Paths to Trees and Cacti

A. Agrawal ${ }^{1} \quad$ L. Kanesh ${ }^{2} \quad$ S. Saurabh ${ }^{1,2}$ and P. Tale ${ }^{2}$

May 24, 2017
${ }^{1}$ University Of Bergen, Bergen, Norway
2 The Institute of Mathematical Sciences, HBNI, Chennai, India

Graph Modification Problems

\mathcal{F}-Modification
Input: A graph G
Question: Can we obtain a graph in \mathcal{F} by some modifications in the graph G ?

Modification allowed

- Vertex Deletion
- Fdge Deletion
- Edge Addition
- Edge Contraction

Graph Modification Problems

\mathcal{F}-Modification
Input: A graph G
Question: Can we obtain a graph in \mathcal{F} by some modifications in the graph G ?

Modification allowed

- Vertex Deletion
- Edge Deletion
- Edge Addition
- Edge Contraction
\mathcal{F}-Modification: Generalization of many NP-hard problems
\mathcal{F}-Modification: Generalization of many NP-hard problems

Graph Problem	\mathcal{F}	Modification
Vertex Cover	Independent Sets	Vertex Deletion
Feedback Vertex set	Forests	Vertex Deletion
Odd CyCle transversal	Bipartite Graphs	Vertex Deletion
Minimum Fill-In	Chordal Graphs	Edge Addition
Edge Bipartization	Bipartite Graphs	Edge Deletion
Cluster Editing	Cluster Graphs	Edge Addition
		\& Deletion
Tree Contraction	Trees	Edge Contraction

Outline

Parameterized Complexity \& Contraction Problems

Tree Contraction with additional parameter

Contraction as a Partition Problem

Kernel for Bounded Tree Contraction

Kernel Lower Bounds

Parameterized Complexity \&
Contraction Problems

Parameterized Complexity : Quick Overview

- Goal : Find better ways to solve NP-hard problems.
- Associate (small) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k
- Parameterized nroblem (l k) is fixed-narameter tractahle (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|/|^{\mathcal{O}(1)}\right)$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT $\subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2]$

Parameterized Complexity : Quick Overview

- Goal : Find better ways to solve NP-hard problems.
- Associate (small) parameter k to each instance l.
- Restrict the combinatorial explosion to the parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|/|^{\mathcal{O}(1)}\right)$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT $\subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2]$

Parameterized Complexity : Quick Overview

- Goal : Find better ways to solve NP-hard problems.
- Associate (small) parameter k to each instance l.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k)$
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : $F P T \subseteq W[1] \subseteq W[2]$

Parameterized Complexity : Quick Overview

- Goal : Find better ways to solve NP-hard problems.
- Associate (small) parameter k to each instance l.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|/|^{\mathcal{O}(1)}\right)$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT $\subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2]$

Parameterized Complexity : Quick Overview

- Goal : Find better ways to solve NP-hard problems.
- Associate (small) parameter k to each instance l.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot\left|\left|\left.\right|^{\mathcal{O}(1)}\right)\right.\right.$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : $\mathrm{FPT} \subseteq \mathrm{W}[1] \subseteq \mathrm{W}[2] \ldots$

Kernelization : Quick Overview

Kernelization : Quick Overview

Parameterized problem (I, k) admits a $h(k)$-kernel if there exists a poly-time algorithm \mathcal{A} which given an input (I, k) outputs $\left(I^{\prime}, k^{\prime}\right)$ such that

- $\left|I^{\prime}\right|+k^{\prime} \leq h(k)$
- (I, k) is YES instance iff $\left(I^{\prime}, k^{\prime}\right)$ is YES instance

Kernelization : Quick Overview

- Mathematical analysis of pre-processing.

Kernelization : Quick Overview

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.

Kernelization : Quick Overview

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.
- Not all problems (for given parameter) admit a kernel.

Kernelization : Quick Overview

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.
- Not all problems (for given parameter) admit a kernel.
- Not all problems (for given parameter) admit a polynomial kernel.

Kernelization : Quick Overview

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.
- Not all problems (for given parameter) admit a kernel.
- Not all problems (for given parameter) admit a polynomial kernel.
- Compression: If $\left(I^{\prime}, k^{\prime}\right)$ is an instance of different problem.

FPT and Kernelization

Problem	FPT	Kernel
Vertex Cover	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$	$2 k^{2}$
Feedback Vertex Set	$\mathcal{O}\left(3.6181^{k} \cdot n^{c}\right)$	$4 k^{2}$
Independent Set	No $\left.f(k) \cdot\|I\|\right\|^{\mathcal{O}(1)}$	No $h(k)$
Coloring	No $f(k) \cdot\|I\|^{\mathcal{O}(1)}$	No $h(k)$

\mathcal{F}-Contraction

\mathcal{F}-Contraction Parameter: k
Input: A graph G and integer k
Question: Does there exist $F \subseteq E(G)$ of size at most k such that G / F is in \mathcal{F} ?

\mathcal{F}-Contraction : Parameterized Complexity

[Heggernes et al., 2012]	Tree Contraction	4^{k}
	Path Contraction	$2^{k+o(k)}$

\mathcal{F}-Contraction : Parameterized Complexity

[Heggernes et al., 2012]	Tree Contraction Path Contraction	4^{k} $2^{k+o(k)}$
[Golovach et al., 2013]	Planar Contraction	FPT
[Cai and Guo, 2013]	CliQue Contraction	$2^{\mathcal{O}(k \log k)}$
[Heggernes et al., 2013]	Bipartite Contraction	FPT
[Guillemot and Marx, 2013]		$2^{\mathcal{O}\left(k^{2}\right)}$

\mathcal{F}-Contraction : Parameterized Complexity

Theorem

\mathcal{F}-Edge Contraction is W [2]-hard if

\mathcal{F}-Contraction : Parameterized Complexity

Theorem

\mathcal{F}-Edge Contraction is W [2]-hard if

- [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be characterized as $P_{\ell+1}$-free graphs or C_{ℓ}-free graphs for $\ell \geq 4$

\mathcal{F}-Contraction : Parameterized Complexity

Theorem

\mathcal{F}-Edge Contraction is W [2]-hard if

- [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be characterized as $P_{\ell+1}$-free graphs or C_{ℓ}-free graphs for $\ell \geq 4$
- [Agrawal et al., 2017] \mathcal{F} is Split Graphs

Starting Point

Theorem

[Heggernes et al., 2012] Tree Contraction does not admit a polynomial kernel unless NP \subseteq coNP/poly and Path
Contraction admits a linear vertex kernel.

Starting Point

Theorem
 [Heggernes et al., 2012] Tree Contraction does not admit a polynomial kernel unless NP \subseteq coNP/poly and Path
 Contraction admits a linear vertex kernel.

Why is there a polynomial kernel for Paths but not for Trees?

Tree Contraction with additional parameter

Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: $k+\ell$ Input: A graph G and integers k, ℓ
Question: Does there exist $F \subseteq E(G)$ of size at most k such that G / F is a tree with at most ℓ leaves?

Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: $k+\ell$ Input: A graph G and integers k, ℓ
Question: Does there exist $F \subseteq E(G)$ of size at most k such that G / F is a tree with at most ℓ leaves?

Results:

- A kernel with $\mathcal{O}(k \ell)$ vertices and $\mathcal{O}\left(k^{2}+k \ell\right)$ edges.

Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: $k+\ell$ Input: A graph G and integers k, ℓ
Question: Does there exist $F \subseteq E(G)$ of size at most k such that G / F is a tree with at most ℓ leaves?

Results:

- A kernel with $\mathcal{O}(k \ell)$ vertices and $\mathcal{O}\left(k^{2}+k \ell\right)$ edges.
- It does not admit better kernel unless NP \subseteq coNP/poly.

Example : $k=5, \ell=4$

Example : $k=5, \ell=4$

Example : $k=5, \ell=4$

Example : $k=5, \ell=4$

Contraction as a Partition Problem

\mathcal{F}-Contraction as a Partition Problem

G is contractible to T if there exists a partition of $V(G)$ into $W\left(t_{1}\right), W\left(t_{2}\right), \ldots W\left(t_{|V(T)|}\right)$ s.t.

- $\forall t \in V(T), G[W(t)]$ is connected
- $t_{i} t_{j} \in E(T)$ iff $W\left(t_{i}\right)$ and $W\left(t_{j}\right)$ are adjacent in G

\mathcal{F}-Contraction as a Partition Problem

$$
\begin{array}{ll}
W\left(t_{1}\right)=\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} & W\left(t_{2}\right)=\left\{v_{9}\right\} \\
W\left(t_{3}\right)=\left\{v_{4}\right\} & W\left(t_{4}\right)=\left\{v_{1}, v_{2}\right\} \\
W\left(t_{5}\right)=\left\{v_{3}\right\} & W\left(t_{6}\right)=\left\{v_{10}, v_{12}\right\} \\
W\left(t_{7}\right)=\left\{v_{11}\right\} & W\left(t_{8}\right)=\left\{v_{13}\right\}
\end{array}
$$

Witness Structure : Definition

- $\mathcal{W}=\{W(t) \mid t \in V(T)\}$ is called the T-witness structure of G

Witness Structure : Definition

- $\mathcal{W}=\{W(t) \mid t \in V(T)\}$ is called the T-witness structure of G
- Big-witness set if $|W(t)|>1$ e.g. $W\left(t_{1}\right), W\left(t_{6}\right), W\left(t_{4}\right)$

Witness Structure : Definition

- $\mathcal{W}=\{W(t) \mid t \in V(T)\}$ is called the T-witness structure of G
- Big-witness set if $|W(t)|>1$ e.g. $W\left(t_{1}\right), W\left(t_{6}\right), W\left(t_{4}\right)$
- $k=\sum_{t \in V(T)}(|W(t)|-1)$

We say G is k-contractable to graph T

Witness Structure : Observations

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

Witness Structure : Observations

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

- $|V(G)| \leq|V(H)|+k ;$

Witness Structure : Observations

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

- $|V(G)| \leq|V(H)|+k$;
- No witness set in \mathcal{W} contains more than $k+1$ vertices;

Witness Structure : Observations

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

- $|V(G)| \leq|V(H)|+k$;
- No witness set in \mathcal{W} contains more than $k+1$ vertices;
- \mathcal{W} has at most k big witness sets;

Witness Structure : Observations

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

- $|V(G)| \leq|V(H)|+k$;
- No witness set in \mathcal{W} contains more than $k+1$ vertices;
- \mathcal{W} has at most k big witness sets;
- Union of big witness sets in \mathcal{W} contains at most $2 k$ vertices.

Properties of \mathcal{F}

$\mathcal{F}=\{T \mid T$ is a tree and \#leaves in it is at most $\ell\}$

Properties of \mathcal{F}

$\mathcal{F}=\{T \mid T$ is a tree and \#leaves in it is at most $\ell\}$
Prop. $1 \mathcal{F}$ is closed under edge contraction

Properties of \mathcal{F}

$$
\mathcal{F}=\{T \mid T \text { is a tree and \#leaves in it is at most } \ell\}
$$

Prop. $1 \mathcal{F}$ is closed under edge contraction
Prop. $2 \mathcal{F}$ is closed under "uncontracting" internal vertex

Properties of \mathcal{F}

$$
\mathcal{F}=\{T \mid T \text { is a tree and \#leaves in it is at most } \ell\}
$$

Prop. $1 \mathcal{F}$ is closed under edge contraction
Prop. $2 \mathcal{F}$ is closed under "uncontracting" internal vertex
Let $L \cup R$ be a parition of $N\left(u^{*}\right)$.
Delete u^{*} and edge $u v$ s.t. $N(u)=L$ and $N(v)=R$.
Resulting graph is in \mathcal{F}

Kernel for Bounded Tree
 Contraction

Reduction Rule

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

Reduction Rule

Let C_{1}, C_{2} be the connected components in $G-\{u v\}$.
If $\left|V\left(C_{1}\right)\right|,\left|V\left(C_{2}\right)\right| \geq k+2$ then contract the edge uv.
The resulting instance is $(G /\{u v\}, k, \ell)$.

Reduction Rule is sound

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

By Prop 1, \mathcal{F} is closed under edge contraction

Reduction Rule is complete

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

■ To Prove : $u v$ is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $u v \in F$.
- C_{1}, C_{2} are too big to be contained in a witness set.
- $t_{u v}$ is not a leaf in G / F where $u, v \in W\left(t_{u v}\right)$.
- By Prop 2, uncontract node $t_{u v}$ and resulting graph is in \mathcal{F}
- This contradicts the minimality of F

Reduction Rule is complete

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

■ To Prove : $u v$ is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $u v \in F$.
- C_{1}, C_{2} are too big to be contained in a witness set.
- $t_{u v}$ is not a leaf in G / F where $u, v \in W\left(t_{u v}\right)$.
- By Prop 2, uncontract node $t_{u v}$ and resulting graph is in \mathcal{F}
- This contradicts the minimality of F

Reduction Rule is complete

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

■ To Prove : $u v$ is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $u v \in F$.
- C_{1}, C_{2} are too big to be contained in a witness set.
- $t_{u v}$ is not a leaf in G / F where $u, v \in W\left(t_{u v}\right)$.
- By Prop 2, uncontract node $t_{u v}$ and resulting graph is in \mathcal{F}
- This contradicts the minimality of F

Reduction Rule is complete

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

■ To Prove : $u v$ is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $u v \in F$.
- C_{1}, C_{2} are too big to be contained in a witness set.
- $t_{u v}$ is not a leaf in G / F where $u, v \in W\left(t_{u v}\right)$.
- By Prop 2, uncontract node $t_{u v}$ and resulting graph is in \mathcal{F}
- This contradicts the minimality of F

Reduction Rule is complete

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

■ To Prove : $u v$ is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $u v \in F$.
- C_{1}, C_{2} are too big to be contained in a witness set.
- $t_{u v}$ is not a leaf in G / F where $u, v \in W\left(t_{u v}\right)$.

■ By Prop 2, uncontract node $t_{u v}$ and resulting graph is in \mathcal{F}.

Reduction Rule is complete

$$
\left|V\left(C_{1}\right)\right| \geq k+2 \quad\left|V\left(C_{2}\right)\right| \geq k+2
$$

■ To Prove : $u v$ is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $u v \in F$.
- C_{1}, C_{2} are too big to be contained in a witness set.
- $t_{u v}$ is not a leaf in G / F where $u, v \in W\left(t_{u v}\right)$.

■ By Prop 2, uncontract node $t_{u v}$ and resulting graph is in \mathcal{F}.

- This contradicts the minimality of F.

Kernel for Bounded TC : Bounding $|V(G)|$

- Apply Reduction Rule Exhaustively.

Kernel for Bounded TC : Bounding $|V(G)|$

- Apply Reduction Rule Exhaustively.
- We bound $V(T)$ and then apply $|V(G)| \leq|V(T)|+k$.
- $|V(T)| \leq$ \#leaves \times maximum dist. between root and a leaf
- $P=\left\{t_{1}, t_{2}, \ldots, t_{q}\right\}$ be the longest path from root to a leaf
- If $a<2 k+5$ then $|V(T)|<\mathcal{O}(k \ell)$

Kernel for Bounded TC : Bounding $|V(G)|$

- Apply Reduction Rule Exhaustively.
- We bound $V(T)$ and then apply $|V(G)| \leq|V(T)|+k$.
- $|V(T)| \leq$ \#leaves \times maximum dist. between root and a leaf.
- If $q \leq 2 k+5$ then $|V(T)| \leq \mathcal{O}(k \ell)$.

Kernel for Bounded TC : Bounding $|V(G)|$

- Apply Reduction Rule Exhaustively.
- We bound $V(T)$ and then apply $|V(G)| \leq|V(T)|+k$.
- $|V(T)| \leq$ \#leaves \times maximum dist. between root and a leaf.
- $P=\left\{t_{1}, t_{2}, \ldots, t_{q}\right\}$ be the longest path from root to a leaf.
- If $q \leq 2 k+5$ then $|V(T)| \leq \mathcal{O}(k \ell)$.

Kernel for Bounded TC : Bounding $|V(G)|$

- Apply Reduction Rule Exhaustively.
- We bound $V(T)$ and then apply $|V(G)| \leq|V(T)|+k$.
- $|V(T)| \leq$ \#leaves \times maximum dist. between root and a leaf.
- $P=\left\{t_{1}, t_{2}, \ldots, t_{q}\right\}$ be the longest path from root to a leaf.
- If $q \leq 2 k+5$ then $|V(T)| \leq \mathcal{O}(k \ell)$.

Kernel for Bounded TC : Bounding $|V(G)|$

- If $q>2 k+5$ then partition into left, right and middle portion
- No two consecutive small witness set in middle portion
- There are at most k big witness set

Kernel for Bounded TC : Bounding $|V(G)|$

- If $q>2 k+5$ then partition into left, right and middle portion
- No two consecutive small witness set in middle portion
- There are at most k big witness set

Kernel for Bounded TC : Bounding $|V(G)|$

- If $q>2 k+5$ then partition into left, right and middle portion
- No two consecutive small witness set in middle portion
- There are at most k big witness set

Kernel for Bounded TC : Bounding $|V(G)|$

- There are at most k big witness set
- $q \leq 4 k+4$ and $|V(T)| \leq \ell(4 k+4)$
- $|V(G)|$ is at most $\mathcal{O}(k \ell)$.

Kernel for Bounded TC : Bounding $|V(G)|$

- There are at most k big witness set
- $q \leq 4 k+4$ and $|V(T)| \leq \ell(4 k+4)$.
- $|V(G)|$ is at most $\mathcal{O}(k \ell)$.

Kernel for Bounded TC : Bounding $|V(G)|$

- There are at most k big witness set
- $q \leq 4 k+4$ and $|V(T)| \leq \ell(4 k+4)$.
- $|V(G)|$ is at most $\mathcal{O}(k \ell)$.

Kernel for Bounded TC: Bounding $|E(G)|$

Kernel for Bounded TC: Bounding $|E(G)|$

- $G-V(F)$ is a forest and $|V(F)| \leq 2 k$

Kernel for Bounded TC: Bounding $|E(G)|$

- $G-V(F)$ is a forest and $|V(F)| \leq 2 k$
- $\operatorname{Max} _d e g(T) \leq \ell \Rightarrow \operatorname{Max} \operatorname{deg}(G) \leq \ell+k$.

Kernel for Bounded TC: Bounding $|E(G)|$

- $G-V(F)$ is a forest and $|V(F)| \leq 2 k$
- $\operatorname{Max} _\operatorname{deg}(T) \leq \ell \Rightarrow \operatorname{Max_ deg}(G) \leq \ell+k$.

■ \# edges contained in $V(F)$ is $\mathcal{O}\left(k^{2}\right)$

Kernel for Bounded TC: Bounding $|E(G)|$

- $G-V(F)$ is a forest and $|V(F)| \leq 2 k$
- $\operatorname{Max} _\operatorname{deg}(T) \leq \ell \Rightarrow \operatorname{Max} \operatorname{deg}(G) \leq \ell+k$.
- \# edges contained in $V(F)$ is $\mathcal{O}\left(k^{2}\right)$
- \# edges contained in $V(G) \backslash V(F)$ is $\mathcal{O}(k \ell)$

Kernel for Bounded TC: Bounding $|E(G)|$

- $G-V(F)$ is a forest and $|V(F)| \leq 2 k$
- $\operatorname{Max} _\operatorname{deg}(T) \leq \ell \Rightarrow \operatorname{Max} \operatorname{deg}(G) \leq \ell+k$.
- \# edges contained in $V(F)$ is $\mathcal{O}\left(k^{2}\right)$
- \# edges contained in $V(G) \backslash V(F)$ is $\mathcal{O}(k \ell)$

■ \# edges across $V(F)$ and $V(G) \backslash V(F)$ is $\mathcal{O}\left(k^{2}+k \ell\right)$

Kernel for Bounded TC

- Apply Reduction Rule exhaustively.

Kernel for Bounded TC

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most m many times.

Kernel for Bounded TC

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most m many times.
- Get reduced instance in polynomial time.

Kernel for Bounded TC

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most m many times.
- Get reduced instance in polynomial time.
- If vertices or edges are not bounded, return a NO instance.

Kernel for Bounded TC

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most m many times.
- Get reduced instance in polynomial time.
- If vertices or edges are not bounded, return a NO instance.

Kernel for Bounded TC

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most m many times.
- Get reduced instance in polynomial time.
- If vertices or edges are not bounded, return a NO instance.

Theorem

Bounded Tree Contraction admits a kernel of size $\mathcal{O}\left(k^{2}+k \ell\right)$.

Extending to other problem

Definition

An out-tree T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

Extending to other problem

Definition

An out-tree T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0 ; all directed paths are away from the root.

Extending to other problem

Definition

An out-tree T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0; all directed paths are away from the root.
- Similar algorithm with adapation of witness structure to directed graph.

Extending to other problem

Definition

An out-tree T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0; all directed paths are away from the root.
- Similar algorithm with adapation of witness structure to directed graph.

Extending to other problem

Definition

An out-tree T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0; all directed paths are away from the root.
- Similar algorithm with adapation of witness structure to directed graph.

Theorem

Bounded Out-Tree Contraction admits a kernel of size $\mathcal{O}\left(k^{2}+k \ell\right)$.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

- block : A maximal 2-connected subgraph.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

- block: A maximal 2-connected subgraph.
- Block decomposition of a connected graph is unique and is a tree.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

- block: A maximal 2-connected subgraph.
- Block decomposition of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

- block: A maximal 2-connected subgraph.
- Block decomposition of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.
- \# leaves in a cactus is defined to be \# leaves in its block decomposition.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

- block: A maximal 2-connected subgraph.
- Block decomposition of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.
- \# leaves in a cactus is defined to be \# leaves in its block decomposition.

Extending to other problem

Definition

A cactus is an undirected graph such that every edge is contained in at most one cycle.

- block: A maximal 2-connected subgraph.
- Block decomposition of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.
- \# leaves in a cactus is defined to be \# leaves in its block decomposition.

Theorem

Bounded Cactus Contraction admits a kernel of size $\mathcal{O}\left(k^{2}+k \ell\right)$.

Kernel Lower Bounds

Kernel Lower Bounds

Dominating Set
Input: Graph G and integer k
Question: Does there exists $X \subseteq V(G)$ of size at most k, such that for each $v \in V(G), X \cap N[v] \neq \emptyset$?

Kernel Lower Bounds

Dominating Set

Input: Graph G and integer k
Question: Does there exists $X \subseteq V(G)$ of size at most k, such that for each $v \in V(G), X \cap N[v] \neq \emptyset$?
[Jansen and Pieterse, 2015] proved that Dominating Set does not admit a compression of bit size $\mathcal{O}\left(n^{2-\epsilon}\right)$, for any $\epsilon>0$ unless $N P \subseteq$ coNP/poly.

Kernel Lower Bounds

Kernel Lower Bounds

Red-Blue Dominating Set
Parameter: k
Input: Bipartite Graph $G:=(R \cup B ; E)$ and integer k
Question: Does there exists $X \subseteq R$ of size at most k, such that for each $v \in B, X \cap N[v] \neq \emptyset$?

Kernel Lower Bounds

Red-Blue Dominating Set

Question: Does there exists $X \subseteq R$ of size at most k, such that for each $v \in B, X \cap N[v] \neq \emptyset$?

By [Jansen and Pieterse, 2015]; Red-Blue Dominating Set does not admit a polynomial compression of bit size $\mathcal{O}\left(n^{2-\epsilon}\right)$, for any $\epsilon>0$ unless NP \subseteq coNP/poly.

Kernel Lower Bounds

Figure 1: From RBDS to Bounded TC

Kernel Lower Bounds

Theorem

Bounded TC does not admit a compression of size $\mathcal{O}\left(\left(k^{2}+k \ell\right)^{1-\epsilon}\right)$, for any $\epsilon>0$.

Theorem

Bounded CC does not admit a compression of size $\mathcal{O}\left(\left(k^{2}+k \ell\right)^{1-\epsilon}\right)$, for any $\epsilon>0$.

Theorem
Bounded OTC does not admit a compression of size $\mathcal{O}\left(\left(k^{2}+k \ell\right)^{1-\epsilon}\right)$, for any $\epsilon>0$.

Thank you!

References

直 Agrawal，A．，Lokshtanov，D．，Saurabh，S．，and Zehavi，M． （2017）．
Split contraction：The untold story．
In 34th Symposium on Theoretical Aspects of Computer
Science，STACS 2017，Hannover，Germany，pages 5：1－5：14．
國 Cai，L．and Guo，C．（2013）．
Contracting few edges to remove forbidden induced subgraphs．
In IPEC，pages 97－109．
Eolovach，P．A．，van＇t Hof，P．，and Paulusma，D．（2013）．
Obtaining planarity by contracting few edges．
Theoretical Computer Science，476：38－46．
击 Guillemot，S．and Marx，D．（2013）．
A faster FPT algorithm for bipartite contraction．

