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Abstract

For a family of graphs F , the F-Contraction problem takes as an
input a graph G and an integer k, and the goal is to decide whether there
exists F ⊆ E(G) of size at most k such that G/F belongs to F . When F
is the family of paths, trees or cacti, then the corresponding problems are
Path Contraction, Tree Contraction and Cactus Contraction,
respectively. It is known that Tree Contraction and Cactus Con-
traction do not admit a polynomial kernel unless NP ⊆ coNP/poly, while
Path Contraction admits a kernel with O(k) vertices. The starting point
of this article is the following natural questions: What is the structure of
the family of paths that allows Path Contraction to admit a polynomial
kernel? Apart from the size of the solution, what other additional parameters
should we consider so that we can design polynomial kernels for these basic
contraction problems? To design polynomial kernels, we consider the family
of trees with the bounded number of leaves (note that the family of paths
are trees with at most two leaves). In particular, we study Bounded Tree
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Contraction (Bounded TC). Here, an input is a graph G, integers k and
`, and the goal is to decide whether or not, there exists a subset F ⊆ E(G)
of size at most k such that G/F is a tree with at most ` leaves. We design a
kernel for Bounded TC with O(k`) vertices and O(k2 + k`) edges. Finally,
we study Bounded Cactus Contraction (Bounded CC) which takes
as input a graph G and integers k and `. The goal is to decide whether there
exists a subset F ⊆ E(G) of size at most k such that G/F is a cactus graph
with at most ` leaf blocks in the corresponding block decomposition. For
Bounded CC we design a kernel with O(k2 + k`) vertices and O(k2 + k`)
edges. We complement our results by giving kernelization lower bounds for
Bounded TC, Bounded OTC and Bounded CC by showing that unless
NP ⊆ coNP/poly the size of the kernel we obtain is optimal.

Keywords: Kernel, Graph Contraction, Kernel Lower Bound

1. Introduction

Graph editing problems are one of the central problems in graph theory
that have received a lot of attention in the realm of parameterized complexity.
Some of the important graph editing operations are vertex deletion, edge
deletion, edge addition, and edge contraction. For a family of graphs F , the
F -Editing problem takes as an input a graph G and an integer k, and the
objective is to decide if at most k edit operations can result in a graph that
belongs to the graph family F . In fact, the F -Editing problem, where the edit
operations are restricted to vertex deletion or edge deletion or edge addition
or edge contraction alone have also been studied extensively in parameterized
complexity. When we just focus on deletion operation (vertex/edge deletion)
then the corresponding problem is called F-Vertex (Edge) Deletion
problem. For instance, the F-Editing problems encompasses several NP-hard
problems such as Vertex Cover, Feedback vertex set, Planar F-
Deletion, Interval Vertex Deletion, Chordal Vertex Deletion,
Odd cycle transversal, Edge Bipartization, Tree Contraction,
Path Contraction, Split Contraction, Clique Contraction etc.
However, most of the study in paramterized complexity or classical complexity,
have been restricted to combination of vertex deletion, edge deletion or edge
addition [9, 7, 8, 6, 18, 20, 17, 25, 27, 29, 32, 13, 14, 15, 21, 2, 3, 34]. Only
recently, edge contraction as an edit operation has started to gain attention
in the realm of parameterized complexity. In this paper we study three

2



edge-contraction problems from the perspective of kernelization complexity –
one of the established subarea in parameterized complexity.

In parameterized complexity each problem instance is accompanied by
a parameter k. A central notion in this field is the one of fixed parameter
tractable (FPT). This means, for a given instance (I, k), solvability in time
O(f(k)|I|O(1)) where f is some function of k. Other important notion in
parameterized complexity is kernelization, which captures the efficiency of data
reduction techniques. A parameterized problem Π admits a kernel of size g(k)
(or g(k)-kernel) if there is a polynomial time algorithm (called kernelization
algorithm) which takes as an input (I, k), and in time O(|I|O(1)) returns an
equivalent instance (I ′, k′) of Π such that |I ′| + k′ ≤ g(k). Here, g(·) is a
computable function whose value depends only on k. Depending on whether
the function g(·) is linear, polynomial or exponential, the problem is said to
admit a linear, polynomial or exponential kernel, respectively. It turns out
that linear and polynomial kernels are most interesting from the kernelization
perspective, because any problem that is fixed-parameter tractable admits an
exponential kernel [10]. In this paper whenever we say kernel, we will refer to
polynomial or linear kernels.

For several families of graphs F , early papers by Watanabe et al. [35,
36] and Asano and Hirata [1] showed that F-Edge Contraction is NP-
complete. In the framework of parameterized complexity (or even the classical
complexity), these problems exhibit properties that are quite different than
those of problems where we only delete or add vertices and edges. For
instance, deleting k edges from a graph such that the resulting graph is
a tree is polynomial-time solvable. On the other hand, Asano and Hirata
showed that Tree Contraction is NP-hard [1]. Furthermore, a well-known
result by Cai [4] states that in a case F is a hereditary family of graphs
with a finite set of forbidden induced subgraphs, then the graph modification
problem defined by F and the edit operations restricted to vertex deletion,
edge deletion, and edge addition admits a simple FPT algorithm. Indeed, for
these problems, the result by Cai [4] does not hold when the edit operation
is edge contraction. In particular, Lokshtanov et al. [31] and Cai and Guo
[5] independently showed that if F is either the family of P`-free graphs for
some ` ≥ 5 or the family of C`-free graphs for some ` ≥ 4, then F-Edge
Contraction is W[2]-hard. To the best of our knowledge, Heggernes et
al. [24] were the first to explicitly study F-Edge Contraction from the
viewpoint of Parameterized Complexity. They showed that in case F is
the family of trees, F-Edge Contraction is FPT but does not admit a
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polynomial kernel, while in case F is the family of paths, the corresponding
problem admits a faster algorithm and an O(k)-vertex kernel. Golovach
et al. [22] proved that if F is the family of planar graphs, then F-Edge
Contraction is again FPT. Moreover, Cai and Guo [5] showed that in
case F is the family of cliques, F-Edge Contraction is solvable in time
2O(k log k) · nO(1), while in case F is the family of chordal graphs, the problem
is W[2]-hard. Heggernes et al. [26] developed an FPT algorithm for the case
where F is the family of bipartite graphs. Later, a faster algorithm was
proposed by Guillemot and Marx [23].

It is evident from our discussion that the complexity of the graph editing
problem when restricted to edge contraction seems to be more difficult than
their vertex or edge deletion counterparts. The starting point of our research
is the following result by Heggernes et al. [24] who showed that Tree Con-
traction does not admit a polynomial kernel unless NP ⊆ coNP/poly [24]
and Path Contraction admits a linear vertex kernel.

We wanted to understand the structure of the family of paths that allows
Path Contraction to admit a polynomial kernel. Apart from the size of
the solution, what other additional parameters should we consider so that
we can design polynomial kernels for these basic contraction problems? One
of the natural candidates for such an extension is to consider the family of
trees with the bounded number of leaves. With the goal to apprehend the
understanding of the role the number of leaves plays in the kernelization
complexity for contracting to the “path-like” graph, we study the problem
which we call as Bounded Tree Contraction (Bounded TC). Formally,
the problem is defined below.

Bounded Tree Contraction Parameter: k + `
Input: A graph G and integers k, `
Question: Does there exist F ⊆ E(G) of size at most k such that G/F
is a tree with at most ` leaves?

We give a kernel for Bounded TC with O(k`) vertices and O(k2 + k`)
edges. The approach we follow is similar to the one Heggernes et al. [24]
used to obtain a linear kernel for Path Contraction. We observe that our
algorithm works even when the input is a directed graph. In particular, we
consider Bounded Out-Tree Contraction (Bounded OTC), which is
defined as follows.
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Bounded Out-Tree Contraction Parameter: k + `
Input: A digraph D and integers k, `
Question: Does there exist F ⊆ A(D) of size at most k such that D/A
is an out-tree with at most ` leaves?

By incorporating direction appropriately into our algorithm for Bounded
TC, we get a kernel for Bounded OTC with O(k2 + k`) vertices and arcs.

We also study the contraction problem for a class of graphs which gener-
alizes trees – the family of cactus. Formally, the problem we study is defined
as follows.

Bounded Cactus Contraction Parameter: k + `
Input: A graph G and integers k, `
Question: Does there exist F ⊆ E(G) of size at most k such that G/F
is a cactus with at most ` leaves?

For Bounded CC we give a kernel with O(k2 + k`) vertices and edges.
Finally, we give kernelization lower bound results. We complement all our
kernelization algorithms by giving a matching lower bounds. In particular,
we show that Bounded TC, Bounded OTC and Bounded CC do not
admit better kernels unless NP ⊆ coNP/poly.

2. Preliminaries

Graph Theory. We consider graphs with finite number of vertices. For an
undirected graph G, by V (G) and E(G) we denote the set of vertices and edges
of G respectively. For a directed graph (or digraph) D, by V (D) and A(D)
we denote the sets of vertices and directed edges (arcs) in D, respectively.
Two vertices u, v are said to be adjacent in G (or in D) if there is an edge
(arc) uv ∈ E(G) (or in A(D)) and u, v are said to be endpoints of the edge
(arc) uv. The neighbourhood of a vertex v, denoted by NG(v), is the set
of vertices adjacent to v. For a vertex v ∈ V (D), N−D(v) denotes the set
{u ∈ V (D) | uv ∈ A(D)} of its in-neighbors and N+

D(v) denotes the set
{u ∈ V (D) | vu ∈ A(D)} of its out-neighbors. The neighbourhood of a vertex
v ∈ V (D) is the set ND(v) = N+

D (v)∪N−D (v). The closed neighbourhood of a
vertex is NG[v] = NG(v)∪{v}. Degree of a vertex degG(u), is the cardinality of
the set NG(v). In case of digraphs, the in-degree and out-degree of a vertex v,
denoted by deg−D(v), deg+D(v), is |N−D (v)| and |N+

D (v)| respectively. The (total)
degree of v, denoted by degG(v), is the sum of its in-degree and out-degree.
The subscripts in the notation for neighbourhood and degree will be omitted
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if the context is clear. For every digraph we associate an underdirected graph,
called underlying graph obtained by forgetting the direction of arcs. Formally,
for a digraph D, underlying graph GD is defined as V (GD) = V (D) and
E(GD) = {uv| uv ∈ A(D) or vu ∈ A(D)}. For F ⊆ E(G), V (F ) denotes the
set of endpoints of edges (or arcs) in F . For a subset S ⊆ V (G), by G− S
and G[S] we denote the graph obtained by deleting vertices in S from G and
the graph obtained by removing vertices in V (G) \ S from G, respectively.
For F ⊆ E(G), G − F is graph obtained by deleting edges in F from G.
For X, Y ⊆ V (G), we say X, Y are adjacent if there exist an edge with one
end point in X and other in Y . A subdivision of an edge uv ∈ E(G) is an
operation that deletes an edge uv, adds a vertex w to V (G), and makes it
adjacent to u and v.

A graph G is called connected if there is a path between every pair of
distinct vertices in G. It is called disconnected otherwise. A component of
a graph is a maximal connected subgraph. A cut-vertex in G is a vertex v
such that the number of components in G \ {v} is strictly more than the
number of components in G. A graph that has no cut-vertex is called a
2-connected graph. An edge uv of a graph G is called a cut-edge if the number
of connected components in G− {uv} is more than the number of connected
components in G. We note that the number of connected components after
removal of an edge can increase by at most 1. A directed graph (digraph) is
connected (disconnected, 2-connected) if its underlying undirected graph is
connected (disconnected, 2-connected).

A path P = (v1, . . . , vq) is an ordered collection of distinct vertices where
every consecutive pair of vertices are adjacent. The vertices of P is the
set {v1, . . . , vq} and is denoted by V (P ). A cycle is a path P = (v1, . . . , vq)
such that (v1, vq) ∈ E(G). A leaf is a vertex with degG(v) = 1. A tree is a
connected graph without a cycle. An out-tree T is a digraph where each vertex
has in-degree at most 1 and underlying undirected graph is a tree. A vertex v
of an out-tree is called a leaf if deg−(v) = 1 and deg+(v) = 0. The root of an
out-tree is the unique vertex that has no in-neighbour. The number of leaves
in a tree (or out-tree), denoted by L(T ), is number of vertices whose degree is
one. A cactus is an undirected graph such that every edge is contained in at
most one cycle. We use following result to bound the summation of degrees
of vertices with degree 3 or more in a tree. Following proposition also implies
that in a tree, the number of vertices with degree at least 3 is upper bounded
by number of vertices with degree 1.
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Proposition 1 (Lemma 3 [30]). For a tree T , if V1, V2, V3 are the set of
vertices of degree 1, degree 2 and at least 3 respectively, then

∑
v∈V3 degT (v) ≤

3|V1|.

Proof. By definition, |V (T )| = |V1|+ |V2|+ |V3|. Since there are no isolated
vertices,

∑
v∈V (T ) degT (v) = 2|E(T )|. Since T is a tree, |E(T )| < |V (T )|.

This implies
∑

v∈V (T ) degT (v) < 2(|V1| + |V2| + |V3|). Substituting lower

bounds of degrees for each set, we get |V1|+ 2|V2|+ 3|V3| ≤
∑

v∈V1 degT (v) +∑
v∈V2 degT (v) +

∑
v∈V3 degT (v) =

∑
v∈V (T ) degT (v). Using the two equations

we get |V1| + 2|V2| + 3|V3| ≤ 2(|V1| + |V2| + |V3|) which implies |V3| ≤ |V1|.
Adding the degree of vertices only in V3 we get

∑
v∈V3 degT (v) = 2|V (T )| −

(
∑

v∈V1 degT (v) +
∑

v∈V2 degT (v)) = 2(|V1| + |V2| + |V3|) − (|V1| + 2|V2|) ≤
|V1|+ 2|V3|. Using the bound of |V3|,

∑
v∈V3 degT (v) ≤ 3|V1|.

A block is a connected maximal connected subgraph which is 2-connected.
A block in a graph is either an induced maximal 2-connected subgraph or an
edge or an isolated vertex. Two distinct blocks in the graph can intersect
in at most one vertex. A vertex contained in at least two blocks must be a
cut-vertex in the graph. Let K be the set of cut-vertices and B be the set
of blocks in G. A block-decomposition of G is a bipartite graph D with the
vertex set K ] B. Furthermore, aB ∈ E(D) for a ∈ K and B ∈ B if and only
if a ∈ V (B). Here, we slightly abuse the notation and use B to denote the
set of blocks in G as well as vertices corresponding to the blocks of G in D.
It is known that a block decomposition of a connected graph is unique and is
a tree [11, Proposition 3.1.2]. For the sake of clarity, we call vertices in D as
nodes. See Figure 1. The number of leaves of cactus is defined as the number
of leaves in its block decomposition. Since every edge in cactus is part of at
most one cycle, if G is a cactus then a block of G is either a cycle or an edge.

Graph Contraction. A contraction of an edge is an operation that merges its
two end points and removes self loop, parallel edges created in the process.
In graph G, we can contract an edge uv by deleting the vertices u, v in G
followed by adding a vertex w to V (G) and making it adjacent to vertices
that were adjacent to either u or v. The resulting graph is denoted by G/uv.
Formally, V (G/uv) = (V (G) \ {u, v}) ∪ {w} and E(G/uv) = {xy | x, y ∈
V (G) \ {u, v}, xy ∈ E(G)} ∪ {wx| x ∈ (NG(u) ∪ NG(v)) \ {u, v}}. For a
digraph D, contracting an arc uv results in a digraph D/uv on the vertex
set V ′ = V (D) \ {u, v} ∪ {w} with A(D/uv) = {xy | xy ∈ A(D) and x, y ∈
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Figure 1: Cactus graph and its block decomposition.

V ′} ∪ {xw | xu ∈ A(D)} ∪ {wy | uy ∈ A(D)} ∪ {xw | xv ∈ A(D)} ∪ {wy |
vy ∈ A(D)}.

We can generalize the above definition of contraction of an edge to con-
traction of a connected subgraph. Consider a subset U of V (G) such that G[U ]
is connected. Fix a spanning tree of G[U ] and let TU be the set of edges in
that spanning tree. We use G/TU to denote the graph obtained from G by
merging all vertices in U and removing self-loops, parallel edges created in
the process. Recall that for a set of edges F ⊆ E(G), set V (F ) denotes the
union of endpoints of edges in F . We use G/F to denote the graph obtained
from G by contracting each connected component of G[V (F )] into a vertex.

A graph G is isomorphic to a graph H if there exists a one-to-one and
onto function ϕ : V (G) → V (H) such that for u, v ∈ V (G), uv ∈ E(G) if
and only if ϕ(u)ϕ(v) ∈ E(H). In this article, we do not distignuish between
isomorphic graphs. With slight abuse of notation, we say graph G/F is
obtained from G by sequentially contracting the edges in F . The graph G/F
is oblivious to the order in which edges in F are contracted. For a set of
edges F ⊆ E(G), G/F denotes the graph obtained from G by sequentially
contracting the edges in F . A graph G is contractible to a graph H, if there
exists F ⊆ E(G) such that G/F is isomorphic to H. In other words, G is
contractible to H if there exists a onto function ψ : V (G)→ V (H) such that
the following properties hold.

• For any vertex h ∈ V (H), graph G[W (h)] is connected where W (h) :=
{v ∈ V (G) | ψ(v) = h}.
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• For any pair of vertices h, h′ ∈ V (H), hh′ ∈ E(H) if and only if W (h)
and W (h′) in G are adjacent.

For digraphs, we define the notion of contraction in an analogous way. For
any pair of vertices h, h′ ∈ V (H), hh′ ∈ A(H) if and only if there is an arc
directed from a vertex in W (h) to a vertex in W (h′) in D. Let W = {W (h) |
h ∈ V (H)}. Observe that W defines a partition of vertices in G. We call
W an H-witness structure of G. The sets in W are called witness sets. If a
witness set contains more than one vertex of G then it is a big witness-set,
otherwise it is a small witness set. A graph G is said to be k-contractible to
a graph H if there exists F ⊆ E(G) such that G/F is isomorphic to H and
|F | ≤ k. We will use the following observation in designing our kernels.

Observation 1. Let G be a graph (or diagraph) which is k-contractible to a
graph (or diagraph) H and W be an H-witness structure of G. Then,

• |V (G)| ≤ |V (H)|+ k;

• No witness set in W contains more than k + 1 vertices;

• W has at most k big witness sets;

• The union of big witness sets in W contains at most 2k vertices.

Parameterized Complexity.. We say that two instances, (I, k) and (I ′, k′), of a
parameterized problem Q are equivalent if (I, k) ∈ Q if and only if (I ′, k′) ∈ Q.
A reduction rule, for a parameterized problem Q is an algorithm that takes
an instance (I, k) of Q as input and outputs an instance (I ′, k′) of Q in time
polynomial in |I| and k. If (I, k) and (I ′, k′) are equivalent instances then we
call the reduction rule is safe. A parameterized problem Q admits a kernel
of size g(k) (or g(k)-kernel) if there is a polynomial time algorithm (called
kernelization algorithm) which takes as an input (I, k), and in time O(|I|O(1))
returns an equivalent instance (I ′, k′) of Q such that |I ′|+ k′ ≤ g(k). Here,
g(·) is a computable function whose value depends only on k. We mention
definition of polynomial compression which we use while proving lower bounds
on kernels.

Definition 2.1. A polynomial compression of a parameterized language Q ⊆
Σ∗×N into a language Π ⊆ Σ∗ is an algorithm that takes as input an instance
(x, k) ∈ Σ∗ × N, and in time polynomial in |x| + k returns a string y such
that:

9



• |y| ≤ p(k) for some polynomial p(·), and

• y ∈ Π if and only if (x, k) ∈ Q.

For more details on parameterized complexity, we refer the reader to the
books of Downey and Fellows [12], Flum and Grohe [16], Niedermeier [33],
Cygan et al. [10] and the more recent book by Fomin et al. [19].

3. Kernel for Bounded Tree Contraction

In this section we design a kernelization algorithm for Bounded Tree
Contraction (Bounded TC). Our algorithm is inspired by the kerneliza-
tion algorithm for Path Contraction presented in [24]. Let (G, k, `) be
an instance of Bounded TC. It is safe to assume that the input graph G is
connected otherwise it is a trivial No instance.

We first present some preliminary results. For every integer ` ≥ 2, consider
a set of trees which has at most ` leaves. For ` = 2, this set is a collection of
all paths. The following observation states that this set of graphs is closed
under edge contraction.

Observation 2. Let T be a tree and T ′ be the graph obtained from T by
contracting an edge v1v2 in E(T ). If T has at most ` leaves then T ′ is a tree
with at most ` leaves.

This set is also closed under an operation of uncontracting an edge with
some additional conditions. We first formally define such operation. Consider
a tree T and one of its internal vertex, say v. Let L,R be a partition of N(v)
such that none of them is an empty set. We define operation Split(T, v, L,R)
as follows. See Figure 2 for illustration.

Split(T, v, L,R): Remove vertex v and add two vertices v1 and v2. Make
v1 adjacent with every vertex in L and v2 adjacent with every vertex in
R. Add edge v1v2. If T ′ is the graph obtained from T by this operation
then V (T ′) = (V (T ) \ {v}) ∪ {v1, v2} and E(T ′) = (E(T ) \ ({vu | u ∈
N(v)})) ∪ {v1u | u ∈ L} ∪ {v2u | u ∈ R} ∪ {v1v2}.

The following lemma proves that this operation on a tree results in another
tree with the same number of leaves.

Lemma 3.1. Let T be a tree, v be an internal vertex of T and N(v) is
partitioned into two non-empty sets L and R. Let T ′ is the graph obtained
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Figure 2: Operation Split(T, v, L,R) with L = {x3} and R = {x1, x2}.

from T after applying Split(T, v, L,R). If T has at most ` leaves then T ′ is
a tree with at most ` leaves.

Proof. First, we prove that T ′ is a tree. Suppose not, then there exists a cycle
in T ′. Let C ′ be an induced cycle in T ′. If C ′ contains at most one of v1, v2,
then we can obtain a cycle C in T by replacing v1 or v2 by v. Otherwise,
C contain both v1 and v2. Since, C ′ is an induced cycle and v1v2 ∈ E(T ′),
vertices v1, v2 appear consecutively in C ′. Again, by replacing v1v2 by vertex v,
we obtain a cycle in T which is a contradiction. Hence, T ′ is acyclic. Note that
v1v2 is an edge in T ′ with NT ′(v1) \ {v2} = L 6= ∅ and NT ′(v2) \ {v1} = R 6= ∅,
therefore v1, v2 are not leaves in T ′. All leaves in T ′ remains as leaf vertices
in T ′. This implies that number of leaves in T ′ is no more than the number
of leaves in T .

We now start describing a kernelization algorithm. It has only one reduc-
tion rule which finds and contracts a irrelevant edge. We argue that a cut
edge whose removal results in two large connected components is an irrelevant
edge.

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

Figure 3: An illustration of Reduction Rule 3.1.
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Reduction Rule 3.1. Let uv be a cut-edge in G and C1, C2 be the connected
components in G− {uv}. If |V (C1)|, |V (C2)| ≥ k + 2 then contract uv. The
resulting instance is (G′, k, `), where G′ = G/{uv}.

Informally speaking, since edge uv is a cut-edge, it is not a part of any
cycle. We do not need to contract it to destroy any cycle. The only reason
we might include it in a solution is to reduce the number of leaves in the
resultant tree. As the sizes of both connected components of G − {uv} is
at least k + 2, contracting at most k edges can not destroy either of the
connected components. Hence no endpoints of uv can be part of a leaf in the
resulting graph. In other words, uv is irrelevant with respect to any solution
of size at most k and can safely be contracted.

Lemma 3.2. Reduction rule 3.1 is safe.

Proof. We argue that (G, k, `) is a Yes instance of Bounded TC if and
only if (G′, k, `) is a Yes instance of Bounded TC.

To prove forward direction, let (G, k, `) be a Yes instance of Bounded
TC. Let F be a set of at most k edges such that G/F be a tree with at most
` leaves. By Observation 2, graph G/(F ∪ {uv}) is also a tree with at most
` leaves. Note that G/(F ∪ {uv}) = (G/{uv})/(F \ {uv}) = G′/(F \ {uv}).
Hence G′/(F \{uv}) is a tree with at most ` leaves. Since |F \{uv}| ≤ |F | ≤ k,
we can conclude that (G′, k, `) is a Yes instance of Bounded TC.

To prove reverse direction, let (G′, k, `) be a Yes instance of Bounded
TC. Let F ′ be a set of at most k edges such that G′/F ′ = T ′ is a tree with
at most ` leaves. We first argue that G is (|F ′| + 1)-contractible to a tree,
say T1, which has at most ` leaves. Using Split operation on T1 we argue
that G is actually |F ′|-contractible to a tree with at most ` leaves.

Let W ′ be a T ′-witness structure of G′. Let u∗ be the vertex resulting
while contracting edge uv in G to get G′. Consider vertex t∗ in V (T ′) such
that u∗ is in W (t∗). Define set W (t1) := (W (t∗) \ {u∗}) ∪ {u, v}. Let W1 be
the witness structure obtained fromW ′ by removing W (t∗) and adding W (t1).
Note thatW1 partitions V (G) and for each W inW1, G[W ] is connected. Let
T1 be a graph obtained from G by contracting witness sets in W1. In other
words, W is a T1-witness structure of G. Note that T1 can be obtained from
G by contracting all edges in F ′∪{uv}. This implies T1 can be obtained from
G′ by contracting all edges in F ′ and hence it is a tree with at most ` leaves.
We conclude that G is (|F ′|+ 1)-contractible to a tree with at most ` leaves.
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Since uv is a cut-edge in G, it is also a cut-edge in G[W (t1)]. Let Cu
and Cv be the connected components of G[W (t1)]− {uv} containing u and
v, respectively. Further, let Wu = V (Cu), Wv = V (Cv). Consider a witness
structure W of G obtained from W1 by removing W (t1) and adding Wu and
Wv. Notice thatW partitions V (G) and for each W inW , G[W ] is connected.
Moreover, we need |F ′| many edges to contract all witness sets in W . Let T
be a graph obtained by contracting all witness sets in W . In other words, W
is a T -witness structure of G. Note that G is |F ′|-contractible to T . The only
thing which remains to prove is that T is a tree with at most ` leaves. We
prove this by showing that T can be obtained from T1 by Split operation at
vertex t1.

We start by proving that t1 is an internal vertex in T1 by showing that it
has at least two neighbors.
Claim. Vertex t1 in T1 has at least two neighbors.
Proof. Each witness set inW1 is of size at most k+2 and hence |W (t1)| ≤ k+2.
If t1 is the only vertex in T1, then all the vertices in (V (C1)∪ V (C2)) \ {u, v}
are in W (t1). This implies that |W (t1)| ≥ 2k + 3 which is a contradiction. If
t1 has unique neighbor, say t̂, in V (T1), then V (C1)∩W (t̂) and V (C2)∩W (t̂)
are both non empty as |V (C1)|, |V (C2)| ≥ k + 2 and |W (t1) \ {u, v}| ≤ k.
Since uv is a cut-edge, any path connecting vertices in V (C1) and V (C2)
must contain an edge uv. Both sets V (C1) ∩W (t̂) and V (C2) ∩W (t̂) are
not empty but W (t̂) does not contain u, v. This implies that G′[W (t̂)] is not
connected contradicting the fact that it is a witness set. Hence t1 has at least
two neighbors in T1. �

Consider a vertex t in T1 which is adjacent with t1. From above arguments,
we know that exactly one of V (C1) ∩W (t) and V (C2) ∩W (t) is an empty
set. Partition vertices in NT ′(t1) into two sets L and R depending on whether
corresponding witness sets intersect C1 or C2. Formally, L := {t | t ∈
NT ′(t) and W (t)∩ V (C1) 6= ∅} and R := {t | t ∈ NT ′(t) and W (t)∩ V (C2) 6=
∅}. Note that (L,R) is a partition of NT1(t) and none of this set is empty. Let
T be the graph obtained after operation Split(T1, t1, L,R). By Lemma 3.1,
T is a a tree with at most ` many leaves.

Hence, if there exist a set of edges F ′ in G′ such that G/F ′ is a tree with
at most ` leaves then G is |F ′|-contractible to a tree with at most ` leaves.
This concludes the proof of reverse direction.

We now argue that the exhaustive application of Reduction Rule 3.1
either returns a reduced instance of bounded size or we can conclude that
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Figure 4: Parts of a longest path from root to a leaf. See Lemma 3.3.

the original instance is a No instance.

Lemma 3.3. Let (G, k, `) be an instance of Bounded TC on which Reduc-
tion Rule 3.1 is not applicable. If (G, k, `) is a Yes instance of Bounded
TC, then G has at most O(k`) vertices and O(k2 + k`) edges.

Proof. Let (G, k, `) be a Yes instance of Bounded TC and F ⊆ E(G) be a
solution such that T = G/F is a tree with at most ` leaves. Fix an arbitrary
vertex of the tree T as its root. Let W be a T -witness structure of G. As T
is obtained using at most k edge contractions from G, |V (G)| ≤ |V (T )|+ k.
Note that |V (T )| is upper bounded by the number of different paths from
the root to leaves times the maximum length of a path. Since the number of
leaves in T is bounded by `, the number of paths from the root to leaves is
also bounded by `.

Let P = {t1, t2, . . . , tq} be a longest path from the root to a leaf in T . If
q ≤ 2k+ 5 then |V (T )| ≤ O(k`). Consider a case when q > 2k+ 5. We argue
that there does not exist i in {k + 2, . . . , q − k − 2} such that both W (ti)
and W (ti+1) are of cardinality one. Define two sets X := ∪j∈{1,2,...,k+2}W (tj)
and Y := ∪j∈{q−(k+2),...,q}W (tj) of V (G). See Figure 4. Notice that |X|, |Y | ≥
k + 2. If there exists i in {k + 3, . . . , q − k − 1} such that W (ti) = {u} and
W (ti+1) = {v} then uv is a cut-edge in G. Moreover, X, Y are in two different
connected components of G−{uv}. Hence both the connected components of
G−{uv} are of size at least k+2. In this case, Reduction rule 3.1 is applicable.
This contradicts the fact that (G, k, `) is a reduced instance. Hence for i in
{k + 2, . . . , q − k − 2}, if W (ti) is a small witness set then W (ti+1) is a big
witness set. Since there are at most k big witness sets, the number of vertices
in path P is at most 2k + 2(k + 2) = 4k + 4. This implies q ≤ 4k + 4 and
|V (T )| ≤ `(4k + 4). Hence |V (G)| is at most O(k`).

We now bound the number of edges in the graph G. Notice that the
maximum degree of a vertex t in the tree T is bounded by `. Since every edge
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contraction reduces the number of vertices by 1, the maximum degree of a
vertex in G is at most `+ k. If G/F is a tree then G−V (F ) is a forest. Since
the size of the solution F is at most k, |V (F )| ≤ 2k. As G is a simple graph,
the number of edges of G with both of its end-points contained in V (F ) is at
most O(k2). Since G− V (F ) is a forest on at most O(k`) many vertices, the
number of edges of G whose both endpoints are in V (G) \ V (F ) is bounded
by O(k`). The number of edges which has exactly one endpoint in V (F ) is
upper bounded by the maximum degree of G multiplied by the cardinality of
V (F ) which is at most O(k2 + k`). Hence the bound on the number of edges
in G follows.

We are now ready to prove the main theorem of this section.

Theorem 3.1. Bounded Tree Contraction has a kernel with O(k`)
vertices and O(k2 + k`) edges.

Proof. Given an instance (G, k, `), the algorithm applies Reduction Rule 3.1
as long as it is applicable. If the number of vertices and number of edges
in the reduced instance is upper bounded by O(k`) and O(k2 + k`), then
algorithm returns reduced instance. If either of these upper bounds fails then
the algorithm returns a trivial No instance.

We now argue the running time and correctness of this algorithm. To
apply Reduction Rule 3.1, the algorithm needs to find a cut edge and check
the number of vertices in connected components after removing that edge.
This step can be performed in polynomial time. Each application of the
reduction rule decreases the number of edges and thus it can be applied
at most |E(G)| many times. This implies that the kernelization algorithm
terminates in polynomial time. Lemma 3.2 implies that Reduction Rule 3.1 is
safe. Let (G′, k, `) be a reduced instance on which Reduction Rule 3.1 is not
applicable. If G′ does not have at most O(k`) vertices and O(k2 + k`) edges,
the algorithm correctly concludes that it is a No instance. The correctness of
this step follows from Lemma 3.3. Otherwise, the algorithm returns a reduced
instance as a kernel.

4. Kernel for Bounded Out-Tree Contraction

In this section, we design a polynomial kernel for Bounded Out-Tree
Contraction. We start with some preliminary results regarding out-tree.
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Digraph obtained by subdividing an arc of out-tree results in another
out-tree. The operation of subdividing an arc uv in D is consists of deletion
of the arc uv and addition of a new vertex w as an out-neighbor of u and an
in-neighbor of v.

Observation 3. Consider an out-tree T with at most ` leaves. Let T ′ be the
out-tree obtained from T by one of the following operations.

1. subdividing an arc;
2. contracting an arc;

Then, T ′ is an out-tree with at most ` leaves.

Proof. (1) Let t1t2 be an arc in T which is subdivided to obtain graph
T ′. Let t∗ be newly added vertex while subdividing arc t1t2. Note that
d−T (t) = d−T ′(t) and d+T (t) = d+T ′(t) for any vertex in t in V (T ′) \ {t∗} = V (T ).
Also, d−T ′(t

∗) = d+T ′(t
∗). This also implies that t∗ is not a leaf in T ′. Hence the

number of leaves in T and T ′ is same. Every vertex in T ′ has in-degre at most
one. If there exists a cycle in GT ′ which passes through t∗ then the same cycle
passes through t1, t2. This implies there exists a cycle in GT which passes
through t1, t2. This contradicts the fact that GT is an underlying graph of an
out-tree. Hence T ′ is an out-tree with at most ` leaves.
(2) Let t1t2 be an arc in T which is contracted to obtain graph T ′. Let t∗

be newly added vertex while contracting arc t1t2. Note that no vertex in
T is has an arc to or from both t1 and t2. This implies d−T (t) = d−T ′(t) and
d+T (t) = d+T ′(t) for any vertex in t in V (T ′) \ {t∗} = V (T ) \ {t1, t2}. Moreover,
by contruction, d−T (t1) = d−T ′(t

∗) and d+T (t2) = d+T ′(t
∗). Hence T ′ is an out-tree.

Also, t∗ is a leaf in T ′ if and only if t2 is a leaf in T . This implies T ′ is an
out-tree with at most ` leaves.

In the following lemma, we argue that if D is k-contractible to an out-tree
and there exists a long induced path then no minimal solution is incident on
any vertex of this path.

Lemma 4.1. Suppose D has a directed path P = (v0, v1, . . . , vq, vq+1) with
q > k + 1 and d−(v) = d+(v) = 1 for each i ∈ [q]. Let F be a set of arcs of
D such that |F | ≤ k and D/F is an out-tree with at most ` vertices. If F is
minimal then it does not contain an edge incident on V (P ) \ {v0, vq+1}.
Proof. Assume that F contains at least one such arc. There are at least k+ 1
arcs with endpoints in V (P ) \ {v0, vq+1}. Since |F | ≤ k, there exists vi in
{v0, v1, . . . , vq, vq+1} such that vi−1vi ∈ F and vivi+1 /∈ F . Let W denote the
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corresponding T -witness structure of D where T = D/F . Now, let t and t′

denote the vertices of T such that {vi−1, vi} ⊆ W (t) and vi+1 ∈ W (t′). If
t = t′ then vi−1, vi, vi+1 ∈ W (t) and vivi+1 /∈ F . As GD[W (t)] is connected,
there must be a path connecting vi, vi+1 in GD which is entirely contained in
W (t). Any path between vi, vi+1 which does not contain edges vivi+1 must
contain a path from vi to v0 and the path from vq+1 to vi+1. It implies that
W (t) contains the vertices of the subpath (vi+1, . . . , vq, vq+1) and the vertices
of the subpath (v0, v1, . . . , vi−1, vi). This implies |W (t)| > k + 1 which is a
contradiction to the fact that T is obtained from D by contracting at most k
edges. Hence t 6= t′. We now focus on W (t) which, as argued above, does not
contain vi+1. Vertex vi is not a cut vertex in GD[W (t)] as there is exactly
one edge incident on it. This implies GD[W (t) \ vi] is a connected graph.
Define W ′ = (W \{W (t)})∪{{vi}}∪ {W (t) \ {vi}}. Graph D/(F \ {vi−1vi})
is isomorphic to graph obtained by subdividing the arc tt′ in the out-tree
T . Thus, W ′ is an out-tree witness structure of D leading to the solution
F \ {vi−1vi} which contradicts the minimality of F .

Note that in the above proof, we did not use the fact that T has at most
` leaves. Hence this claim is true for any out-tree. We mention the result
explicitly in the following lemma.

Lemma 4.2. Suppose D has a directed path P = (v0, v1, . . . , vq, vq+1) with
q > k + 1 and d−(v) = d+(v) = 1 for each i ∈ [q]. Let F be a set of arcs of
D such that |F | ≤ k and D/F is an out-tree. If F is minimal then it does
not contain an edge incident on V (P ) \ {v0, vq+1}.

We now present a kernelization algorithm. Let (D, k, `) be an instance of
Bounded OTC. Without loss of generality we assume that D is connected,
else (D, k, `) is a No instance. Recall that D is connected if its underlying
undirected graph GD is connected. The algorithm has only one reduction
rule.

Reduction Rule 4.1. Let P = (v0, v1, . . . , vq, vq+1) be an indueced path in
D with q > k + 3 and d−(v) = d+(v) = 1 for each i ∈ [q]. Then contract the
arc vq−1vq and let the resulting instance be (D′, k, `), where D′ = D/{vq−1vq}.

We note that unlike in the case of an undirected graph (Reduction Rule 3.1),
it is not enough to find a cut arc whose remove results into two connected
components of size at least k + 1. We might still have to contract this edge
because of direction constraints. See Figure 5.
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Figure 5: Different between reduction rules in case of directed and un-directed graphs.

Lemma 4.3. Reduction rule 4.1 is safe and can be applied in polynomial
time.

Proof. We need to show that (D, k, `) is a Yes instance of Bounded OTC
if and only if (D′, k, `) is a Yes instance of Bounded OTC. Clearly, given
D and P one can apply Reduction Rule 4.1 in polynomial time.

In the forward direction, let (D, k, `) be a Yes instance of Bounded OTC
and let F ⊆ A(D) such that |F | ≤ k and T = D/F is an out-tree with at most
` leaves. By Observation 3, we know that D/(F ∪{vq−1vq}) is also an out-tree
with at most ` leaves. However, D/(F ∪ {vq−1vq}) = (D/{vq−1vq})/(F \
{vq−1vq}) = D′/(F \ {vq−1vq}). This implies that D′/(F \ {vq−1vq}) is an
out-tree with at most ` leaves and |F \ {vq−1vq}| ≤ |F | ≤ k. Hence, it follows
that (D′, k, `) is a Yes instance of Bounded OTC.

In the reverse direction, let (D′, k, `) be a Yes instance of Bounded
OTC and let F ′ ⊆ A(D′) of size at most k such that T ′ = D′/F ′ is an
out-tree with at most ` leaves. Let W ′ be a T ′-witness structure of D′. Let
v∗q−1 be the vertex obtained after contracting the arc vq−1vq. Let P ∗ be the
path from v0 to vq+1 in graph D′. In other words, P ∗ is a path obtained from
P by contracting edge vq−1vq. Since P ∗ is a path of size k+ 2, by Lemma 4.1,
no edge in F ′ is incident on vertices in P ∗. This implies that if W (t∗) is
the witness set in W ′ which contains v∗q−1 then W (t∗) is a singleton witness
set. Moreover, every vertex in V (P ) \ {vq−1, vq} is in singlton witness set
in W ′. Let t1, t2 be two vertices in T ′ which are in-neighor and out-neighor,
respectively, of t∗.

Consider a witness structureW obtained fromW ′ by removing {v∗q−1} and
adding two sets {vq−1}, {vq}. Formally, W = (W ′ \ {v∗q−1}) ∪ {{vq−1}, {vq}}.
Note that W partitions V (D) and for each W ∈ W , D[W ] is connected. Let
T be the digraph for which W is a T -witness structure of D. We argue that
T is an out-tree with at most ` edges. Note that T can be obtained from T ′
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Figure 6: For left figure, please refer to Lemma 4.4. Vertices ta, td are marked as they are
part of T1 ∪ T3. Vertices tc, td are marked because they are end-points of a path. Vertex te
marked as W (te) is a big witness set. For figure on right, please refer to Lemma 4.5.

by subdividing edge t∗t2. By Observation 3, T is an out-tree with at most `
leaves. This completes the proof of the lemma.

For simplicity, by (D, k, `) we denote an instance of Bounded OTC on
which the Reduction Rule 4.1 is not applicable.

Lemma 4.4. Let (D, k, `) be a Yes instance of Bounded OTC on which
Reduction Rule 4.1 is not applicable. Then, D has at most O(k2 +k`) vertices.

Proof. Let (D, k, `) be a Yes instance and F ⊆ A(D) be a solution such
that T = D/F is an out-tree with at most ` leaves. Let W be a T -witness
structure of a digraph D. For counting the number of vertices in D, we first
count the vertices in T . Towards this, we employ a marking scheme. By
M we denote the set of vertices in T that have been marked by our scheme.
Let X be the set of vertices in T which corresponds to big witness sets in
W. We mark all the vertices in X. Let T1, T3 denote the set of vertices in
T which have total degree exactly one and at least three, respectively in T .
We mark all the vertices in T1 and T3. Note that |T1| ≤ `+ 1. Here, we have
|T1| ≤ `+ 1, rather than |T1| ≤ `, to take into account the case when the root
of T has total degree 1. Also, |X| ≤ k and |T3| ≤ |T1|. Therefore, it follows
that currently, the number of vertices in M is upper bounded by k + 2`+ 2.
See Figure 6.

Let P be the set of induced maximal (directed) paths in T [V (T ) \M ].
Observe that, by viewing each path in P as an edge between vertices in M
we get a tree on M . Thus, |P| ≤ |M | − 1. For each P ∈ P, we additionally
mark two of the endpoints in P . This increases the size of M by at most 2|P |.
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However, even now the size of |M | = O(k+`). Note that each of the unmarked
vertices has in-degree and out-degree exactly one. Since Reduction Rule 4.1 is
not applicable, therefore the length of each of the maximal paths comprising of
unmarked vertices is bounded by O(k). But then, the number of vertices in T
is bounded by O(k2 +k`). As T is obtained using at most k edge contractions
from digraph D, it follows from Observation 1 that |V (D)| ≤ |V (T )| + k.
Since |V (T )| = O(k2 + k`), this implies that |V (D)| = O(k2 + k`).

Lemma 4.5. Let (D, k, `) be a Yes instance of Bounded OTC on which
Reduction Rule 4.1 is not applicable. Then, D has at most O(k2 + k`) arcs.

Proof. Let (D, k, `) be a Yes instance and F ⊆ A(D) be a set of edges such
that T = D/F is an out-tree with at most ` leaves. Let W be a T -witness
structure of a digraph D. Let X be the set of vertices in D to which an edge
in F is incident to. Notice that |X| ≤ 2k. The number of arcs with both
endpoints in X is bounded by O(k2). Observe that the underlying undirected
graph of D −X is a forest with at most O(k2 + k`) vertices. This implies
the number of arcs in D that have both endpoints in D −X is bounded by
O(k2 + k`). The only arcs that remain to be counted are those with one
endpoint in D−X and other in X. For a vertex x ∈ X, let tx be the vertex in
V (T ) such that x ∈ W (tx). Also let N̂ be the neighbors of tx in T . Observe
that |N̂ | ≤ `+ 1. This together with Observation 1 implies that | ∪t∈N̂ W (t)|
is bounded by 2k + `+ 1. Therefore, the maximum degree of a vertex in X
is bounded by O(k + `). This implies that the number of arcs with one end
point in X and other in D −X is bounded by O(k2 + k`). We have counted
all types of arcs in D and hence, we conclude that the number of arcs in D is
bounded by O(k2 + k`).

We are now ready to prove the main theorem of this section.

Theorem 4.1. Bounded OTC admits a kernel of size O(k2 + k`).

Proof. Given an instance (D, k, `), the algorithm repeatedly applies Reduction
Rule 4.1, if applicable. By Lemma 4.3, we know that Reduction Rule 4.1 is
safe and can be applied in polynomial time. Each application of reduction
rule decreases the number of arcs and thus it can be applied only |A(D)|
times. If Reduction Rule 4.1 is not applicable then either the size of the
instance is bounded by O(k2 + k`), in which case we return a kernel of the
desired size. Otherwise, the algorithm correctly concludes that the instance
is a No instance of Bounded OTC. The correctness of this step follows by
Lemmas 4.4 and 4.5.
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5. Kernel for Bounded Cactus Contraction

In this section, we design a kernelization algorithm for Bounded Cactus
Contraction. We start with some known properties of cactus.

Observation 4. The following statements hold for a cactus T .
1. |E(T )| ≤ 2|V (T )|
2. Every vertex of degree at least 3 is a cut-vertex.

Proof. For a given cactus T , let D be its block decomposition.
(1) We prove this using the induction on the number of blocks in a cactus
graph. Our induction hypothesis is: if number of blocks in T is strictly
less than q then |E(T )| ≤ 2|V (T )|. For the base case, consider when T has
exactly one block. In this case, T is either an edge or a cycle. In either case,
|E(T )| ≤ 2|V (T )|.

Consider T which has q blocks. Let a block B corresponds to a leaf in D.
For this block, |E(B)| ≤ 2|V (B)| − 2 as B is either an edge or a cycle. Let
u be the unique cut vertex in B. Consider a cactus T1 = T − (V (B) \ {u}).
Since T1 has q − 1 blocks, by induction hypothesis, |E(T1)| ≤ 2|V (T1)|.

Any edge in T is present in exactly one block. Hence |E(T )| = |E(T1)|+
|E(B)|. By construction, |V (T )| = |V (T1)|+ |V (B)| − 1 as u is counted in
V (T1) and also in V (B). Substituting upper bounds for |E(T1)| and |E(B)|,
we get |E(T )| ≤ 2|V (T )|.
(2) Consider a vertex u which has degree at least three. Since any block B is
a cycle or an edge, any vertex u has at most 2 neighbors in B. Since u has a
degree at least 3, u is present in at least two-block. This implies that u is a
cut vertex.

The operation of subdividing an edge uv results in the graph obtained by
deleting uv and adding a new vertex w adjacent to both u and v.

Observation 5. Consider a cactus T with at most ` leaves. Let T ′ be the
graph obtained from T by one of the following operations.

1. subdividing an edge;
2. contracting an edge;
3. deleting a cut-edge uv and add two vertex disjoint path between u, v.

Then, T ′ is a cactus with at most ` leaves.

Proof. Let D being the block decomposition of T with B being the set of
block and K being the set of cut-vertices in T .
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(1) Let T ′ be the graph obtained by subdividing an edge uv in T and w
be the resulting vertex after subdivision. Since degree of w is 2 in T ′, any
cycle which contains w must contain its neighbors u and v. Assume that T ′

is not a cactus then, there exists two distinct cycles C ′1, C
′
2 in T ′ such that

E(C ′1) ∩ E(C ′2) 6= ∅. But then, by replacing w with the edge uv in C ′1, C
′
2 (if

present), we obtain cycles Ĉ1 and Ĉ2 in T with at least one common edge,
contradicting that T is cactus.

Consider the case when the edge uv is a block, say B in T . In D, by
replacing B by B1, B2, each containing the edges uw,wv respectively, and
adding w to K, we obtain a block decomposition of D′ of T ′. Since block
decomposition of a connected graph is a tree, notice that D′ can be obtained
from D by sub-dividing an edge twice. In a tree, a sub-division of an edge
does not increase the number of leaves. Hence follows that T ′ is a cactus with
at most ` leaves. The remaining case is when the edge uv is not a block. Let
B be a block containing the edge uv in D. Then, by replacing B by B ∪ {w},
we obtain a block decomposition of T ′ with the same number of leaves. This
concludes the proof.
(2) Let T ′ be the graph obtained by contracting an edge uv in T and u∗ be
the resulting vertex. Suppose T ′ is not a cactus then there exists two distinct
cycles C ′1, C

′
2 in T ′ such that E(C ′1) ∩ E(C ′2) 6= ∅. But then, by replacing w

with the edge uv in C ′1, C
′
2 (if present), we obtain cycles Ĉ1 and Ĉ2 in T with

at least one common edge, contradicting that T is cactus.
Let B be the block containing the edge uv. Consider the case when B is

just the edge uv. In this case, u, v must be in K. But then, by contracting
the edges uB,Bv ∈ E(D) we can obtain a block decomposition of T ′. Notice
that contracting an edge in a tree (block decomposition) cannot increase
the number of leaves. Hence, it follows that T ′ is a cactus with at most `
leaves. The remaining case is when B contains some other vertex. Notice
that if u, v /∈ K, then by replacing B by B′ = (B \ {u, v}) ∪ {u∗} in D we
obtain a block decomposition of T ′, with exactly same number of leaves. If
u ∈ K and v /∈ K, then by contracting the edge uB ∈ E(D) we obtain a
block decomposition of T ′ with the same number of leaves.
(3) Let T ′ be the graph obtained from T by deleting a cut-edge uv and
replacing it by two vertex disjoint paths. Let C be the cycle obtained by
adding these two vertex disjoint paths between u, v. Assume that T ′ is
not a cactus then there exists two distinct cycles C ′1, C

′
2 in T ′ such that

E(C ′1)∩E(C ′2) 6= ∅. Since u, v are cut-vertices in graph T ′, any cycle which is
different from C, intersect with C in at most one vertex. Hence both C ′1, C

′
2
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Figure 7: Operation Split(T, v, L,R) with L = {w, x3} and R = {x1, x2}.

are distinct from C which implies C ′1 and C ′2 are two distinct cycles with at
least one edge common in T which contradicts that it is cactus. Since uv is a
cut-edge it is a block with u, v as cut-vertices. Let B be the block containing
the edge uv, then we have uB,Bv ∈ E(D). By replacing B with V (C) we
can obtain a block decomposition D′ of T ′ with the same number of leaves.
This concludes the proof.

We define operation Split on cactus in a similar way as we defined for
trees with one additional condition. Consider a cactus T and one of its cut
vertices, say v. Let L,R be a partition of N(v) such that none of them is an
empty set and there is no path between vertices of L and R in G− {v}.
Split(T, v, L,R): Remove vertex v and add two vertices v1 and v2. Make
v1 adjacent with every vertex in L and v2 adjacent with every vertex in
R. Add edge v1v2. If T ′ is the graph obtained from T by this operation
then V (T ′) = (V (T ) \ {v}) ∪ {v1, v2} and E(T ′) = (E(T ) \ ({vu | u ∈
N(v)})) ∪ {v1u | u ∈ L} ∪ {v2u | u ∈ R} ∪ {v1v2}.

See Figure 7 for illustration. Second condition on (L,R) ensures that
v1v2 is not a part of any cycle in new graph. The following observation, we
prove that this operation on a cactus results in another cactus with the same
number of leaves.

Lemma 5.1. Let T be a cactus, v be a cut vertex of T and N(v) is partitioned
into two non-empty sets L and R such that there is no path between L and R
in T −v. Let T ′ is the graph obtained from T after applying Split(T, v, L,R).
If T has at most ` leaves then T ′ is a cactus with at most ` leaves.

Proof. For a cactus T and cut-vertex v, let Bv be set of blocks in T which
contains a vertex v. Since v is a cut-vertex, there are at least two blocks
in Bv. Let L′ and R′ be the partition of Bv which vertices vertices from L
and R respectively. Formally, L′ = {B| x ∈ NT (v) ∩B for some x ∈ L} and
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R′ = {B| y ∈ NT (v) ∩ B for some y ∈ R}. As there is no path between
vertices of L,R in T − {v}, if block B is in L′ then it can not be in R′.

Let T ′ be the graph obtained from T by deleting a cut-vertex v and adding
an edge v1v2 such that NT ′(v1) = L ∪ {v2} and NT ′(v2) = R ∪ {v1}. Notice
that v1v2 is an cut edge in T ′. We can get a block decomposition D′ of T ′

from the block decomposition D of T by following operations : (a) Delete v
from K and adding v1, v2 to K. (b) Replace every B in L′ by (B ∪ v1) \ {v}
and add edge v1B in E(D′). (c) Replace every B in R′ by (B ∪ v2) \ {v} and
add edge v2B in E(D′) (d) Add new block B = {v1, v2} and add edges v1B
and v2B in E(D′). It is easy to see that D′ is a block decomposition of T ′.
Since every block is either an edge or a cycle, T ′ is a cactus. Moreover, the
number of leaves in D′ is equal to the number of leaves in D as newly added
block is adjacent to two vertices in K.

We make few observations regarding a cactus witness structure of a graph.
Let T be a cactus obtained by contracting a set of edges in the graph G and
W be a T -witness structure of G. Following lemma says that if the input
graph contains a long induced path then we can find an edge that can be
safely contracted.

Lemma 5.2. Suppose graph G has a path P = (u0, u1, . . . , uq) with q ≥ k+ 1
such that all its internal vertices are of degree two. If F ⊆ E(G) is a minimal
set of edges of size at most k such that G/F is a cactus then F does not
contain an edge in E(P ).

Proof. Assume on the contrary that F contains an edge in E(P ). As there
are at least k + 1 edges in E(P ) and |F | ≤ k, therefore there exists a vertex
ui in V (P ) \ {u0, uq} such that exactly one out of the two edges incident on
it is contained in solution. Without loss of generality assume that ui−1ui ∈ F
and uiui+1 /∈ F . Let T = G/F and W be a T -witness structure of G. Let
t, t′ ∈ V (T ) such that ui−1, ui ∈ W (t) and ui+1 ∈ W (t′). Consider the case
when t = t′. F must contain all the edges in some spanning tree of G[W (t)].
Since uiui+1 6∈ F , any spanning tree of G[W (t)] not containing uiui+1 must
contains all the edges in E(P ) \ {uiui+1}. But this implies |W (t)| ≥ k + 2
which is a contradiction to fact that each witness set is of size at most k + 1.
Therefore, we have that t 6= t′ which implies that tt′ ∈ E(T ). Recall that
ui is a degree two vertex in G. This implies that ui is not a cut-vertex in
G[W (t)] as there is exactly one edge incident to it in G[W (t)]. Therefore,
G[W (t) \ {ui}] is connected. Let W ′ = (W \ {W (t)}) ∪ {ui} ∪ {W (t) \ {ui}}.
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Observe that W ′ is a partition of V (G) which is a G/F ′-witness structure
of G where F ′ = F \ {ui−1ui}. Notice that G/F ′ is the graph obtained by
subdividing the edge tt′ in the cactus T and by Observation 5(1) it follows
that G/F ′ is a cactus. This contradicts the minimality of F .

We now present a kernelization algorithm. We assume that input graph
is a connected otherwise we can return a trivial No instance. Exhaustive
application of first reduction rule contracts an induced path of arbitrarily
large length to a path of length O(k).

Reduction Rule 5.1. If G has a path P = (u0, u1, . . . , uk+1, uk+2) such
that all of its internal vertex are of degree two, then contract uk+1uk+2. The
resulting instance is (G′, k, `) where G′ = G/{uk+1uk+2}.

We prove that this reduction rule is safe using Lemma 5.2.

Lemma 5.3. Reduction Rule 5.1 is safe.

Proof. Let u∗k+1 be the resulting vertex after contraction of the edge uk+1uk+2.
Given an instance (G, k, `), one can find a path P which satisfies required
property, in one exists, and apply reduction rule in polynomial time. We
need to prove that (G, k, `) is a Yes instance of Bounded CC if and only if
(G′, k, `) is a Yes instance of Bounded CC.

Let (G, k, `) be a Yes instance of Bounded CC and F ⊆ E(G) such that
|F | ≤ k and G/F is a cactus with at most ` leaves. From Observation 5 (2),
we know that G/(F ∪{uk+1uk+2}) is also a cactus with at most ` leaves. This
implies, G/(F ∪ {uk+1uk+2}) = (G/{uk+1uk+2})/(F \ {uk+1uk+2}) = G′/(F \
{uk+1uk+2}) is a cactus with at most ` leaves. Also, |F\{uk+1uk+2}| ≤ |F | ≤ k.
Hence, it follows that (G′, k, `) is a Yes instance of Bounded CC.

Let (G′, k, `) be a Yes instance of Bounded CC and F ′ ⊆ E(G′) of
size at most k be a minimal set such that T ′ = G′/F ′ is a cactus with
at most ` leaves. Let W ′ be a T ′-witness structure of G′. Notice that
in path (u0, u1, . . . , uk, u

∗
k+1) every internal vertex is of degree exactly two.

From Lemma 5.2, F ′ does not contain any edge incident to a vertex in
{u1, u2, . . . , uk}, in particular to uk. There exists t′k, t

′
k+1 ∈ T ′ such that

t′kt
′
k+1 ∈ E(T ) and W (t′k) = {uk} and u∗k+1 ∈ W (t′k+1). Let W = (W ′ \

W (t′k+1)) ∪ {W (tk+1),W (tk+2)}, where W (tk+1) = {uk+1} and W (tk+2) =
(W (t′k+1) ∪ {uk+2}) \ {u∗k+1}. Since NG′(u

∗
k+1) \ {uk} = NG(uk+2) \ {uk+1},

G[W (tk+2)] is connected. Let T be the graph obtained from G by contracting
each witness set to a vertex. In other words, W is T -witness structure of
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graph G. Note that T can be obtained from T ′ by subdividing an edge t′kt
′
k+1.

From Observation 5 (1) it follows that T is also a cactus with at most ` leaves.
Since F ′ ⊆ E(G) and it is also a spanning forest for W , we can conclude that
(G, k, `) is also a Yes instance of Bounded CC.

Reduction Rule 5.1 can be applied in polynomial time. After exhaustive
application of Reduction Rule 5.1 in the resulting graph G any induced path
with internal vertices of degree 2 is of length at most k + 2.

Suppose input graph G has a cut-edge uv. An optimal solution may
contract one of the connected components of G− {uv}, along with an edge
uv, to reduce the number of leaves in the resulting cactus. Consider the case
when both connected components of G− {uv} are large enough that neither
of them is contained entirely in one witness set. In this case, no minimal
solution contains the edge uv. The following reduction rule is based on this
observation.

Reduction Rule 5.2. If G has a cut-edge uv with C1, C2 being two connected
components in G−{uv} and |V (C1)|, |V (C2)| ≥ k+ 2, then contract uv. The
resulting instance is (G′, k, `) where G′ = G/{uv}.
Lemma 5.4. Reduction Rule 5.2 is safe.

Proof. Let u∗ be the vertex obtained by contracting the edge uv. Given an
instance (G, k, `), one can find a cut-edge uv which satisfies the required
property, if one exists and apply reduction rule in polynomial time. We need
to prove that (G, k, `) is a Yes instance of Bounded CC if and only if
(G′, k, `) is a Yes instance of Bounded CC.

Let (G, k, `) be a Yes instance of Bounded CC and F ⊆ E(G) of
size at most k such that G/F is a cactus T with at most ` leaves. As a
consequence of Observation 5 (2), G/(F ∪ {uv}) is also a cactus. Hence,
G/(F ∪ {uv}) = (G/{uv})/(F \ {uv}) = G′/(F \ {uv}) is a cactus with at
most ` leaves. Also |(F \ {uv}| ≤ |F | ≤ k. This concludes that (G′, k, `) is a
Yes instance of Bounded CC.

To prove reverse direction, let (G′, k, `) be a Yes instance of Bounded
CC. Let F ′ be a set of at most k edges such that G′/F ′ = T ′ is a cactus with
at most ` leaves. We first argue that G is (|F ′|+ 1)-contractible to a cactus,
say T1, which has at most ` leaves. Using Split operation on T1 we argue
that G is actually |F ′|-contractible to a cactus with at most ` leaves.

Let W ′ be a T ′-witness structure of G′. Let u∗ be the vertex resulting
while contracting edge uv in G to get G′. Consider vertex t∗ in V (T ′) such
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that u∗ is in W (t∗). Define set W (t1) := (W (t∗) \ {u∗}) ∪ {u, v}. Let W1 be
the witness structure obtained fromW ′ by removing W (t∗) and adding W (t1).
Note that W1 partitions V (G) and for each W in W1, G[W ] is connected.
Let T1 be a graph obtained from G by contracting witness sets in W1. In
other words, W is a T1-witness structure of G. Note that T1 can be obtained
from G by contracting all edges in F ′∪{uv}. This implies T1 can be obtained
from G′ by contracting all edges in F ′ and hence it is a cactus with at most `
leaves. We conclude that G is (|F ′|+ 1)-contractible to a cactus with at most
` leaves.

Since uv is a cut-edge in G, it is also a cut-edge in G[W (t1)]. Let Cu
and Cv be the connected components of G[W (t1)]− {uv} containing u and
v, respectively. Further, let Wu = V (Cu), Wv = V (Cv). Consider a witness
structure W of G obtained from W1 by removing W (t1) and adding Wu and
Wv. Notice thatW partitions V (G) and for each W inW , G[W ] is connected.
Moreover, we need |F ′| many edges to contract all witness sets in W . Let T
be a graph obtained by contracting all witness sets in W . In other words, W
is a T -witness structure of G. Note that G is |F ′|-contractible to T . The only
thing which remains to prove is that T is a cactus with at most ` leaves. We
prove this by showing that T can be obtained from T1 by Split operation at
vertex t1. We start with the following claim.
Claim. Vertex t1 is a cut vertex in T1.
Proof. Each witness set inW1 is of size at most k+2 and hence |W (t1)| ≤ k+2.
If t1 is the only vertex in T1, then all the vertices in (V (C1)∪ V (C2)) \ {u, v}
are in W (t1). This implies that |W (t1)| ≥ 2k + 3 which is a contradiction. If
t1 has unique neighbor, say t̂, in V (T1), then V (C1)∩W (t̂) and V (C2)∩W (t̂)
are both non empty as |V (C1)|, |V (C2)| ≥ k + 2 and |W (t1) \ {u, v}| ≤ k.
Since uv is a cut-edge in G, any path connecting vertices in V (C1) and V (C2)
must contain an edge uv. Both sets V (C1) ∩W (t̂) and V (C2) ∩W (t̂) are
not empty but W (t̂) does not contain u, v. This implies that G′[W (t̂)] is
not connected contradicting the fact that it is a witness set. Hence, t1 has
at least two neighbors, say t̂1, t̂2 in T ′ such that V (C1) ∩ W (t̂1) 6= ∅ and
V (C2) ∩W (t̂2) 6= ∅. Assume that t1 is not a cut vertex in T1. There exist a
path between t̂1 and t̂2 in T1−{t1}. This implies there exists a path between
V (C1) and V (C2) which does not contains an edge uv. This contradicts the
fact that uv is an cut edge in G. Hence our assumption is wrong and t1 is a
cut vertex in T1. �

Consider a vertex t in T1 which is adjacent with t1. From above arguments,
we know that exactly one of V (C1) ∩W (t) and V (C2) ∩W (t) is an empty
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Figure 8: An illustration of Reduction Rule 5.3.

set. Partition vertices in NT ′(t1) into two sets L and R depending on whether
corresponding witness sets intersect C1 or C2. Formally, L := {t | t ∈
NT ′(t) and W (t)∩ V (C1) 6= ∅} and R := {t | t ∈ NT ′(t) and W (t)∩ V (C2) 6=
∅}. Note that (L,R) is a partition of NT1(t) and none of this set is empty.
Moreover, there is no path between vertices in L and R. Let T be the graph
obtained after operation Split(T1, t1, L,R). By Lemma 5.1, T is a cactus
with at most ` many leaves.

Hence, if there exist a set of edges F ′ in G′ such that G/F ′ is a tree with
at most ` leaves then G is |F ′|-contractible to a tree with at most ` leaves.
This concludes the proof of reverse direction.

We generalize notion of cut-edge to cycle whose removal disconnects the
graph.

Definition 5.1 (Cut-Cycle). For a cycle C in graph G, C is a cut-cycle if
in the block decomposition of G, there exists a block B such that B = V (C)
that contains exactly two cut-vertices.

For example, in Figure 1, {v3, v4, v5, v6} is a cut-cycle. Let C be a cut-cycle
in G and u, v be the cut-vertices that it contains. Observe that G−E(C) has
exactly two non-trivial connected components (components with at least two
vertices), one containing u and another containing v. Following reduction
rule states that it is safe to contract certain cut-cycles.

Reduction Rule 5.3. Let C be a cut-cycle in G containing cut-vertices u, v
and C1, C2 be the non-trivial components of G−E(C) such that |V (C1)|, |V (C2)| ≥
k + 2, then contract edges in E(C). The resulting instance is (G′, k, `), where
G′ = G/E(C).
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Lemma 5.5. Reduction Rule 5.3 is safe.

Proof. We prove the safeness of this reduction rule using an intermediate
instance. Reduction Rule 5.3 can be applied in two steps. In first step, we
delete all edges in E(C) and add edge uv. In second step, we apply Reduction
Rule 5.3 on cut edge uv. Let E1 be set of edges in E(C) which are not
incident on u. Then, first step is equivalent to contracting all edges E1 in
G and renaming new vertex to v. Let G̃ be the graph obtained from G by
contracting edges in E1. To prove the lemma, we only need to argue that
(G, k, `) is an Yes instance if and only if (G̃, k, `) is an Yes instance. The
correctness of second step is implied by Lemma 5.4.

In the forward direction, let (G, k, `) be a Yes instance of Bounded CC
and F ⊆ E(G) of size at most k such that G/F is a cactus T , with at most `
leaves. As a consequence of Observation 5(2) it follows that G/(F ∪ E1) is
also a cactus with at most ` leaves. Hence G/(F ∪E1) = (G/E1)/(F \E1) =
G̃/(F \E1) is a cactus with at most ` leaves. Also, |(F \E1)| ≤ |F | ≤ k. This
implies that (G̃, k, `) is a Yes instance of Bounded CC.

Let (G̃, k, `) is a Yes instance of Bounded CC. There exists F̃ ⊆ E(G̃)
such that G̃/F̃ is a cactus T̃ with at most ` leaves. Let W̃ be T̃ -witness
structure of G̃ such that u ∈ W (t̃u) and v ∈ W (t̃v). Consider a witness
structure W obtained from W̃ by adding a singleton witness set for every
vertex in V (C) \ {u, v}. Formally, W = W̃ ∪ {{x} | x ∈ V (C) \ {u, v}}.
Notice thatW partitions V (G) and for each W ∈ W , G[W ] is connected. Let
T be the graph obtained from G by contracting witness sets in W . In other
words, W is T -witness structure of G. Notice that T is a graph obtained by
replacing a cut-edge t̃ut̃v in cactus T̃ by pair of vertex disjoint paths between
vertices t̃u, t̃v. Hence, from Observation 5(3), T is a cactus with at most `
leaves. This concludes the proof of reverse direction.

Hence, if there exist a set of edges F ′ in G′ such that G/F ′ is a tree with
at most ` leaves then G is |F ′|-contractible to a tree with at most ` leaves.

We say (G, k, `) is a reduced instance of Bounded CC if none of the
Reduction Rules 5.1, 5.2 and 5.3 are applicable.

Lemma 5.6. Let (G, k, `) be a reduced instance of Bounded CC. If (G, k, `)
is a Yes instance of Bounded CC, then the number of vertices and edges
in G is bounded by O(k2 + k`).

Proof. Suppose G is k-contractible to a cactus T with at most ` leaves. Let
W be the T -witness structure of G and D be the block decomposition of T .
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By definition of cactus, every block of T is either an edge or a cycle. We use
the bound on the number of nodes in D and upper bound on the size of a
block to bound the number of vertices in T . Let B be a block in T . If B is
an edge in T , then it contains exactly two vertices. Otherwise, B contains at
least 2 vertices. Let BC , BW are two subsets of B, defined as follows: BC be
the set of cut-vertices in T that belongs to B and BW be the set of vertices
t ∈ B such that |W (t)| > 1. We bound the size of a block using the following
claim.

Claim 1: |B| ≤ (k + 3)|BC ∪BW |.
Proof. Since the number of vertices in block B is more than 2, B induces a cycle
in T . By Observation 4 and construction, for every vertex t in B \ (BC ∪BW ),
degT (t) = 2 and |W (t)| = 1. Consider a path P = (tx, t1, t2, . . . , tq, ty) in T
between two vertices tx, ty ∈ BC ∪BW such that {t1, t2 . . . , tq}∩ (BC ∪BW ) =
∅. Let ui ∈ W (ti) for i ∈ {1, 2, . . . , q}. Note that |W (ti)| = 1, for all
i ∈ {1, 2, . . . , q}. Then, there exists a path P ′ = (x, u1, u2, . . . , uq, y) in G
such that x ∈ W (tx), y ∈ W (ty) and degG(ui) = 2 for all i ∈ [q]. Since
Reduction Rule 5.1 is not applicable, therefore, q ≤ k. Since B induces a
cycle in T , there are at most |BC ∪BW | such path and each path contains at
most k + 3 many vertices. Hence |B| ≤ (k + 3)|BC ∪BW |. �

By the property of block decomposition of a graph, a node tB corresponding
to block B in D has degree equal to |BC |. Let V1, V2, V3 be the set of nodes of
D which corresponds to a block in T and are of degree at most 1, degree 2 and
degree at least 3 respectively. Since D has at most ` leaves, |V1| ≤ ` which in
turn implies that |V3| ≤ `. From Proposition 1, it follows that the number of
cut-vertices present in blocks with at least 3 cut-vertices is bounded by the
following. ∑

tB∈V3

|BC | ≤ 3` (1)

Note that the number of vertices in T corresponds to big witness set is at
most k therefore we have the following inequality.∑

tB∈V1∪V2∪V3

|BW | ≤ k (2)

We fix an arbitrary vertex as the root of D (preferable vertex of degree
at least 2). For counting purposes, we apply the following marking scheme
to the nodes in D. We start by marking all the leaves in D. For a leaf tB,
keep marking the nodes on the path from the leaf to the root of that tree
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until the total number of vertices in T from the marked blocks is at least
k + 2. We say these marked vertices are close to the leaf tB. Also, mark all
the nodes tB in D for which BW is not empty. This completes the marking
procedure. For leaf node tB, let tB∗ be the last node marked by marking
scheme to ensure that we have covered at least k + 2 many vertices of T .
Hence there are at most k + 1 + |B∗| many vertices marked for the leaf tB.
Let L′ = {tB∗ | tB ∈ V1}, i.e. the set of all the nodes which were the last
marked node corresponding to some leaf. Notice that |L′| ≤ |V1|. Consider
the subgraph D′ of D induced on the vertices in V1 ∪ L′ and the cut-vertices
their corresponding block contains. Note that in a block decomposition no
two cut-vertices or two vertices corresponding to blocks are adjacent. This
implies that the number number of vertices in D′ is bounded by O(`). This
helps us in establishing the following.∑

tB∗∈L′
|B∗C | =

∑
tB∗∈L′

degT (tB∗) ∈ O(`)

Using the above relation, Claim 1 and Equation 2, we have the following.∑
tB∗∈L′

|B∗| ≤
∑
tB∈L′

(|B∗C |+ |B∗W |)(k + 2) ∈ O(k2 + k`)

Hence the total number of marked vertices which are close to leaf nodes are,∑
tB∈V1

((k + 1) + |B∗|) ≤
∑
tB∈V1

(k + 1) +
∑
tB∗∈L′

|B∗| ∈ O(k2 + k`)

Let VM be set of nodes tB which are marked because BW is not empty. By
Equation 2, |VM | ≤ k. For tB ∈ VM ∩ (V1 ∪ V2), |BC | ≤ 2 which implies∑

tB∈VM∩(V1∪V2) |BC | ≤ 2k.∑
tB∈VM∩(V1∪V2)

|B| ≤
∑

tB∈VM∩(V1∪V2)

(|BC |+ |BW |)(k + 2) ∈ O(k2)

For tB ∈ V3 ∩ VM , we use Equation 1 to obtain following bound.∑
tB∈V3∩VM

|B| ≤
∑

tB∈V3∩VM

(|BC |+ |BW |)(k + 2) ∈ O(k2 + k`)

We now count the number of vertices in blocks corresponding to unmarked
nodes. We first argue that every unmarked node, associated block contains
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at least three cut-vertices. In other words, all the nodes in V1, V2 have been
marked.

Claim 2: If tB is not marked by above marking scheme, then tB ∈ V3.
Proof. We prove this by contradiction. Since all the nodes in V1 are marked,
assume that there exists unmarked node tB in V2 such that |BW | = 0. Since
B contains exactly two cut-vertices, T − E(B) has exactly two non-trivial
connected components, say T1, T2. Notice that each T1, T2 contains marked
vertices corresponding to at least one leaf node and hence |V (T1)|, |V (T2)| ≥
k + 2. Since B does not contain any vertex t such that |W (t)| > 1, vertex
set X =

⋃
t∈BW (t) is either a cut-edge or a cut-cycle in graph G. Moreover,

G−E(X) has two non-trivial connected components C1, C2 such that V (C1) =⋃
t∈V (T1)

W (t) and V (C2) =
⋃
t∈V (T2)

W (t) which implies |V (C1)|, |V (C2)| ≥
k+2. But in this case, Reduction Rule 5.2 or 5.3 is applicable on the instance.
This contradicts that (G, k, `) is a reduced instance. �

Let U be the set of nodes which are unmarked. By Claim 2, U ⊆ V3. By
Equation 1 and using the fact that |BW | = 0 for tB ∈ U ,∑

tB∈U

|B| =
∑
tB∈U

(k + 3)|BC | = (k + 3) ·
∑
tB∈U

|BC | ∈ O(k`)

Combining all these upper bounds, we get |V (T )| ≤ O(k2 + k`). Since
T is obtained from G with at most k edge contractions, it follows that
|V (G)| ≤ |V (T )|+ k. This implies the desired bound on the vertices of the
input graph. We now bound the number of edges in G. Notice that the
maximum degree of a node in D is at most ` as the number of leaves in D
is at most `. This implies that any cut-vertex in T can be part of at most `
blocks. Since every vertex can be adjacent to at most 2 vertices in a block,
the maximum degree of a vertex t in cactus T is at most 2`. Every edge
contraction can reduce the number of vertices by 1 hence the maximum degree
of a vertex in G is at most 2`+ k. If G/F is a cactus then each component
in G − V (F ) is also a cactus. Since the size of solution F is at most k,
|V (F )| ≤ 2k. As G is a simple graph, the number of edges of G with both
of its endpoints in V (F ) is at most O(k2). G − V (F ) is cactus on at most
O(k2 + k`) many vertices and hence by Observation 4, the number of edges
of G whose both endpoints are in V (G) \ V (F ) is at most O(k2 + k`). The
number of edges which has exactly one endpoint in V (F ) is upper bounded
by the maximum degree of G multiplied by the cardinality of F which is at
most O(k2 + k`). Hence the bound on the number of edges in G follows.
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We are now ready to prove the main theorem of this section.

Theorem 5.1. Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

Proof. Given an instance (G, k, `) of Bounded CC the kernelization algo-
rithm exhaustively applies Reduction Rules 5.1, 5.2 or 5.2. If the number of
vertices and edges in reduced graph is not upper bounded by O(k2 + k`) then
it returns a trivial no instance.

By Lemma 5.3; 5.4; and 5.5, these reduction rules are safe and can be
applied in polynomial time. Each application of reduction rule decreases the
number of edges thus it can be applied only |E(G)| times. If none of the
reduction rules are applicable then either the size of the instance is bounded by
O(k2+k`), in which case we return a kernel of the desired size. Otherwise, the
algorithm correctly concludes that the instance is a No instance of Bounded
CC. Lemma 5.6 proves the correctness of this step of the algorithm.

6. Kernel Lower Bounds

In this section we show that the kernelization algorithm presented in
Sections 3, 4, and 5 are optimal assuming NP 6⊆ coNP/poly. We mention one
problem for which compression lower bound is known to be optimal under
standard complexity assumptions. The problem Dominating Set takes as
an input a graph and an integer k, and the goal is to decide whether the
input graph contains a dominating set of size at most k. Any instance can
be encoded with O(n2) bits where n is the number of vertices in the input
graph. Jansen and Pieterse proved that Dominating Set does not admit a
compression of bit-sizeO(n2−ε), for any ε > 0 unless NP ⊆ coNP/poly [28]. We
use this result to obtain compression lower bound for another problem which
is more useful in reduction. The input instance for Red-Blue Dominating
Set (RBDS) is a bipartite graph G with bi-partition (R,B) and an integer t.
The question is whether R has a subset of at most t vertices that dominates
B.

Proposition 2. Red-Blue Dominating Set does not admit a polynomial
compression of bit size O(n2−ε), for any ε > 0 unless NP ⊆ coNP/poly. Here,
n is the number of vertices in the input graph.

Proof. Assuming a contradiction, suppose RBDS admits a compression into
L ⊆ Σ∗ with bit-size in O(n2−ε) for some ε > 0, where n is the number
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Figure 9: Kernel lower bound for Bounded TC.

of vertices in the input graph for RBDS. This implies that there exists an
algorithm A which takes an instance I = (G,R,B, k) of RBDS and in time
nO(1) returns an equivalent instance I ′ of L with |I ′| ∈ O(n2−ε).

Let (G, k) be an instance of Dominating Set and n = |V (G)|. We
construct as instance (G′, R,B, k′) of RBDS as the following. For each
v ∈ V (G), we add vertices vR and vB to R and B, respectively. Further, for
each vR ∈ R we make it adjacent to the corresponding copies in B of vertices
in NG[v]. Finally, we set k′ = k. It is easy to see that (G, k) is a Yes instance
of Dominating Set if and only if (G′, R,B, k′) is a Yes instance of RBDS.
Furthermore, the reduction takes polynomial time and |V (G′)| ∈ O(n). But
then Dominating Set admits a compression into Π with bit-size O(n2−ε), a
contradiction.

6.1. Kernel Lower Bound for Bounded Tree Contraction

To prove this, we present a parameter preserving reduction which given
an instance (G,R,B, k) of Red Blue Dominating Set (RBDS), creates
an instance (G′, k′, `′) of Bounded TC.

Reduction. Let (G,R,B, k) be an instance of RBDS. We construct graph G′

in the following way. See Figure 9. Initialize V (G′) = V (G) and E(G′) =
{br | b ∈ B, r ∈ R and br ∈ E(G)}. Add a vertex a in V (G′) and for every
vertex r in R, add an edge ar to E(G′). For every vertex bi in B, add three
new vertices xi, yi, zi to V (G′) and edges bixi, biyi, bizi to E(G′) 1. Define set

1It is sufficient to add two vertices for each bi in B. We add three vertices so that this
proof can be re-used to prove similar results in case of Bounded Cactus Contraction
problem
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X := {xi, yi, zi | bi ∈ B}. For every vertex x in X, add an edge ax to E(G′).
Set k′ = |B|+ k and `′ = |R|+ 3|B| − k.

In the following lemma, we prove some structural properties of a solution
for (G′, k′, `′).

Lemma 6.1. Let (G′, k′, `′) be a Yes instance of Bounded TC. There
exists a solution F ∗ ⊆ E(G′) of size at most k′ such that for each bi in B one
of the following holds.

1. bi is in W (ta) or
2. xi, yi, zi are in W (ta).

Here, W (ta) is the witness set containing a in (G′/F ∗)-witness structure of
G′.

Proof. Let F be a set of edges of size at most k in G′ such that G′/F is a tree
with at most ` leaves. Let W be a T -witness structure of G′ where T = G′/F .
Let ta be the vertex in V (T ) such that W (ta) contains vertex a. For a vertex
bi in B, if bi is in W (ta) then the lemma holds. Consider a case when bi is not
in W (ta). There exists a vertex tb, different from ta, such that bi is contained
in W (tb). Similarly, consider vertices tx, ty and tz such that xi, yi and zi are
contained in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two vertices in
{tx, ty, tz} can be same as only neighbors of xi, yi, zi are a and bi, and a witness
set needs to be connected. But then, by construction, T [{ta, tx, ty, tz, tb}] is
a cycle, contradicting the fact that T is a tree. Therefore, at least one of
{tx, ty, tz} is same as ta or tb. Without loss of generality, let tx ∈ {ta, tb}.
This implies there is an edge tatb is in T . If ty or tz is not equal to ta
or tb then there exist a cycle contradicting that T is a tree. Suppose, all
tx, ty, tz are same as ta, then the second condition of the lemma is satisfied.
Consider a case when at least one of tx, ty, tz, say tx, is not same as ta, that
is tx = tb. The only edges incident to xi in G′ are axi and bxi. This implies
that bxi ∈ F and W (t′b) = W (tb) \ {xi} is connected. Since axi ∈ E(G′), set
W (t′a) = W (ta) ∪ {xi} is connected. Thus, replacing W (tb) by W (t′b) and
W (ta) by W (t′a) in W yields another T -witness structure of G′. Furthermore,
the spanning forest of the new witness structure, F ′ = (F \ {bxi}) ∪ {axi}
which has same cardinality as that of F . A similar swap can be carried out if
ty = tb or tz = tb. This concludes the proof.

In the following lemma, we argue that the reduction is safe.
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Lemma 6.2. (G,R,B, k) is a Yes instance of RBDS if and only if (G′, k′, `′)
is a Yes instance of Bounded TC.

Proof. Let (G,R,B, k) be a Yes instance of RBDS and S be a subset of
R of size k such that S dominates every vertex in B. If S contains less
than k vertices, then we take any of its superset of size exactly k. For each
vertex b in B, we fix a vertex r in S such that b is neighbor of r in G. If
there are multiple options for selecting r then we arbitrarily choose one of
them. Let F = {br | b ∈ B and br ∈ E(G)} ∪ {ar | r ∈ S}. Note that
|F | = |B|+ k = k′ and G′[V (F )] is connected. Let T be the graph obtained
from G′ by contracting F . Let W be a T -witness structure of G′. Consider
a vertex ta such that a is in W (ta). Since all the edges in F are contracted
to one vertex, set S ∪B is also contained in W (ta). By construction, R ∪X
is an independent set in G′. No vertex in (R ∪ X) \ S is incident on edge
which has been contracted. In other words, these vertices form singleton
witness sets in W. Since R ∪ X is an independent set in G′, it follows
that set TRX = {tv | v ∈ (R ∪ X) \ S} is an independent set in T of size
|R| + 3|B| − k = `′. Moreover, for all v in X ′, av ∈ E(T ). Therefore, T is
a star (which is a tree) with `′ leaves. This implies that F is a solution to
(G′, k′, `′).

In the reverse direction, let (G′, k′, `′) be a Yes instance of Bounded
TC. By Lemma 6.1, there exists a solution F ∗ of size at most k′ such that
for every bi in B, either bi is in W (ta) or all of xi, yi, zi are in W (ta). Here,
W is the G′/F ∗-witness structure of G′ and ta in V (G′/F ∗) such that vertex
a is contained in witness set W (ta) in W .

We partition vertices of B into two parts depending on whether they belong
to W (ta) or not. Define Bg = {bi ∈ B | bi ∈ W (ta)}. Let Ra = R ∩W (ta).
Partition Bg into B1 and B2, depending on whether or not they have a
neighbor in Ra. Formally, B1 = {bi ∈ Bg | N(bi)∩Ra 6= ∅} and B2 = Bg \B1.
For a vertex bi in B2 at least one of xi, yi, zi is present in W (ta) as there is no
edge between bi and a. Note that, by construction, xi, yi, zi is not adjacent
with bj for i 6= j. This implies there exists a separate vertex for each bi in B2

which provides connectivity between a and bi. Let XB
2 be set of vertices in

X ∩W (ta) which provides adjacency between a and bi for some bi in B2. For
every bi which is in B \Bg, by Lemma 6.1, xi, yi, zi are present in W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B
(captured by Bg); vertices in R (captured by Ra); vertices in X which are
present because corresponding bi is not present (captured by B \ Bg); and
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vertices in X which are present because they are needed to provide connectivity
between bi and a (captured by XB

2 ). This implies |Bg|+ 3|B \ Bg|+ |Ra|+
|XB

2 |+ |{a}| ≤ |W (ta)|.
We construct a solution S for RBDS by taking vertices in Ra and two more

sets Sg and Sw. Informally, Sg dominates vertices in B2 and Sw dominates
vertices in B \ Bg. We construct Sg in following way. For every vertex bi
in B2, arbitrary pick one of its neighbor in R and add it to Sg. Note that
|Sg| ≤ |XB

2 |. We create another set Sw in the following way. Initialize Sw to
an empty set. For each b in B \Bg, we add an arbitrary neighbor of b in R
to Sw. This implies |Sw| ≤ |B \Bg|. As cardinality of F ∗ is at most k + |B|,
size of W (ta) is at most |W (ta)| ≤ k + |B|+ 1.

Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw| ≤ k and every
vertex in B is dominated some vertex in Ra ∪ Sg ∪ Sw. This concludes the
proof.

We are now in a position to present a kernel lower bound for Bounded
Tree Contraction.

Theorem 6.1. Bounded Tree Contraction does not admit a compres-
sion of size O((k2 + k`)1−ε), for any ε > 0.

Proof. Assuming a contradiction, suppose Bounded TC admits a compres-
sion into Π ⊆ Σ∗ with bitsize in O((k2 + k`)1−ε), for some ε > 0. This implies
that there exists an algorithm A which takes an instance I = (G, k, `) of
Bounded TC and in polynomial time returns an equivalent instance I ′ of Π
with |I ′| ∈ O((k2 + k`)1−ε).

Let (G,R,B, k) be an instance of RBDS, where G is a graph on n vertices.
Using the reduction described, we create an instance (G, k′, `′) of Bounded
TC with |V (G′D)| ∈ O(n), |E(G′D)| ∈ O(n2), k′ = k ≤ |R| ∈ O(n) and
`′ = |B|+ k ∈ O(n). By Lemma 6.2, (G,R,B, k) is a Yes instance of RBDS
if and only if (G′, k′, `′) is a Yes instance of Bounded TC. On the instance
(G, k′, `′) we run the algorithm A to obtain an instance I of Π such that
|I| ∈ O((k′2 + k′`′)1−ε). But then we have obtained a compression of size
O(n2−ε) for RBDS, contradicting Proposition 2.

Corollary 6.1. Bounded Tree Contraction does not admit a kernel of
size O((k2 + k`)1−ε), for any ε > 0.
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Figure 10: Kernel lower bound for Bounded OTC. For the sake of clarity, figure does not
show directions for all arcs.

6.2. Kernel Lower Bound for Bounded Out-Tree Contraction

In this sub-section we present a parameter preserving reduction from given
an instance (G,R,B, k) of RBDS to an instance (D′, k′, `′) of Bounded
Out-Tree Contraction. This reduction is the same as the one presented
in the previous sub-section with directions added to edges. For the sake of
completeness, we present the entire proofs.

Reduction. Let (G,R,B, k) be an instance of RBDS. We construct graph
G′ in the following way. See Figure 10. Initialize V (G′) = V (G) and
E(G′) = {br | b ∈ B, r ∈ R and br ∈ E(G)}. Add a vertex a in V (G′) and for
every vertex r in R, add an edge ar to E(G′). For every vertex bi in B, add
three new vertices xi, yi, zi to V (G′) and arcs bixi, biyi, bizi to E(G′). Define
set X := {xi, yi, zi | bi ∈ B}. We construct diagraph D′ from G′ by adding
directions to edegs. For every vertex x in X, add an edge ax to E(G′). For
every edge incident on a, add direction from a to other end point. Similarly,
for any end incident on vertices in B, add direction from vertex in B to other
end point. Set k′ = |B|+ k and `′ = |R|+ 3|B| − k.

In the following lemma, we prove some structural properties of a solution
to instance (D′, k′, `′).

Lemma 6.3. Let (D′, k′, `′) be a Yes instance of Bounded Out-Tree
Contraction. There exists a solution F ∗ ⊆ E(D′) of size at most k′ such
that for each bi in B one of the following holds.

1. bi is in W (ta) or
2. xi, yi, zi are in W (ta).

Here, W (ta) is the witness set containing a in (D′/F ∗)-witness structure of
D′.
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Proof. Let F be a set of arcs of size at most k in D′ such that D′/F is
an out-tree with at most ` leaves. Let W be a T -witness structure of D′

where T = D′/F . Recall that TG denotes the underlying undirected graph
of T . Since T is an out-tree, TG is a tree. Let ta be the vertex in V (T )
such that W (ta) contains a. For a vertex bi in B, if bi is in W (ta) then the
lemma holds. Consider a case when bi is not in W (ta). There exists a vertex
tb, different from ta, such that bi is contained in W (tb). Similarly, consider
vertices tx, ty and tz such that xi, yi and zi are contained in W (tx),W (ty) and
W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two of {tx, ty, tz}
can be same as only neighbors of xi, yi, zi are a and bi, and by definition, a wit-
ness set needs to be connected. But then, by construction, TG[{ta, tx, ty, tz, tb}]
is a cycle, contradicting the fact that TG is a tree. Therefore, at least one of
{tx, ty, tz} is same as ta or tb. Without loss of generality, let ts ∈ {ta, tb}. This
implies there is an edge tatb in TG. If ty or tz is not equal to ta or tb then there
exist a cycle contradicting that TG is a tree. Suppose, all tx, ty, tz are same as
ta, then the second condition of the lemma is satisfied. Consider a case when
at least one of tx, ty, tz, say tx, is not same as ta, which implies tx = tb. By
construction, the only arcs incident to xi in D′ are axi and bxi. This implies
that bxi ∈ F and W (t′b) = W (tb) \ {xi} is connected. Since axi ∈ A(D′), set
W (t′a) = W (ta) ∪ {xi} is connected. Thus, replacing W (tb) by W (t′b) and
W (ta) by W (t′a) in W yields another T -witness structure of D′. Furthermore,
the spanning forest of the new witness structure, F ′ = (F \ {bxi})∪{axi} has
same cardinality as that of F . A similar swap can be carried out if ty = tb or
tz = tb. This concludes the proof.

In the following lemma, we argue that the reduction is safe.

Lemma 6.4. (G,R,B, k) is a Yes instance of RBDS if and only if (D′, k′, `′)
is a Yes instance of Bounded OTC.

Proof. Let (G,R,B, k) be a Yes instance of RBDS and S be a subset of
R of size k such that S dominates every vertex in B. If S contains less
than k vertices, then we take any of its superset of size exactly k. For each
vertex b in B, we fix a vertex r in S such that b is neighbor of r in G. If
there are multiple options for selecting r then we arbitrarily choose one of
them. Let F = {br | b ∈ B and br ∈ E(G)} ∪ {ar | r ∈ S}. Note that
|F | = |B|+ k = k′ and D′[V (F )] is connected. Let T be the digraph obtained
from D′ by contracting edges in F . Let W be a T -witness structure of D′.
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Consider a vertex ta such that a is in W (ta). Since all the edges in F are
contracted to one vertex, set S ∪B is also contained in W (ta). Recall that
R ∪X is an independent set in GD′ . No vertex in (R ∪X) \ S is incident on
edge which has been contracted. In other words, these vertices form singleton
witness sets in W. Since R ∪ X is an independent set in GD′ , it follows
that set TRS = {tv | v ∈ (R ∪ X) \ S} is an independent set in GT of size
|R| + 3|B| − k = `′. Moreover, for all v in X ′, arc av is present in A(T ).
Therefore, T is a out-tree with `′ leaves. This implies that F is a solution to
(D′, k′, `′).

In the reverse direction, let (D′, k′, `′) be a Yes instance of Bounded
Out-Tree Contraction. By Lemma 6.1, there exists a solution F ∗ of
size at most k′ such that for every bi in B, either bi is in W (ta) or all of
xi, yi, zi are in W (ta). Here, W is the D′/F ∗-witness structure of D′ and ta
in V (D′/F ∗) such that vertex a is contained in witness set W (ta) in W .

We partition vertices of B into two parts depending on whether they
belong to W (ta) or not. Define set Bg = {bi ∈ B | bi ∈ W (ta)}. Let
Ra = R ∩W (ta). Partition Bg into B1 and B2, depending on whether or not
they have a neighbor in Ra. Formally, B1 = {bi ∈ Bg | N(bi) ∩Ra 6= ∅} and
B2 = Bg \B1. For a vertex bi in B2 at least one of xi, yi, zi is present in W (ta)
as there is no arc between bi and a. Note that, by construction, xi, yi, zi is
not adjacent with bj for i 6= j. This implies there exists a separate vertex for
each bi in B2 which provides connectivity between a and bi. Let XB

2 be set of
vertices in X ∩W (ta) which provides adjacency between a and bi for some bi
in B2. For every bi which is in B \Bg, by Lemma 6.3, xi, yi, zi are present in
W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B
(captured by Bg); vertices in R (captured by Ra); vertices in X which are
present because corresponding bi is not present (captured by B \ Bg); and
vertices in X which are present because they are needed to provide connectivity
between bi and a (captured by XB

2 ). This implies |Bg|+ 3|B \ Bg|+ |Ra|+
|XB

2 |+ |{a}| ≤ |W (ta)|.
We construct a solution S for RBDS by taking vertices in Ra and two more

sets Sg and Sw. Informally, Sg dominates vertices in B2 and Sw dominates
vertices in B \ Bg. We construct Sg in following way. For every vertex bi
in B2, arbitrary pick one of its neighbor in R and add it to Sg. Note that
|Sg| ≤ |XB

2 |. We create another set Sw in the following way. Initialize Sw to
an empty set. For each b in B \Bg, we add an arbitrary neighbor of b in R
to Sw. This implies |Sw| ≤ |B \Bg|. As cardinality of F ∗ is at most k + |B|,
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size of W (ta) is at most |W (ta)| ≤ k + |B|+ 1.
Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw| ≤ k and every

vertex in B is dominated some vertex in Ra ∪ Sg ∪ Sw. This concludes the
proof.

We now argue that the kernel presented for Bounded OTC is optimal.

Theorem 6.2. Bounded Out-Tree Contraction does not admit a
compression of size O((k2 + k`)1−ε), for any ε > 0.

Proof. Assuming a contradiction, suppose Bounded Out-Tree Contrac-
tion admits a compression into Π ⊆ Σ∗ with bitsize in O((k2 + k`)1−ε), for
some ε > 0. This implies that there exists an algorithm A which takes an
instance I = (G, k, `) of Bounded Out-Tree Contraction and in poly-
nomial time returns an equivalent instance I ′ of Π with |I ′| ∈ O((k2 + k`)1−ε).

Let (G,R,B, k) be an instance of RBDS, where G is a graph on n
vertices. Using the reduction described, we create an instance (G, k′, `′) of
Bounded Out-Tree Contraction with |V (G′D)| ∈ O(n), |E(G′D)| ∈
O(n2), k′ = k ≤ |R| ∈ O(n) and `′ = |B| + k ∈ O(n). By Lemma 6.4,
(G,R,B, k) is a Yes instance of RBDS if and only if (D′, k′, `′) is a Yes
instance of Bounded OTC. On the instance (G, k′, `′) we run the algorithm
A to obtain an instance I of Π such that |I| ∈ O((k′2 + k′`′)1−ε). But then
we have obtained a compression of size O(n2−ε) for RBDS, contradicting
Proposition 2.

Corollary 6.2. Bounded Out-Tree Contraction does not admit a
kernel of size O((k2 + k`)1−ε), for any ε > 0.

6.3. Kernel Lower Bound for Bounded Cactus Contraction

In this section, we present a parameter preserving reduction from a given
instance (G,R,B, k) of RBDS to an instance (G′, k′, `′) of Bounded Cactus
Contraction.

Reduction. Let (G,R,B, k) be an instance of RBDS. We construct graph G′

in the following way. See Figure 9. Initialize V (G′) = V (G) and E(G′) =
{br | b ∈ B, r ∈ R and br ∈ E(G)}. Add a vertex a in V (G′) and for every
vertex r in R, add an edge ar to E(G′). For every vertex bi in B, add three
new vertices xi, yi, zi to V (G′) and edges bixi, biyi, bizi to E(G′). Define set
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X := {xi, yi, zi | bi ∈ B}. For every vertex x in X, add an edge ax to E(G′).
Set k′ = |B|+ k and `′ = |R|+ 3|B| − k.

Following the same spirit of proof as described in Section 3, we prove
the following lemmas. Note that lemma implies if bi is not present in W (ta)
then at least two vertices in {xi, yi, zi} are present in W (ta) unlike in case of
Bounded TC where all three were present.

Lemma 6.5. Let (G′, k′, `′) be a Yes instance of Bounded CC. There
exists a solution F ∗ ⊆ E(G′) of size at most k′ such that for each bi ∈ B one
of the following holds.
• bi is in W (ta) or
• at least two of {xi, yi, zi} are in W (ta).

Here, W (ta) is the witness set containing a in (G′/F ∗)-witness structure of
G′.

Proof. Let F be a set of edges of size at most k in G′ such that G′/F is a tree
with at most ` leaves. Let W be a T -witness structure of G′ where T = G′/F .
Let ta be the vertex in V (T ) such that W (ta) contains a. For a vertex bi in
B, if bi is in W (ta) then the lemma holds. Consider a case when bi is not in
W (ta). There exists a vertex tb, different from ta, such that bi is in W (tb).
Similarly, consider vertices tx, ty and tz such that xi, yi and zi are contained
in W (tx),W (ty) and W (tz), respectively.

If neither of ta or tb is contained in set {tx, ty, tz}, then no two vertices in
{tx, ty, tz} can be same as only neighbors of xi, yi, zi are a and bi, and a witness
set needs to be connected. But then, by construction, T [{ta, tx, ty, tz, tb}] has
at least two cycles which share an edge, contradicting that F is a solution.
Without loss of generality, let tx ∈ {ta, tb}. This implies there is an edge tatb
is in T . If ta and tb not equal to ty or tz then, T [{ta, ty, tz, tb}] has at least
two cycles which share tatb, contradicting that F is a solution. Therefore, at
most one of tx, ty, tz can be different from ta or tb. Without loss of generality,
assume that {tx, ty} is a subset of {ta, tb}. If both tx, ty are same as ta, then
the second condition of the lemma is satisfied. Therefore, we assume that
at least one of tx, ty, say tx, is not same as ta which implies tx = tb. By
construction, the only edges incident to xi in G are axi and bxi. This implies
that bxi ∈ F and W (t′b) = W (tb) \ {xi} is connected. Since axi ∈ E(G),
W (t′a) = W (ta) ∪ {xi} is connected. Thus, replacing W (tb) by W (t′b) and
W (ta) by W (t′a) in W yields another T -witness structure of G. Furthermore,
the spanning forest of the new witness structure, F ′ = (F \ {bxi}) ∪ {axi}
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which has same cardinality as that of F . A similar swap can be carried out if
ty = tb. Hence there a witness structure such that for each bi ∈ B if bi is not
in W (ta) then at least two of {xi, yi, zi} are in W (ta).

In the following lemma, we argue that the reduction is safe.

Lemma 6.6. (G,R,B, k) is a Yes instance of RBDS if and only if (G, k′, `′)
is a Yes instance of Bounded CC.

Proof. Let (G,R,B, k) be a Yes instance of RBDS and S be a subset of R
of size k such that S dominates every vertex in B. If S contains less than k
vertices, then we take any of its superset of size exactly k. For each vertex
b in B, we fix a vertex rb in S such that b is neighbor of rb in G. If there
are multiple options for selecting rb then we arbitrarily choose one of them.
Let F = {brb | b ∈ B} ∪ {ar | r ∈ S}. Note that |F | = |B| + k = k′ and
G′[V (F )] is connected. Let T be the graph obtained from G′ by contracting
F . Let W be a T -witness structure of G′. Consider a vertex ta such that a is
in W (ta). Since all the edges in F are contracted to one vertex, set S ∪B is
also contained in W (ta). By construction, R ∪X is an independent set in G′.
No vertex in (R ∪X) \ S is incident on edge which has been contracted. In
other words, these vertices form singleton witness sets in W . Since R ∪X is
an independent set in G′, it follows that set TRX = {tv | v ∈ (R ∪X) \ S}
is an independent set in T of size |R|+ 3|B| − k = `′. Moreover, for all v in
X ′, av ∈ E(T ). Therefore, T is a star (which is a cactus) with `′ leaves. This
implies that F is a solution to (G′, k′, `′).

In the reverse direction, let (G, k′, `′) be a Yes instance of Bounded CC
and F ⊆ E(G) be one of its solution. Then by Lemma 6.5, there exists a
solution F ∗ of size at most k′ such that for all bi ∈ B, either bi ∈ W (ta) or at
least two of xi, yi, zi are in W (ta). Here, W is a G/F ∗-witness structure of G
and ta ∈ V (G/F ∗) such that a ∈ W (ta).

We partition vertices of B into two parts depending on whether they belong
to W (ta) or not. Define Bg = {bi ∈ B | bi ∈ W (ta)}. Let Ra = R ∩W (ta).
Partition Bg into B1 and B2, depending on whether or not they have a
neighbor in Ra. Formally, B1 = {bi ∈ Bg | N(bi)∩Ra 6= ∅} and B2 = Bg \B1.
For a vertex bi in B2 at least one of xi, yi, zi is present in W (ta) as there is no
edge between bi and a. Note that, by construction, xi, yi, zi are not adjacent
with bj for i 6= j. This implies there exists a separate vertex for each bi in
B2 which provides connectivity between a and bi. Let XB

2 be set of vertices
in X ∩W (ta) which provides adjacency between a and bi for some bi in B2.

43



For every bi which is in B \ Bg, by Lemma 6.5, at least two of vertices in
{xi, yi, zi} are present in W (ta).

We can partition W (ta) \ {a} into following four parts: vertices in B
(captured by Bg); vertices in R (captured by Ra); vertices in X which are
present because corresponding bi is not present (captured by B \ Bg); and
vertices in X which are present because they are needed to provide connectivity
between bi and a (captured by XB

2 ). This implies |Bg|+ 2|B \ Bg|+ |Ra|+
|XB

2 |+ |{a}| ≤ |W (ta)|.
We construct a solution S for RBDS by taking vertices in Ra and two more

sets Sg and Sw. Informally, Sg dominates vertices in B2 and Sw dominates
vertices in B \ Bg. We construct Sg in following way. For every vertex bi
in B2, arbitrary pick one of its neighbor in R and add it to Sg. Note that
|Sg| ≤ |XB

2 |. We create another set Sw in the following way. Initialize Sw to
an empty set. For each b in B \Bg, we add an arbitrary neighbor of b in R
to Sw. This implies |Sw| ≤ |B \Bg|.

As cardinality of F ∗ is at most k+ |B|, size of W (ta) is at most |W (ta)| ≤
k+ |B|+1. Putting all inequalities together, we get |Ra|+ |Sg|+ |Sw| ≤ k and
every vertex in B is dominated some vertex in Ra ∪ Sg ∪ Sw. This concludes
the proof.

We are now in the position to present a kernel lower bound for Bounded
Cactus Contraction.

Theorem 6.3. Bounded Cactus Contraction does not admit a com-
pression of size O((k2 + k`)1−ε), for any ε > 0.

Proof. Assuming a contradiction, suppose Bounded CC admits a compres-
sion into Π ⊆ Σ∗ with bitsize in O((k2 + k`)1−ε), for some ε > 0. This implies
that there exists an algorithm A which takes an instance I = (G, k, `) of
Bounded CC and in polynomial time returns an equivalent instance I ′ of Π
with |I ′| ∈ O((k2 + k`)1−ε).

Let (G,R,B, k) be an instance of RBDS, where G is a graph on n vertices.
Using the reduction described, we create an instance (G, k′, `′) of Bounded
CC with |V (G′D)| ∈ O(n), |E(G′D)| ∈ O(n2), k′ = k ≤ |R| ∈ O(n) and
`′ = |B|+ k ∈ O(n). By Lemma 6.6, (G,R,B, k) is a Yes instance of RBDS
if and only if (G, k′, `′) is a Yes instance of Bounded CC. On the instance
(G, k′, `′) we run the algorithm A to obtain an instance I of Π such that
|I| ∈ O((k′2 + k′`′)1−ε). But then we have obtained a compression of size
O(n2−ε) for RBDS, contradicting Proposition 2.
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Corollary 6.3. Bounded Cactus Contraction does not admit a kernel
of size O((k2 + k`)1−ε), for any ε > 0.

7. Conclusion

In this article, we analyze the structure of the family of paths that
allows Path Contraction to admit a polynomial kernel but forbids Tree
Contraction. Apart from solution size k, we make the number of leaves,
`, as an additional parameter to bridge the gap between kernels of these
two problems. We call this problem as Bounded Tree ContractionẆe
present a polynomial kernel for this problem. We also prove that this kernel
is optimal under a certain complexity assumption. We prove similar results
for Out-Tree Contraction and Cactus Contraction problems.
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