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Coloring of graph

Coloring
Input: A graph G “ pV,Eq
Goal: Find minimum integer q such that graph
V pGq can be partitioned into q independent sets

• In other words assign a color to every vertex
such that for any edge pu, vq P EpGq, u and v
get different colors.
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Coloring of graph

3-Coloring of a graph
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Coloring of Graph

• One of Karp’s 21 NP -Complete problems.

• Determining whether given planer graph is
3-colorable or not is NP -Complete.

• An Op2nq time algorithm is optimal under
some widely believed complexity assumption.
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pk, iq-Coloring
• It is a generalization of Graph Coloring

• pk, iq-Coloring [DZ99]: A proper
q-pk, iq-coloring of G is a function
f : V pGq Ñ

`

rqs
k

˘

such that if pu, vq P EpGq,
then |fpuq X fpvq| ď i.

{1, 2, 3}

{1, 4, 5}

{2, 3, 5}

{1, 3, 4}{2, 4, 5}
(3, 1)-Coloring Example
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pk, iq-Chromatic Number
pk, iq-Coloring
Input: Graph G, integer q
Goal: Does there exist a pk, iq-coloring of G us-
ing at most q colors?

• χi
kpGq “ q, if the minimum number of total

distinct colors required to assign a proper
pk, iq-coloring of G is q.

• pk, iq-coloring has applications in coding
theory.

• k “ 1, i “ 0, well studied Graph Coloring
problem.

8



pk, iq-Chromatic Number
pk, iq-Coloring
Input: Graph G, integer q
Goal: Does there exist a pk, iq-coloring of G us-
ing at most q colors?

• χi
kpGq “ q, if the minimum number of total

distinct colors required to assign a proper
pk, iq-coloring of G is q.

• pk, iq-coloring has applications in coding
theory.

• k “ 1, i “ 0, well studied Graph Coloring
problem.

8



pk, iq-Chromatic Number
pk, iq-Coloring
Input: Graph G, integer q
Goal: Does there exist a pk, iq-coloring of G us-
ing at most q colors?

• χi
kpGq “ q, if the minimum number of total

distinct colors required to assign a proper
pk, iq-coloring of G is q.

• pk, iq-coloring has applications in coding
theory.

• k “ 1, i “ 0, well studied Graph Coloring
problem.

8



pk, iq-Chromatic Number
pk, iq-Coloring
Input: Graph G, integer q
Goal: Does there exist a pk, iq-coloring of G us-
ing at most q colors?

• χi
kpGq “ q, if the minimum number of total

distinct colors required to assign a proper
pk, iq-coloring of G is q.

• pk, iq-coloring has applications in coding
theory.

• k “ 1, i “ 0, well studied Graph Coloring
problem.

8



Other Genaraliztions

• p1, 0q-Coloring is well studied.

• Polynomial time algorithm is known for
computing p1, 0q-coloring of perfect graph.

• For general graphs, Op2n ¨ nOp1qq time
algorithm is known for p1, 0q-coloring.

• Adjacent vertices share exactly i colors was
also studied [BD82].
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Previous works on
pk, iq-coloring

• It is not yet clear whether pk, iq-chromatic
number is polynomial time computable in
cliques.

• Polynomial time algorithms are known only
for cycles, cactus [BDKV14] and bipartite
graphs [DZ06].
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Our Results

• Exact Algorithms:

• i “ 0, then pk, iq-Chromatic Number can be
computed in Op2kn ¨ nOp1qq time.

• i “ k ´ 1, then pk, iq-Chromatic Number can be
computed in Op4n ¨ nOp1qq time.

• Fixed-Parameter Algorithms:
• Parameterized by Vertex Cover.
• Parameterized by Treewidth.
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Simple Properties
• If G has edge, then χi

kpGq ě 2k ´ i.

• χi
kpGq ď χ0

kpGq ` i.
• χ0

kpGq ď k ¨ χ0
1pGq.

{1, 2}

{3, 4}

{2, 3}{4, 5}

{1, 5}

�0
2(G) = 5, 2 · �0

1(G) = 6

{1, 2, . . . , k}

{k � i, . . . , 2k � i}
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Exact Algorithms Summary

• Recall that p1, 0q-Chromatic Number can be
solved in Op2n ¨ nOp1qq time.

• We give exact algorithm to compute
pk, 0q-Chromatic Number in time O˚p2knq.

• We give exact algorithm to compute
pk, k ´ 1q-Chromatic Number in time
Op4n ¨ nOp1qq.
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Fixed-Parameter Tractability

A(x, k)

Yes if (x, k) 2 L

No, otherwise

• Algorithm A runs in f(k) · |x|c time.

• A is called Fixed Parameter Algorithm.
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Parameterized Complexity of
Graph Coloring

q-Coloring
Input: An undirected graph G “ pV,Eq
Parameter: q
Question: Can V pGq be partitioned into q inde-
pendent sets?

• Graph Coloring parameterized by the
number of colors is Para-NP -hard as we can
not even hope for nfpqq algorithm also.

• But, if the parameter is minimum vertex cover
size, treewidth, then it is FPT .
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FPT Algorithms

q-pk, iq-coloring-Vertex-Cover
Input: An undirected graph G.
Parameter: vcpGq “ minimum vertex cover size
of G
Question: Does G have a proper pk, iq-coloring
with at most q colors?

• A vertex cover Y of size at most k can be
computed in Op1.27k ¨ polypnqq time.

• We provide an algorithm that runs in time
O˚p2k|Y | logpk|Y |qq time.

18



FPT Algorithms

q-pk, iq-coloring-Vertex-Cover
Input: An undirected graph G.
Parameter: vcpGq “ minimum vertex cover size
of G
Question: Does G have a proper pk, iq-coloring
with at most q colors?

• A vertex cover Y of size at most k can be
computed in Op1.27k ¨ polypnqq time.

• We provide an algorithm that runs in time
O˚p2k|Y | logpk|Y |qq time.

18



FPT Algorithm (Vertex
Cover)

• Any vertex u P Y can get
`

q
k

˘

possible
color-sets.

• There are
`

q
k

˘|Y | possible q-colorings of GrY s.

• As q ď k ¨ |Y |. So,
`

q
k

˘|Y |
ď pk ¨ |Y |qk¨|Y |.

• For any v P I, there are
`

q
k

˘

possible sets that
can be assigned.
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Future Research

• It is known that q-p1, 0q-coloring is
NP -Complete when q ě 3.

• But, q-p1, 0q-coloring is polynomial time
solvable on perfect graph.

• Is q-pk, iq-Coloring NP -complete for
arbitrary q, k and i?

• Is pk, iq-Coloring polynomial time solvable
on clique (more generally on perfect graphs)?
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THANK YOU
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