But when D(r) = ∅, then
we see that no proper (k, i)-coloring of G[Xr] is extendable to a proper coloring
of G. Then it is a No-Instance. Therefore, the algorithm correctly decides in

O(
(
q
k

)tw · nO(1)) time whether there exists (k, i)-coloring of G using q colors. ut

6 Conclusions

We considered the (k, i)-coloring problem which is a generalization of proper
coloring and is a well motivated problem from coding theory. Difficulty introduced
by this generalization is evident by the fact that no polynomial time algorithm
is known to optimally color a given clique. In this paper, we initiate a study of
exact and parameterized algorithms for (k, i)-coloring. We provide exact algo-
rithms running in time cn for two cases viz i = 0 and i = k − 1. NP-hardness of
(k, i)-Coloring for any 0 < i < k is still an open question. It is also interesting
to find graph classes in which this problem can be solved in polynomial time. We
prove that this problem is FPT when parameterized by treewidth with number
of colors as a combined parameter. We also provide an FPT algorithm (without
treewidth machinery) when parameterized by the size of vertex cover of the

11

graph. It is an interesting open question whether we can get an FPT algorithm
for (k, i)-coloring parameterized by the size of feedback vertex set of the graph
that does not use treewidth machinery.

Acknowledgements: The second and third authors thank Debajyoti Ghosh for
introducing the problem.

References

1. E. Agrell, A. Vardy, and K. Zeger. Upper bounds for constant-weight codes. IEEE
Transactions on Information Theory, 46(7):2373–2395, 2000.

2. A.Hilton, R. Rado, and S. Scott. A (< 5) color theorem for planar graph. Bulletin
of London Mathematical Society, 5:302–306, 1973.

3. C. Berge. Les problemes de coloration en théorie des graphes. Publ. Inst. Stat.
Univ. Paris, 9:123–160, 1960.

4. B. Bollobas and A. Thomason. Set colourings of graphs. Discrete Mathematics,
25(1):2126, 1979.

5. F. Bonomo, G. Duran, I. Koch, and M. Valencia-Pobon. On the (k, i)-coloring of
cacti and complete graphs. Ars Combinatorica, 2014.

6. R. Brigham and R. Dutton. Generalized k-tuple colorings of cycles and other
graphs. Journal of Combinatorial Theory. Series B, 32:9094, 1982.

7. L. Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics,
127(3):415–429, 2003.

8. M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect
graph theorem. Annals of mathematics, pages 51–229, 2006.

9. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms, volume 4. Springer, 2015.

10. I. M. Dı́az and P. Zabala. A generalization of the graph coloring problem. Investi-
gation Operativa, 1999.

11. R. G. Downey and M. R. Fellows. Parameterized complexity. Springer Science &
Business Media, 2012.

12. J. Fiala, P. A. Golovach, and J. Kratochv́ıl. Parameterized complexity of coloring
problems: Treewidth versus vertex cover. Theor. Comput. Sci., 412(23):2513–2523,
2011.

13. F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010.

14. R. W. Irving. NP-completeness of a family of graph-colouring problems. Discrete
Applied Mathematics, 5(1):111–117, 1983.

15. B. M. P. Jansen and S. Kratsch. Data reduction for graph coloring problems. Inf.
Comput., 231:70–88, 2013.

16. M. Koivisto. An O∗(2n) algorithm for graph coloring and other partitioning
problems via inclusion–exclusion. In FOCS, pages 583–590. IEEE, 2006.

17. C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation, 1982.

18. S. Stahl. n-tuple colorings and associated graphs. Journal of Combinatorial Theory.
Series B, 20:185–203, 1976.

12

	Exact and Parameterized Algorithms for (k,i)-coloring

