Exact and Parameterized Algorithms for (k, i)-coloring

Diptapriyo Majumdar ${ }^{1}$ Rian Neogi ${ }^{2}$

Venkatesh Raman ${ }^{1}$ Prafullkumar Tale ${ }^{1}$
${ }^{1}$ The Institute of Mathematical Sciences, HBNI, Chennai, India.
${ }^{2}$ NIIT University, Neemrana, Rajasthan, India
February 17, 2017, CALDAM, Goa, India

Outline

(1) Graph Coloring
(2) Introduction and Motivation
(3) Exact Algorithms
(4) Parameterized Algorithms
(5) Conclusions

Coloring of graph

Coloring

Input: A graph $G=(V, E)$
Goal: Find minimum integer q such that graph $V(G)$ can be partitioned into q independent sets

Coloring of graph

Coloring

Input: A graph $G=(V, E)$
Goal: Find minimum integer q such that graph $V(G)$ can be partitioned into q independent sets

- In other words assign a color to every vertex such that for any edge $(u, v) \in E(G), u$ and v get different colors.

Coloring of graph

3-Coloring of a graph

Coloring of Graph

- One of Karp's 21 NP-Complete problems.

Coloring of Graph

- One of Karp's 21 NP-Complete problems.
- Determining whether given planer graph is 3 -colorable or not is $N P$-Complete.

Coloring of Graph

- One of Karp's 21 NP-Complete problems.
- Determining whether given planer graph is 3-colorable or not is $N P$-Complete.
- An $\mathcal{O}\left(2^{n}\right)$ time algorithm is optimal under some widely believed complexity assumption.

Outline

(1) Graph Coloring

(2) Introduction and Motivation
(3) Exact Algorithms
(4) Parameterized Algorithms
(5) Conclusions

$$
(k, i) \text {-Coloring }
$$

- It is a generalization of Graph Coloring

$$
(k, i) \text {-Coloring }
$$

- It is a generalization of Graph Coloring
- (k, i)-Coloring [DZ99]: A proper $q-(k, i)$-coloring of G is a function $f: V(G) \rightarrow\binom{[q]}{k}$ such that if $(u, v) \in E(G)$, then $|f(u) \cap f(v)| \leqslant i$.

$$
(k, i) \text {-Coloring }
$$

- It is a generalization of Graph Coloring
- (k, i)-Coloring [DZ99]: A proper $q-(k, i)$-coloring of G is a function $f: V(G) \rightarrow\binom{[q]}{k}$ such that if $(u, v) \in E(G)$, then $|f(u) \cap f(v)| \leqslant i$.

(k, i)-Chromatic Number

(k, i)-Coloring
Input: Graph G, integer q
Goal: Does there exist a (k, i)-coloring of G using at most q colors?

(k, i)-Chromatic Number

(k, i)-Coloring
Input: Graph G, integer q
Goal: Does there exist a (k, i)-coloring of G using at most q colors?

- $\chi_{k}^{i}(G)=q$, if the minimum number of total distinct colors required to assign a proper ($k, i)$-coloring of G is q.

(k, i)-Chromatic Number

(k, i)-Coloring
Input: Graph G, integer q
Goal: Does there exist a (k, i)-coloring of G using at most q colors?

- $\chi_{k}^{i}(G)=q$, if the minimum number of total distinct colors required to assign a proper (k, i)-coloring of G is q.
- (k, i)-coloring has applications in coding theory.

(k, i)-Chromatic Number

(k, i)-Coloring
Input: Graph G, integer q
Goal: Does there exist a (k, i)-coloring of G using at most q colors?

- $\chi_{k}^{i}(G)=q$, if the minimum number of total distinct colors required to assign a proper (k, i)-coloring of G is q.
- (k, i)-coloring has applications in coding theory.
- $k=1, i=0$, well studied Graph Coloring problem.

Other Genaraliztions

- $(1,0)$-Coloring is well studied.

Other Genaraliztions

- $(1,0)$-Coloring is well studied.
- Polynomial time algorithm is known for computing (1,0)-coloring of perfect graph.

Other Genaraliztions

- $(1,0)$-Coloring is well studied.
- Polynomial time algorithm is known for computing (1,0)-coloring of perfect graph.
- For general graphs, $\mathcal{O}\left(2^{n} \cdot n^{\mathcal{O}(1)}\right)$ time algorithm is known for $(1,0)$-coloring.

Other Genaraliztions

- $(1,0)$-Coloring is well studied.
- Polynomial time algorithm is known for computing (1,0)-coloring of perfect graph.
- For general graphs, $\mathcal{O}\left(2^{n} \cdot n^{\mathcal{O}(1)}\right)$ time algorithm is known for $(1,0)$-coloring.
- Adjacent vertices share exactly i colors was also studied [BD82].

$$
\begin{aligned}
& \text { Previous works on } \\
& \qquad(k, i) \text {-coloring }
\end{aligned}
$$

- It is not yet clear whether (k, i)-chromatic number is polynomial time computable in cliques.

$$
\begin{aligned}
& \text { Previous works on } \\
& \qquad(k, i) \text {-coloring }
\end{aligned}
$$

- It is not yet clear whether (k, i)-chromatic number is polynomial time computable in cliques.
- Polynomial time algorithms are known only for cycles, cactus [BDKV14] and bipartite graphs [DZ06].

Our Results

- Exact Algorithms:

Our Results

- Exact Algorithms:
- $i=0$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(2^{k n} \cdot n^{\mathcal{O}(1)}\right)$ time.

Our Results

- Exact Algorithms:
- $i=0$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(2^{k n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- $i=k-1$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(4^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.

Our Results

- Exact Algorithms:
- $i=0$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(2^{k n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- $i=k-1$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(4^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- Fixed-Parameter Algorithms:

Our Results

- Exact Algorithms:
- $i=0$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(2^{k n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- $i=k-1$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(4^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- Fixed-Parameter Algorithms:
- Parameterized by Vertex Cover.

Our Results

- Exact Algorithms:
- $i=0$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(2^{k n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- $i=k-1$, then (k, i)-Chromatic Number can be computed in $\mathcal{O}\left(4^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- Fixed-Parameter Algorithms:
- Parameterized by Vertex Cover.
- Parameterized by Treewidth.

Simple Properties

- If G has edge, then $\chi_{k}^{i}(G) \geqslant 2 k-i$.

Simple Properties

- If G has edge, then $\chi_{k}^{i}(G) \geqslant 2 k-i$.
- $\chi_{k}^{i}(G) \leqslant \chi_{k}^{0}(G)+i$.

Simple Properties

- If G has edge, then $\chi_{k}^{i}(G) \geqslant 2 k-i$.
- $\chi_{k}^{i}(G) \leqslant \chi_{k}^{0}(G)+i$.
- $\chi_{k}^{0}(G) \leqslant k \cdot \chi_{1}^{0}(G)$.

Simple Properties

- If G has edge, then $\chi_{k}^{i}(G) \geqslant 2 k-i$.
- $\chi_{k}^{i}(G) \leqslant \chi_{k}^{0}(G)+i$.
- $\chi_{k}^{0}(G) \leqslant k \cdot \chi_{1}^{0}(G)$.

Outline

(1) Graph Coloring
(2) Introduction and Motivation
(3) Exact Algorithms
(4) Parameterized Algorithms
(5) Conclusions

Exact Algorithms Summary

- Recall that $(1,0)$-Chromatic Number can be solved in $\mathcal{O}\left(2^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.

Exact Algorithms Summary

- Recall that $(1,0)$-Chromatic Number can be solved in $\mathcal{O}\left(2^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- We give exact algorithm to compute $(k, 0)$-Chromatic Number in time $\mathcal{O}^{*}\left(2^{k n}\right)$.

Exact Algorithms Summary

- Recall that $(1,0)$-Chromatic Number can be solved in $\mathcal{O}\left(2^{n} \cdot n^{\mathcal{O}(1)}\right)$ time.
- We give exact algorithm to compute $(k, 0)$-Chromatic Number in time $\mathcal{O}^{*}\left(2^{k n}\right)$.
- We give exact algorithm to compute ($k, k-1$)-Chromatic Number in time $\mathcal{O}\left(4^{n} \cdot n^{\mathcal{O}(1)}\right)$.

Outline

(1) Graph Coloring

(2) Introduction and Motivation
(3) Exact Algorithms
(4) Parameterized Algorithms
(5) Conclusions

Fixed-Parameter Tractability

- Algorithm \mathcal{A} runs in $f(k) \cdot|x|^{c}$ time.
- \mathcal{A} is called Fixed Parameter Algorithm.

Parameterized Complexity of Graph Coloring

Parameterized Complexity of Graph Coloring

q-Coloring
Input: An undirected graph $G=(V, E)$
Parameter: q
Question: Can $V(G)$ be partitioned into q independent sets?

Parameterized Complexity of
 Graph Coloring

q-Coloring
Input: An undirected graph $G=(V, E)$
Parameter: q
Question: Can $V(G)$ be partitioned into q independent sets?

- Graph Coloring parameterized by the number of colors is Para-NP-hard as we can not even hope for $n^{f(q)}$ algorithm also.

Parameterized Complexity of
 Graph Coloring

q-Coloring
Input: An undirected graph $G=(V, E)$
Parameter: q
Question: Can $V(G)$ be partitioned into q independent sets?

- Graph Coloring parameterized by the number of colors is Para-NP-hard as we can not even hope for $n^{f(q)}$ algorithm also.
- But, if the parameter is minimum vertex cover size, treewidth, then it is FPT.

FPT Algorithms

q - (k, i)-COLORING-VERTEX-COVER
Input: An undirected graph G.
Parameter: $v c(G)=$ minimum vertex cover size of G
Question: Does G have a proper (k, i)-coloring with at most q colors?

- A vertex cover Y of size at most k can be computed in $\mathcal{O}\left(1.27^{k} \cdot \operatorname{poly}(n)\right)$ time.

FPT Algorithms

q - (k, i)-COLORING-VERTEX-COVER
Input: An undirected graph G.
Parameter: $v c(G)=$ minimum vertex cover size of G
Question: Does G have a proper (k, i)-coloring with at most q colors?

- A vertex cover Y of size at most k can be computed in $\mathcal{O}\left(1.27^{k} \cdot \operatorname{poly}(n)\right)$ time.
- We provide an algorithm that runs in time $\mathcal{O}^{*}\left(2^{k|Y| \log (k|Y|)}\right)$ time.

FPT Algorithm (Vertex Cover)

FPT Algorithm (Vertex Cover)

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.

FPT Algorithm (Vertex Cover)

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.
- There are $\binom{q}{k}{ }^{|Y|}$ possible q-colorings of $G[Y]$.

FPT Algorithm (Vertex Cover)

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.
- There are $\binom{q}{k}^{|Y|}$ possible q-colorings of $G[Y]$.
- As $q \leqslant k \cdot|Y|$. So, $\binom{q}{k}^{|Y|} \leqslant(k \cdot|Y|)^{k \cdot|Y|}$.

FPT Algorithm (Vertex Cover)

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.
- There are $\binom{q}{k}^{|Y|}$ possible q-colorings of $G[Y]$.
- As $q \leqslant k \cdot|Y|$. So, $\binom{q}{k}^{|Y|} \leqslant(k \cdot|Y|)^{k \cdot|Y|}$.
- For any $v \in I$, there are $\binom{q}{k}$ possible sets that can be assigned.

Outline

(1) Graph Coloring

(2) Introduction and Motivation
(3) Exact Algorithms
(4) Parameterized Algorithms
(5) Conclusions

Future Research

Future Research

- It is known that $q-(1,0)$-coloring is $N P$-Complete when $q \geqslant 3$.

Future Research

- It is known that q - $(1,0)$-coloring is $N P$-Complete when $q \geqslant 3$.
- But, $q-(1,0)$-coloring is polynomial time solvable on perfect graph.

Future Research

- It is known that q - $(1,0)$-coloring is $N P$-Complete when $q \geqslant 3$.
- But, $q-(1,0)$-coloring is polynomial time solvable on perfect graph.
- Is q - (k, i)-Coloring $N P$-complete for arbitrary q, k and i ?

Future Research

- It is known that q - $(1,0)$-coloring is $N P$-Complete when $q \geqslant 3$.
- But, $q-(1,0)$-coloring is polynomial time solvable on perfect graph.
- Is q - (k, i)-Coloring $N P$-complete for arbitrary q, k and i ?
- Is (k, i)-Coloring polynomial time solvable on clique (more generally on perfect graphs)?

THANK YOU

