
Paths to Trees and Cacti

A. Agrawal1 L. Kanesh2 S. Saurabh1,2 and P. Tale2

May 24, 2017
1 University Of Bergen, Bergen, Norway
2 The Institute of Mathematical Sciences, HBNI, Chennai, India

1

2

3

Graph Modification Problems

F-Modification
Input: A graph G
Question: Can we obtain a graph in F by some modifications in
the graph G?

Modification allowed

Vertex Deletion
Edge Deletion
Edge Addition
Edge Contraction

4

Graph Modification Problems

F-Modification
Input: A graph G
Question: Can we obtain a graph in F by some modifications in
the graph G?

Modification allowed

Vertex Deletion
Edge Deletion
Edge Addition
Edge Contraction

4

F-Modification : Generalization of many NP-hard problems

Graph Problem F Modification
Vertex Cover Independent Sets Vertex Deletion
Feedback vertex set Forests Vertex Deletion
Odd cycle transversal Bipartite Graphs Vertex Deletion
Minimum Fill-In Chordal Graphs Edge Addition
Edge Bipartization Bipartite Graphs Edge Deletion
Cluster Editing Cluster Graphs Edge Addition

& Deletion
Tree Contraction Trees Edge Contraction

5

F-Modification : Generalization of many NP-hard problems

Graph Problem F Modification
Vertex Cover Independent Sets Vertex Deletion
Feedback vertex set Forests Vertex Deletion
Odd cycle transversal Bipartite Graphs Vertex Deletion
Minimum Fill-In Chordal Graphs Edge Addition
Edge Bipartization Bipartite Graphs Edge Deletion
Cluster Editing Cluster Graphs Edge Addition

& Deletion
Tree Contraction Trees Edge Contraction

5

Outline

Parameterized Complexity & Contraction Problems

Tree Contraction with additional parameter

Contraction as a Partition Problem

Kernel for Bounded Tree Contraction

Kernel Lower Bounds

6

Parameterized Complexity &
Contraction Problems

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Kernelization : Quick Overview

Parameterized problem (I, k) admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I ′, k ′)
such that

• |I ′|+ k ′ ≤ h(k)
• (I, k) is YES instance iff (I ′, k ′) is YES instance

8

Kernelization : Quick Overview

Parameterized problem (I, k) admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I ′, k ′)
such that

• |I ′|+ k ′ ≤ h(k)
• (I, k) is YES instance iff (I ′, k ′) is YES instance

8

Kernelization : Quick Overview

• Mathematical analysis of pre-processing.

• Goal: Reduce the size of input instance (in polynomial time)
without changing the answer.

• Not all problems (for given parameter) admit a kernel.
• Not all problems (for given parameter) admit a polynomial

kernel.
• Compression : If (I ′, k ′) is an instance of different problem.

9

Kernelization : Quick Overview

• Mathematical analysis of pre-processing.
• Goal: Reduce the size of input instance (in polynomial time)

without changing the answer.

• Not all problems (for given parameter) admit a kernel.
• Not all problems (for given parameter) admit a polynomial

kernel.
• Compression : If (I ′, k ′) is an instance of different problem.

9

Kernelization : Quick Overview

• Mathematical analysis of pre-processing.
• Goal: Reduce the size of input instance (in polynomial time)

without changing the answer.
• Not all problems (for given parameter) admit a kernel.

• Not all problems (for given parameter) admit a polynomial
kernel.

• Compression : If (I ′, k ′) is an instance of different problem.

9

Kernelization : Quick Overview

• Mathematical analysis of pre-processing.
• Goal: Reduce the size of input instance (in polynomial time)

without changing the answer.
• Not all problems (for given parameter) admit a kernel.
• Not all problems (for given parameter) admit a polynomial

kernel.

• Compression : If (I ′, k ′) is an instance of different problem.

9

Kernelization : Quick Overview

• Mathematical analysis of pre-processing.
• Goal: Reduce the size of input instance (in polynomial time)

without changing the answer.
• Not all problems (for given parameter) admit a kernel.
• Not all problems (for given parameter) admit a polynomial

kernel.
• Compression : If (I ′, k ′) is an instance of different problem.

9

FPT and Kernelization

Problem FPT Kernel
Vertex Cover O(1.27k · n2) 2k2

Feedback Vertex Set O(3.6181k · nc) 4k2

Independent Set No f (k) · |I|O(1) No h(k)
Coloring No f (k) · |I|O(1) No h(k)

10

F-Contraction

F-Contraction Parameter: k
Input: A graph G and integer k
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is in F?

11

F-Contraction : Parameterized Complexity

[Heggernes et al., 2012] Tree Contraction 4k

Path Contraction 2k+o(k)

[Golovach et al., 2013] Planar Contraction FPT
[Cai and Guo, 2013] Clique Contraction 2O(k log k)

[Heggernes et al., 2013] Bipartite Contraction FPT
[Guillemot and Marx, 2013] 2O(k2)

12

F-Contraction : Parameterized Complexity

[Heggernes et al., 2012] Tree Contraction 4k

Path Contraction 2k+o(k)

[Golovach et al., 2013] Planar Contraction FPT
[Cai and Guo, 2013] Clique Contraction 2O(k log k)

[Heggernes et al., 2013] Bipartite Contraction FPT
[Guillemot and Marx, 2013] 2O(k2)

12

F-Contraction : Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be
characterized as P`+1-free graphs or C`-free graphs for ` ≥ 4

• [Agrawal et al., 2017] F is Split Graphs

13

F-Contraction : Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be
characterized as P`+1-free graphs or C`-free graphs for ` ≥ 4

• [Agrawal et al., 2017] F is Split Graphs

13

F-Contraction : Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be
characterized as P`+1-free graphs or C`-free graphs for ` ≥ 4

• [Agrawal et al., 2017] F is Split Graphs

13

Starting Point

Theorem
[Heggernes et al., 2012] Tree Contraction does not admit a
polynomial kernel unless NP ⊆ coNP/poly and Path
Contraction admits a linear vertex kernel.

Why is there a polynomial kernel
for Paths but not for Trees?

14

Starting Point

Theorem
[Heggernes et al., 2012] Tree Contraction does not admit a
polynomial kernel unless NP ⊆ coNP/poly and Path
Contraction admits a linear vertex kernel.

Why is there a polynomial kernel
for Paths but not for Trees?

14

Tree Contraction with additional
parameter

Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: k + `

Input: A graph G and integers k, `
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a tree with at most ` leaves?

Results:

• A kernel with O(k`) vertices and O(k2 + k`) edges.
• It does not admit better kernel unless NP ⊆ coNP/poly.

15

Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: k + `

Input: A graph G and integers k, `
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a tree with at most ` leaves?

Results:

• A kernel with O(k`) vertices and O(k2 + k`) edges.

• It does not admit better kernel unless NP ⊆ coNP/poly.

15

Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: k + `

Input: A graph G and integers k, `
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a tree with at most ` leaves?

Results:

• A kernel with O(k`) vertices and O(k2 + k`) edges.
• It does not admit better kernel unless NP ⊆ coNP/poly.

15

Example : k = 5, ` = 4

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

16

Example : k = 5, ` = 4

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

17

Example : k = 5, ` = 4

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

18

Example : k = 5, ` = 4

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

19

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

20

Contraction as a Partition Problem

F-Contraction as a Partition Problem

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

G is contractible to T if there exists a partition of V (G) into
W (t1),W (t2), . . .W (t|V (T)|) s.t.

• ∀ t ∈ V (T), G [W (t)] is connected
• ti tj ∈ E (T) iff W (ti) and W (tj) are adjacent in G

21

F-Contraction as a Partition Problem

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

W (t1) = {v5, v6, v7, v8} W (t2) = {v9}
W (t3) = {v4} W (t4) = {v1, v2}
W (t5) = {v3} W (t6) = {v10, v12}
W (t7) = {v11} W (t8) = {v13}

22

Witness Structure : Definition

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G

Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)
k =

∑
t∈V (T)(|W (t)| − 1)

We say G is k-contractable to graph T

23

Witness Structure : Definition

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)

k =
∑

t∈V (T)(|W (t)| − 1)
We say G is k-contractable to graph T

23

Witness Structure : Definition

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)
k =

∑
t∈V (T)(|W (t)| − 1)

We say G is k-contractable to graph T

23

Witness Structure : Observations

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to H and W be its H-witness structure then,

• |V (G)| ≤ |V (H)|+ k;
• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

24

Witness Structure : Observations

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to H and W be its H-witness structure then,

• |V (G)| ≤ |V (H)|+ k;

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

24

Witness Structure : Observations

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to H and W be its H-witness structure then,

• |V (G)| ≤ |V (H)|+ k;
• No witness set in W contains more than k + 1 vertices;

• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

24

Witness Structure : Observations

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to H and W be its H-witness structure then,

• |V (G)| ≤ |V (H)|+ k;
• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;

• Union of big witness sets in W contains at most 2k vertices.

24

Witness Structure : Observations

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to H and W be its H-witness structure then,

• |V (G)| ≤ |V (H)|+ k;
• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices. 24

Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction
Prop. 2 F is closed under “uncontracting” internal vertex
Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25

Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction

Prop. 2 F is closed under “uncontracting” internal vertex
Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25

Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction
Prop. 2 F is closed under “uncontracting” internal vertex

Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25

Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction
Prop. 2 F is closed under “uncontracting” internal vertex
Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25

Kernel for Bounded Tree
Contraction

Reduction Rule

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

Reduction Rule

Let C1,C2 be the connected components in G − {uv}.

If |V (C1)|, |V (C2)| ≥ k + 2 then contract the edge uv.

The resulting instance is (G/{uv}, k, `).
26

Reduction Rule is sound

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

By Prop 1, F is closed under edge contraction

27

Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .

28

Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .

28

Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .

28

Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .

28

Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .

28

Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .

28

Kernel for Bounded TC : Bounding |V (G)|

• Apply Reduction Rule Exhaustively.
• We bound V (T) and then apply |V (G)| ≤ |V (T)|+ k.
• |V (T)| ≤ #leaves × maximum dist. between root and a leaf.
• P = {t1, t2, . . . , tq} be the longest path from root to a leaf.
• If q ≤ 2k + 5 then |V (T)| ≤ O(k`).

29

Kernel for Bounded TC : Bounding |V (G)|

• Apply Reduction Rule Exhaustively.
• We bound V (T) and then apply |V (G)| ≤ |V (T)|+ k.
• |V (T)| ≤ #leaves × maximum dist. between root and a leaf.
• P = {t1, t2, . . . , tq} be the longest path from root to a leaf.
• If q ≤ 2k + 5 then |V (T)| ≤ O(k`).

29

Kernel for Bounded TC : Bounding |V (G)|

• Apply Reduction Rule Exhaustively.
• We bound V (T) and then apply |V (G)| ≤ |V (T)|+ k.
• |V (T)| ≤ #leaves × maximum dist. between root and a leaf.
• P = {t1, t2, . . . , tq} be the longest path from root to a leaf.
• If q ≤ 2k + 5 then |V (T)| ≤ O(k`).

29

Kernel for Bounded TC : Bounding |V (G)|

• Apply Reduction Rule Exhaustively.
• We bound V (T) and then apply |V (G)| ≤ |V (T)|+ k.
• |V (T)| ≤ #leaves × maximum dist. between root and a leaf.
• P = {t1, t2, . . . , tq} be the longest path from root to a leaf.
• If q ≤ 2k + 5 then |V (T)| ≤ O(k`).

29

Kernel for Bounded TC : Bounding |V (G)|

• Apply Reduction Rule Exhaustively.
• We bound V (T) and then apply |V (G)| ≤ |V (T)|+ k.
• |V (T)| ≤ #leaves × maximum dist. between root and a leaf.
• P = {t1, t2, . . . , tq} be the longest path from root to a leaf.
• If q ≤ 2k + 5 then |V (T)| ≤ O(k`).

29

Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

k + 2 k + 2
No-consecutive
Small-witness
set

• If q > 2k + 5 then partition into left, right and middle portion
• No two consecutive small witness set in middle portion
• There are at most k big witness set

30

Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

k + 2 k + 2
No-consecutive
Small-witness
set

• If q > 2k + 5 then partition into left, right and middle portion
• No two consecutive small witness set in middle portion
• There are at most k big witness set

30

Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

k + 2 k + 2
No-consecutive
Small-witness
set

• If q > 2k + 5 then partition into left, right and middle portion
• No two consecutive small witness set in middle portion
• There are at most k big witness set

30

Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

at most 2k + 2
witness set

• There are at most k big witness set
• q ≤ 4k + 4 and |V (T)| ≤ `(4k + 4).
• |V (G)| is at most O(k`).

31

Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

at most 2k + 2
witness set

• There are at most k big witness set
• q ≤ 4k + 4 and |V (T)| ≤ `(4k + 4).
• |V (G)| is at most O(k`).

31

Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

at most 2k + 2
witness set

• There are at most k big witness set
• q ≤ 4k + 4 and |V (T)| ≤ `(4k + 4).
• |V (G)| is at most O(k`).

31

Kernel for Bounded TC: Bounding |E (G)|

V (F)

G− V (F)

• G − V (F) is a forest and |V (F)| ≤ 2k
• Max deg(T) ≤ ` ⇒ Max deg(G) ≤ `+ k.

edges contained in V (F) is O(k2)
edges contained in V (G) \ V (F) is O(k`)
edges across V (F) and V (G) \ V (F) is O(k2 + k`)

32

Kernel for Bounded TC: Bounding |E (G)|

V (F)

G− V (F)

• G − V (F) is a forest and |V (F)| ≤ 2k

• Max deg(T) ≤ ` ⇒ Max deg(G) ≤ `+ k.

edges contained in V (F) is O(k2)
edges contained in V (G) \ V (F) is O(k`)
edges across V (F) and V (G) \ V (F) is O(k2 + k`)

32

Kernel for Bounded TC: Bounding |E (G)|

V (F)

G− V (F)

• G − V (F) is a forest and |V (F)| ≤ 2k
• Max deg(T) ≤ ` ⇒ Max deg(G) ≤ `+ k.

edges contained in V (F) is O(k2)
edges contained in V (G) \ V (F) is O(k`)
edges across V (F) and V (G) \ V (F) is O(k2 + k`)

32

Kernel for Bounded TC: Bounding |E (G)|

V (F)

G− V (F)

• G − V (F) is a forest and |V (F)| ≤ 2k
• Max deg(T) ≤ ` ⇒ Max deg(G) ≤ `+ k.

edges contained in V (F) is O(k2)

edges contained in V (G) \ V (F) is O(k`)
edges across V (F) and V (G) \ V (F) is O(k2 + k`)

32

Kernel for Bounded TC: Bounding |E (G)|

V (F)

G− V (F)

• G − V (F) is a forest and |V (F)| ≤ 2k
• Max deg(T) ≤ ` ⇒ Max deg(G) ≤ `+ k.

edges contained in V (F) is O(k2)
edges contained in V (G) \ V (F) is O(k`)

edges across V (F) and V (G) \ V (F) is O(k2 + k`)

32

Kernel for Bounded TC: Bounding |E (G)|

V (F)

G− V (F)

• G − V (F) is a forest and |V (F)| ≤ 2k
• Max deg(T) ≤ ` ⇒ Max deg(G) ≤ `+ k.

edges contained in V (F) is O(k2)
edges contained in V (G) \ V (F) is O(k`)
edges across V (F) and V (G) \ V (F) is O(k2 + k`)

32

Kernel for Bounded TC

• Apply Reduction Rule exhaustively.

• Each application of Reduction Rule contracts an edge and
hence it can be applied at most m many times.

• Get reduced instance in polynomial time.
• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).

33

Kernel for Bounded TC

• Apply Reduction Rule exhaustively.
• Each application of Reduction Rule contracts an edge and

hence it can be applied at most m many times.

• Get reduced instance in polynomial time.
• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).

33

Kernel for Bounded TC

• Apply Reduction Rule exhaustively.
• Each application of Reduction Rule contracts an edge and

hence it can be applied at most m many times.
• Get reduced instance in polynomial time.

• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).

33

Kernel for Bounded TC

• Apply Reduction Rule exhaustively.
• Each application of Reduction Rule contracts an edge and

hence it can be applied at most m many times.
• Get reduced instance in polynomial time.
• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).

33

Kernel for Bounded TC

• Apply Reduction Rule exhaustively.
• Each application of Reduction Rule contracts an edge and

hence it can be applied at most m many times.
• Get reduced instance in polynomial time.
• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).

33

Kernel for Bounded TC

• Apply Reduction Rule exhaustively.
• Each application of Reduction Rule contracts an edge and

hence it can be applied at most m many times.
• Get reduced instance in polynomial time.
• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).

33

Extending to other problem

Definition
An out-tree T is a digraph where each vertex has in-degree at
most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.
• Similar algorithm with adapation of witness structure to

directed graph.

Theorem
Bounded Out-Tree Contraction admits a kernel of size
O(k2 + k`).

34

Extending to other problem

Definition
An out-tree T is a digraph where each vertex has in-degree at
most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.

• Similar algorithm with adapation of witness structure to
directed graph.

Theorem
Bounded Out-Tree Contraction admits a kernel of size
O(k2 + k`).

34

Extending to other problem

Definition
An out-tree T is a digraph where each vertex has in-degree at
most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.
• Similar algorithm with adapation of witness structure to

directed graph.

Theorem
Bounded Out-Tree Contraction admits a kernel of size
O(k2 + k`).

34

Extending to other problem

Definition
An out-tree T is a digraph where each vertex has in-degree at
most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.
• Similar algorithm with adapation of witness structure to

directed graph.

Theorem
Bounded Out-Tree Contraction admits a kernel of size
O(k2 + k`).

34

Extending to other problem

Definition
An out-tree T is a digraph where each vertex has in-degree at
most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.
• Similar algorithm with adapation of witness structure to

directed graph.

Theorem
Bounded Out-Tree Contraction admits a kernel of size
O(k2 + k`).

34

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.
• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.

• Block decomposition of a connected graph is unique and is a
tree.

• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.

• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.
• A block in a cactus can be either a cycle or an edge.

• # leaves in a cactus is defined to be # leaves in its block
decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.
• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.
• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.
• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).

35

Kernel Lower Bounds

Kernel Lower Bounds

Dominating Set Parameter: k
Input: Graph G and integer k
Question: Does there exists X ⊆ V (G) of size at most k, such
that for each v ∈ V (G), X ∩ N[v] 6= ∅?

[Jansen and Pieterse, 2015] proved that Dominating Set does
not admit a compression of bit size O(n2−ε), for any ε > 0 unless
NP ⊆ coNP/poly.

36

Kernel Lower Bounds

Dominating Set Parameter: k
Input: Graph G and integer k
Question: Does there exists X ⊆ V (G) of size at most k, such
that for each v ∈ V (G), X ∩ N[v] 6= ∅?

[Jansen and Pieterse, 2015] proved that Dominating Set does
not admit a compression of bit size O(n2−ε), for any ε > 0 unless
NP ⊆ coNP/poly.

36

Kernel Lower Bounds

37

Kernel Lower Bounds

Red-Blue Dominating Set Parameter: k
Input: Bipartite Graph G := (R ∪ B; E) and integer k
Question: Does there exists X ⊆ R of size at most k, such that
for each v ∈ B, X ∩ N[v] 6= ∅?

By [Jansen and Pieterse, 2015]; Red-Blue Dominating Set
does not admit a polynomial compression of bit size O(n2−ε), for
any ε > 0 unless NP ⊆ coNP/poly.

38

Kernel Lower Bounds

Red-Blue Dominating Set Parameter: k
Input: Bipartite Graph G := (R ∪ B; E) and integer k
Question: Does there exists X ⊆ R of size at most k, such that
for each v ∈ B, X ∩ N[v] 6= ∅?

By [Jansen and Pieterse, 2015]; Red-Blue Dominating Set
does not admit a polynomial compression of bit size O(n2−ε), for
any ε > 0 unless NP ⊆ coNP/poly.

38

Kernel Lower Bounds

r1

r2

r|R|

b1

b2

b|B|

x1

y1

z1

x2

y2

z2

x|B|
y|B|
z|B|

a

BR

X

...

...

...

Figure 1: From RBDS to Bounded TC 39

Kernel Lower Bounds

Theorem

Bounded TC does not admit a compression of size
O((k2 + k`)1−ε), for any ε > 0.

Theorem

Bounded CC does not admit a compression of size
O((k2 + k`)1−ε), for any ε > 0.

Theorem

Bounded OTC does not admit a compression of size
O((k2 + k`)1−ε), for any ε > 0.

40

Thank you!

41

References

Agrawal, A., Lokshtanov, D., Saurabh, S., and Zehavi, M.
(2017).
Split contraction: The untold story.
In 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, Hannover, Germany, pages 5:1–5:14.

Cai, L. and Guo, C. (2013).
Contracting few edges to remove forbidden induced
subgraphs.
In IPEC, pages 97–109.

Golovach, P. A., van ’t Hof, P., and Paulusma, D. (2013).
Obtaining planarity by contracting few edges.
Theoretical Computer Science, 476:38–46.

Guillemot, S. and Marx, D. (2013).
A faster FPT algorithm for bipartite contraction.
Inf. Process. Lett., 113(22–24):906–912.

Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., and
Paul, C. (2012).
Contracting graphs to paths and trees.
In Proceedings of the 6th International Conference on
Parameterized and Exact Computation, IPEC’11, pages 55–66,
Berlin, Heidelberg. Springer-Verlag.

Heggernes, P., van ’t Hof, P., Lokshtanov, D., and Paul, C.
(2013).
Obtaining a bipartite graph by contracting few edges.
SIAM Journal on Discrete Mathematics, 27(4):2143–2156.

Jansen, B. M. P. and Pieterse, A. (2015).
Sparsification upper and lower bounds for graphs
problems and not-all-equal SAT.
In 10th International Symposium on Parameterized and Exact
Computation, IPEC, pages 163–174.

Lokshtanov, D., Misra, N., and Saurabh, S. (2013).
On the hardness of eliminating small induced subgraphs
by contracting edges.
In IPEC, pages 243–254.

42

	Parameterized Complexity & Contraction Problems
	Tree Contraction with additional parameter
	Contraction as a Partition Problem
	Kernel for Bounded Tree Contraction
	Kernel Lower Bounds

