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Graph Modification Problems

F-Modification
Input: A graph G
Question: Can we obtain a graph in F by some modifications in
the graph G?

Modification allowed

Vertex Deletion
Edge Deletion
Edge Addition
Edge Contraction
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F-Modification : Generalization of many NP-hard problems

Graph Problem F Modification
Vertex Cover Independent Sets Vertex Deletion
Feedback vertex set Forests Vertex Deletion
Odd cycle transversal Bipartite Graphs Vertex Deletion
Minimum Fill-In Chordal Graphs Edge Addition
Edge Bipartization Bipartite Graphs Edge Deletion
Cluster Editing Cluster Graphs Edge Addition

& Deletion
Tree Contraction Trees Edge Contraction
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Outline

Parameterized Complexity & Contraction Problems

Tree Contraction with additional parameter

Contraction as a Partition Problem

Kernel for Bounded Tree Contraction

Kernel Lower Bounds
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Parameterized Complexity &
Contraction Problems



Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .
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Kernelization : Quick Overview

Parameterized problem (I, k) admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I ′, k ′)
such that

• |I ′|+ k ′ ≤ h(k)
• (I, k) is YES instance iff (I ′, k ′) is YES instance
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Kernelization : Quick Overview

• Mathematical analysis of pre-processing.

• Goal: Reduce the size of input instance (in polynomial time)
without changing the answer.

• Not all problems (for given parameter) admit a kernel.
• Not all problems (for given parameter) admit a polynomial

kernel.
• Compression : If (I ′, k ′) is an instance of different problem.
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FPT and Kernelization

Problem FPT Kernel
Vertex Cover O(1.27k · n2) 2k2

Feedback Vertex Set O(3.6181k · nc) 4k2

Independent Set No f (k) · |I|O(1) No h(k)
Coloring No f (k) · |I|O(1) No h(k)
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F-Contraction

F-Contraction Parameter: k
Input: A graph G and integer k
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is in F?

11



F-Contraction : Parameterized Complexity

[Heggernes et al., 2012] Tree Contraction 4k

Path Contraction 2k+o(k)

[Golovach et al., 2013] Planar Contraction FPT
[Cai and Guo, 2013] Clique Contraction 2O(k log k)

[Heggernes et al., 2013] Bipartite Contraction FPT
[Guillemot and Marx, 2013] 2O(k2)
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F-Contraction : Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be
characterized as P`+1-free graphs or C`-free graphs for ` ≥ 4

• [Agrawal et al., 2017] F is Split Graphs
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Starting Point

Theorem
[Heggernes et al., 2012] Tree Contraction does not admit a
polynomial kernel unless NP ⊆ coNP/poly and Path
Contraction admits a linear vertex kernel.

Why is there a polynomial kernel
for Paths but not for Trees?
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Tree Contraction with additional
parameter



Tree Contraction with additional parameter

Bounded Tree Contraction Parameter: k + `

Input: A graph G and integers k, `
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a tree with at most ` leaves?

Results:

• A kernel with O(k`) vertices and O(k2 + k`) edges.
• It does not admit better kernel unless NP ⊆ coNP/poly.
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Example : k = 5, ` = 4

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13
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v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8
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Contraction as a Partition Problem



F-Contraction as a Partition Problem

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

G is contractible to T if there exists a partition of V (G) into
W (t1),W (t2), . . .W (t|V (T )|) s.t.

• ∀ t ∈ V (T ), G [W (t)] is connected
• ti tj ∈ E (T ) iff W (ti ) and W (tj) are adjacent in G
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F-Contraction as a Partition Problem

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

W (t1) = {v5, v6, v7, v8} W (t2) = {v9}
W (t3) = {v4} W (t4) = {v1, v2}
W (t5) = {v3} W (t6) = {v10, v12}
W (t7) = {v11} W (t8) = {v13}
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Witness Structure : Definition

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T )} is called the T -witness structure of G

Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)
k =

∑
t∈V (T )(|W (t)| − 1)

We say G is k-contractable to graph T
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Witness Structure : Observations

v1 v2

v3

v4
v5

v6

v7

v8

v9

v10

v11
v12

v13

t4

t5

t3

t1
t2

t6

t7

t8

If G is k-contractible to H and W be its H-witness structure then,

• |V (G)| ≤ |V (H)|+ k;
• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.
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Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction
Prop. 2 F is closed under “uncontracting” internal vertex
Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25



Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction

Prop. 2 F is closed under “uncontracting” internal vertex
Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25



Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction
Prop. 2 F is closed under “uncontracting” internal vertex

Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25



Properties of F

F = {T | T is a tree and #leaves in it is at most `}

Prop. 1 F is closed under edge contraction
Prop. 2 F is closed under “uncontracting” internal vertex
Let L ∪ R be a parition of N(u∗).
Delete u∗ and edge uv s.t. N(u) = L and N(v) = R.
Resulting graph is in F

L

u∗u∗

R

...

...
L

u v

R

...

...

25



Kernel for Bounded Tree
Contraction



Reduction Rule

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

Reduction Rule

Let C1,C2 be the connected components in G − {uv}.

If |V (C1)|, |V (C2)| ≥ k + 2 then contract the edge uv.

The resulting instance is (G/{uv}, k, `).
26



Reduction Rule is sound

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

By Prop 1, F is closed under edge contraction
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Reduction Rule is complete

u v

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

C1 C2

(G, k, ℓ)

|V (C1)| ≥ k + 2 |V (C2)| ≥ k + 2

...

... u∗u∗

C1 \ {u} C2 \ {v}
(G/{uv}, k, ℓ)

...

...

To Prove : uv is not in any minimal solution of size at most k.
Assume F is a minimal solution of size at most k and uv ∈ F .
C1,C2 are too big to be contained in a witness set.
tuv is not a leaf in G/F where u, v ∈W (tuv ).
By Prop 2, uncontract node tuv and resulting graph is in F .
This contradicts the minimality of F .
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Kernel for Bounded TC : Bounding |V (G)|

• Apply Reduction Rule Exhaustively.
• We bound V (T ) and then apply |V (G)| ≤ |V (T )|+ k.
• |V (T )| ≤ #leaves × maximum dist. between root and a leaf.
• P = {t1, t2, . . . , tq} be the longest path from root to a leaf.
• If q ≤ 2k + 5 then |V (T )| ≤ O(k`).

29
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Kernel for Bounded TC : Bounding |V (G)|

t1 t2 tq

k + 2 k + 2
No-consecutive
Small-witness
set

• If q > 2k + 5 then partition into left, right and middle portion
• No two consecutive small witness set in middle portion
• There are at most k big witness set

30
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Kernel for Bounded TC: Bounding |E (G)|

V (F )

G− V (F )

• G − V (F ) is a forest and |V (F )| ≤ 2k
• Max deg(T ) ≤ ` ⇒ Max deg(G) ≤ `+ k.

# edges contained in V (F ) is O(k2)
# edges contained in V (G) \ V (F ) is O(k`)
# edges across V (F ) and V (G) \ V (F ) is O(k2 + k`)
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Kernel for Bounded TC

• Apply Reduction Rule exhaustively.

• Each application of Reduction Rule contracts an edge and
hence it can be applied at most m many times.

• Get reduced instance in polynomial time.
• If vertices or edges are not bounded, return a NO instance.

Theorem
Bounded Tree Contraction admits a kernel of size
O(k2 + k`).
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Extending to other problem

Definition
An out-tree T is a digraph where each vertex has in-degree at
most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.
• Similar algorithm with adapation of witness structure to

directed graph.

Theorem
Bounded Out-Tree Contraction admits a kernel of size
O(k2 + k`).
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Extending to other problem

Definition
A cactus is an undirected graph such that every edge is contained
in at most one cycle.

• block : A maximal 2-connected subgraph.
• Block decomposition of a connected graph is unique and is a

tree.
• A block in a cactus can be either a cycle or an edge.
• # leaves in a cactus is defined to be # leaves in its block

decomposition.

Theorem
Bounded Cactus Contraction admits a kernel of size
O(k2 + k`).
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Kernel Lower Bounds



Kernel Lower Bounds

Dominating Set Parameter: k
Input: Graph G and integer k
Question: Does there exists X ⊆ V (G) of size at most k, such
that for each v ∈ V (G), X ∩ N[v ] 6= ∅?

[Jansen and Pieterse, 2015] proved that Dominating Set does
not admit a compression of bit size O(n2−ε), for any ε > 0 unless
NP ⊆ coNP/poly.
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Kernel Lower Bounds
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Kernel Lower Bounds

Red-Blue Dominating Set Parameter: k
Input: Bipartite Graph G := (R ∪ B; E ) and integer k
Question: Does there exists X ⊆ R of size at most k, such that
for each v ∈ B, X ∩ N[v ] 6= ∅?

By [Jansen and Pieterse, 2015]; Red-Blue Dominating Set
does not admit a polynomial compression of bit size O(n2−ε), for
any ε > 0 unless NP ⊆ coNP/poly.
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Kernel Lower Bounds
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Figure 1: From RBDS to Bounded TC 39



Kernel Lower Bounds

Theorem

Bounded TC does not admit a compression of size
O((k2 + k`)1−ε), for any ε > 0.

Theorem

Bounded CC does not admit a compression of size
O((k2 + k`)1−ε), for any ε > 0.

Theorem

Bounded OTC does not admit a compression of size
O((k2 + k`)1−ε), for any ε > 0.

40



Thank you!
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