Exact and Parameterized Algorithms for (k, i)-coloring

Diptapriyo Majumdar¹ Rian Neogi² Venkatesh Raman¹ Prafullkumar Tale¹

¹The Institute of Mathematical Sciences, HBNI, Chennai, India.

²NIIT University, Neemrana, Rajasthan, India

February 17, 2017, CALDAM, Goa, India

Outline

1 Graph Coloring

- **2** Introduction and Motivation
- **3** Exact Algorithms
- **④** Parameterized Algorithms
- **5** Conclusions

Coloring of graph

COLORING **Input:** A graph G = (V, E) **Goal:** Find minimum integer q such that graph V(G) can be partitioned into q independent sets

Coloring of graph

COLORING **Input:** A graph G = (V, E) **Goal:** Find minimum integer q such that graph V(G) can be partitioned into q independent sets

• In other words assign a color to every vertex such that for any edge $(u, v) \in E(G)$, u and v get different colors.

Coloring of graph

3-Coloring of a graph

Coloring of Graph

• One of Karp's 21 *NP*-Complete problems.

Coloring of Graph

- One of Karp's 21 ${\it NP}\text{-}{\rm Complete}$ problems.
- Determining whether given planer graph is 3-colorable or not is *NP*-Complete.

Coloring of Graph

- One of Karp's 21 ${\it NP}\text{-}{\rm Complete}$ problems.
- Determining whether given planer graph is 3-colorable or not is *NP*-Complete.
- An $\mathcal{O}(2^n)$ time algorithm is optimal under some widely believed complexity assumption.

Outline

1 Graph Coloring

2 Introduction and Motivation

- **3** Exact Algorithms
- **④** Parameterized Algorithms
- **5** Conclusions

(k, i)-Coloring

• It is a generalization of GRAPH COLORING

(k, i)-Coloring

- It is a generalization of GRAPH COLORING
- (k, i)-Coloring [DZ99]: A proper q-(k, i)-coloring of G is a function $f: V(G) \rightarrow {[q] \choose k}$ such that if $(u, v) \in E(G)$, then $|f(u) \cap f(v)| \leq i$.

(k, i)-Coloring

- It is a generalization of GRAPH COLORING
- (k, i)-Coloring [DZ99]: A proper q-(k, i)-coloring of G is a function $f: V(G) \rightarrow {[q] \choose k}$ such that if $(u, v) \in E(G)$, then $|f(u) \cap f(v)| \leq i$.

(k, i)-COLORING **Input:** Graph G, integer q **Goal:** Does there exist a (k, i)-coloring of G using at most q colors?

(k, i)-COLORING **Input:** Graph G, integer q **Goal:** Does there exist a (k, i)-coloring of G using at most q colors?

• $\chi_k^i(G) = q$, if the minimum number of total distinct colors required to assign a proper (k, i)-coloring of G is q.

(k, i)-COLORING **Input:** Graph G, integer q **Goal:** Does there exist a (k, i)-coloring of G using at most q colors?

- $\chi_k^i(G) = q$, if the minimum number of total distinct colors required to assign a proper (k, i)-coloring of G is q.
- (k, i)-coloring has applications in coding theory.

(k, i)-COLORING **Input:** Graph G, integer q **Goal:** Does there exist a (k, i)-coloring of G using at most q colors?

- $\chi_k^i(G) = q$, if the minimum number of total distinct colors required to assign a proper (k, i)-coloring of G is q.
- (k, i)-coloring has applications in coding theory.
- k = 1, i = 0, well studied GRAPH COLORING problem.

• (1,0)-Coloring is well studied.

- (1, 0)-Coloring is well studied.
- Polynomial time algorithm is known for computing (1,0)-coloring of perfect graph.

- (1,0)-Coloring is well studied.
- Polynomial time algorithm is known for computing (1,0)-coloring of perfect graph.
- For general graphs, $\mathcal{O}(2^n \cdot n^{\mathcal{O}(1)})$ time algorithm is known for (1, 0)-coloring.

- (1,0)-Coloring is well studied.
- Polynomial time algorithm is known for computing (1,0)-coloring of perfect graph.
- For general graphs, $\mathcal{O}(2^n \cdot n^{\mathcal{O}(1)})$ time algorithm is known for (1, 0)-coloring.
- Adjacent vertices share exactly i colors was also studied [BD82].

Previous works on (k, i)-coloring

• It is not yet clear whether (k, i)-chromatic number is polynomial time computable in cliques. Previous works on (k, i)-coloring

- It is not yet clear whether (k, i)-chromatic number is polynomial time computable in cliques.
- Polynomial time algorithms are known only for cycles, cactus [BDKV14] and bipartite graphs [DZ06].

• Exact Algorithms:

- Exact Algorithms:
 - i = 0, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(2^{kn} \cdot n^{\mathcal{O}(1)})$ time.

- Exact Algorithms:
 - i = 0, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(2^{kn} \cdot n^{\mathcal{O}(1)})$ time.
 - i = k 1, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(4^n \cdot n^{\mathcal{O}(1)})$ time.

- Exact Algorithms:
 - i = 0, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(2^{kn} \cdot n^{\mathcal{O}(1)})$ time.
 - i = k 1, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(4^n \cdot n^{\mathcal{O}(1)})$ time.
- Fixed-Parameter Algorithms:

- Exact Algorithms:
 - i = 0, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(2^{kn} \cdot n^{\mathcal{O}(1)})$ time.
 - i = k 1, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(4^n \cdot n^{\mathcal{O}(1)})$ time.
- Fixed-Parameter Algorithms:
 - Parameterized by Vertex Cover.

- Exact Algorithms:
 - i = 0, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(2^{kn} \cdot n^{\mathcal{O}(1)})$ time.
 - i = k 1, then (k, i)-Chromatic Number can be computed in $\mathcal{O}(4^n \cdot n^{\mathcal{O}(1)})$ time.
- Fixed-Parameter Algorithms:
 - Parameterized by Vertex Cover.
 - Parameterized by Treewidth.

Simple Properties • If G has edge, then $\chi_k^i(G) \ge 2k - i$.

Simple Properties

- If G has edge, then $\chi_k^i(G) \ge 2k i$.
- $\chi_k^i(G) \leq \chi_k^0(G) + i.$

Simple Properties

- If G has edge, then $\chi_k^i(G) \ge 2k i$.
- $\chi_k^i(G) \leq \chi_k^0(G) + i.$
- $\chi_k^0(G) \leq k \cdot \chi_1^0(G).$

Simple Properties

- If G has edge, then $\chi_k^i(G) \ge 2k i$.
- $\chi_k^i(G) \leq \chi_k^0(G) + i.$
- $\chi_k^0(G) \leq k \cdot \chi_1^0(G).$

Outline

- **1** Graph Coloring
- **2** Introduction and Motivation
- **3** Exact Algorithms
- **④** Parameterized Algorithms
- **5** Conclusions

Exact Algorithms Summary

• Recall that (1, 0)-Chromatic Number can be solved in $\mathcal{O}(2^n \cdot n^{\mathcal{O}(1)})$ time.

Exact Algorithms Summary

- Recall that (1, 0)-Chromatic Number can be solved in $\mathcal{O}(2^n \cdot n^{\mathcal{O}(1)})$ time.
- We give exact algorithm to compute (k, 0)-CHROMATIC NUMBER in time $\mathcal{O}^*(2^{kn})$.

Exact Algorithms Summary

- Recall that (1, 0)-Chromatic Number can be solved in $\mathcal{O}(2^n \cdot n^{\mathcal{O}(1)})$ time.
- We give exact algorithm to compute (k, 0)-CHROMATIC NUMBER in time $\mathcal{O}^*(2^{kn})$.
- We give exact algorithm to compute (k, k-1)-CHROMATIC NUMBER in time $\mathcal{O}(4^n \cdot n^{\mathcal{O}(1)}).$

Outline

- **1** Graph Coloring
- **2** Introduction and Motivation
- **3** Exact Algorithms
- **4** Parameterized Algorithms
- **5** Conclusions

Fixed-Parameter Tractability

- Algorithm \mathcal{A} runs in $f(k) \cdot |x|^c$ time.
- \mathcal{A} is called Fixed Parameter Algorithm.

q-COLORING **Input:** An undirected graph G = (V, E) **Parameter:** q**Question:** Can V(G) be partitioned into q independent sets?

q-COLORING **Input:** An undirected graph G = (V, E) **Parameter:** *q* **Question:** Can V(G) be partitioned into *q* independent sets?

• GRAPH COLORING parameterized by the number of colors is Para-NP-hard as we can not even hope for $n^{f(q)}$ algorithm also.

q-COLORING **Input:** An undirected graph G = (V, E) **Parameter:** *q* **Question:** Can V(G) be partitioned into *q* independent sets?

- GRAPH COLORING parameterized by the number of colors is Para-NP-hard as we can not even hope for $n^{f(q)}$ algorithm also.
- But, if the parameter is *minimum vertex cover* size, treewidth, then it is *FPT*.

FPT Algorithms

q-(k, i)-COLORING-VERTEX-COVER **Input:** An undirected graph G. **Parameter:** vc(G) = minimum vertex cover size of G **Question:** Does G have a proper (k, i)-coloring with at most q colors?

• A vertex cover Y of size at most k can be computed in $\mathcal{O}(1.27^k \cdot poly(n))$ time.

FPT Algorithms

q-(k, i)-COLORING-VERTEX-COVER **Input:** An undirected graph G. **Parameter:** vc(G) = minimum vertex cover size of G **Question:** Does G have a proper (k, i)-coloring with at most q colors?

- A vertex cover Y of size at most k can be computed in $\mathcal{O}(1.27^k \cdot poly(n))$ time.
- We provide an algorithm that runs in time $\mathcal{O}^*(2^{k|Y|\log(k|Y|)})$ time.

• Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.
- There are $\binom{q}{k}^{|Y|}$ possible *q*-colorings of G[Y].

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.
- There are $\binom{q}{k}^{|Y|}$ possible *q*-colorings of G[Y].
- As $q \leq k \cdot |Y|$. So, $\binom{q}{k}^{|Y|} \leq (k \cdot |Y|)^{k \cdot |Y|}$.

- Any vertex $u \in Y$ can get $\binom{q}{k}$ possible color-sets.
- There are $\binom{q}{k}^{|Y|}$ possible *q*-colorings of G[Y].
- As $q \leq k \cdot |Y|$. So, $\binom{q}{k}^{|Y|} \leq (k \cdot |Y|)^{k \cdot |Y|}$.
- For any $v \in I$, there are $\binom{q}{k}$ possible sets that can be assigned.

Outline

- **1** Graph Coloring
- **2** Introduction and Motivation
- **3** Exact Algorithms
- **4** Parameterized Algorithms
- **5** Conclusions

• It is known that q-(1,0)-coloring is NP-Complete when $q \ge 3$.

- It is known that q-(1,0)-coloring is NP-Complete when $q \ge 3$.
- But, q-(1, 0)-coloring is polynomial time solvable on perfect graph.

- It is known that q-(1,0)-coloring is NP-Complete when $q \ge 3$.
- But, q-(1, 0)-coloring is polynomial time solvable on perfect graph.
- Is q-(k, i)-COLORING *NP*-complete for arbitrary q, k and i?

- It is known that q-(1,0)-coloring is NP-Complete when $q \ge 3$.
- But, q-(1, 0)-coloring is polynomial time solvable on perfect graph.
- Is q-(k, i)-COLORING *NP*-complete for arbitrary q, k and i?
- Is (k, i)-COLORING polynomial time solvable on clique (more generally on perfect graphs)?

THANK YOU