Paths to Trees and Cacti

A. Agrawal 1 L. Kanesh 2 S. Saurabh 1,2 and $\underline{\text{P. Tale}^2}$ May 24, 2017

¹ University Of Bergen, Bergen, Norway
² The Institute of Mathematical Sciences, HBNI, Chennai, India

 \mathcal{F} -MODIFICATION **Input:** A graph *G* **Question:** Can we obtain a graph in \mathcal{F} by *some* modifications in the graph *G*?

Modification allowed

- Vertex Deletion
- Edge Deletion
- Edge Addition
- Edge Contraction

 \mathcal{F} -MODIFICATION **Input:** A graph *G* **Question:** Can we obtain a graph in \mathcal{F} by *some* modifications in the graph *G*?

Modification allowed

- Vertex Deletion
- Edge Deletion
- Edge Addition
- Edge Contraction

 $\mathcal{F}\text{-}\mathrm{MODIFICATION}$: Generalization of many NP-hard problems

$\mathcal{F}\text{-}\mathrm{MODIFICATION}$: Generalization of many NP-hard problems

Graph Problem	\mathcal{F}	Modification
Vertex Cover	Independent Sets	Vertex Deletion
Feedback vertex set	Forests	Vertex Deletion
ODD CYCLE TRANSVERSAL	Bipartite Graphs	Vertex Deletion
Minimum Fill-In	Chordal Graphs	Edge Addition
Edge Bipartization	Bipartite Graphs	Edge Deletion
Cluster Editing	Cluster Graphs	Edge Addition
		& Deletion
TREE CONTRACTION	Trees	Edge Contraction

Parameterized Complexity & Contraction Problems

 $\ensuremath{\mathrm{TREE}}$ Contraction with additional parameter

Contraction as a Partition Problem

Kernel for BOUNDED TREE CONTRACTION

Kernel Lower Bounds

Parameterized Complexity & Contraction Problems

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is *fixed-parameter tractable* (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find better ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is *fixed-parameter tractable* (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT \subseteq W[1] \subseteq W[2]...

Kernelization : Quick Overview

Kernelization : Quick Overview

Parameterized problem (I, k) admits a h(k)-kernel if there exists a poly-time algorithm A which given an input (I, k) outputs (I', k') such that

- $|I'| + k' \leq h(k)$
- (I, k) is YES instance iff (I', k') is YES instance

• Mathematical analysis of pre-processing.

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.
- Not all problems (for given parameter) admit a kernel.

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.
- Not all problems (for given parameter) admit a kernel.
- Not all problems (for given parameter) admit a polynomial kernel.

- Mathematical analysis of pre-processing.
- Goal: Reduce the size of input instance (in polynomial time) without changing the answer.
- Not all problems (for given parameter) admit a kernel.
- Not all problems (for given parameter) admit a polynomial kernel.
- Compression : If (l', k') is an instance of different problem.

Problem	FPT	Kernel
Vertex Cover	$\mathcal{O}(1.27^k \cdot n^2)$	2 <i>k</i> ²
FEEDBACK VERTEX SET	$\mathcal{O}(3.6181^k \cdot n^c)$	$4k^{2}$
INDEPENDENT SET	No $f(k) \cdot I ^{\mathcal{O}(1)}$	No $h(k)$
Coloring	No $f(k) \cdot I ^{\mathcal{O}(1)}$	No $h(k)$

 \mathcal{F} -CONTRACTIONParameter: kInput: A graph G and integer kQuestion: Does there exist $F \subseteq E(G)$ of size at most k suchthat G/F is in \mathcal{F} ?

$\mathcal{F}\text{-}\textbf{Contraction}$: Parameterized Complexity

[Heggernes et al., 2012]	TREE CONTRACTION	4 ^{<i>k</i>}
	PATH CONTRACTION	$2^{k+o(k)}$

$\mathcal{F}\text{-}\textbf{Contraction}$: Parameterized Complexity

[Heggernes et al., 2012]	TREE CONTRACTION	4 ^{<i>k</i>}
	PATH CONTRACTION	$2^{k+o(k)}$
[Golovach et al., 2013]	Planar Contraction	FPT
[Cai and Guo, 2013]	CLIQUE CONTRACTION	$2^{\mathcal{O}(k \log k)}$
[Heggernes et al., 2013]	BIPARTITE CONTRACTION	FPT
[Guillemot and Marx, 2013]		$2^{O(k^2)}$

$\mathcal{F}\text{-}\textbf{Contraction}$: Parameterized Complexity

Theorem

$\mathcal{F}\text{-}\mathrm{Edge}$ Contraction is W[2]-hard if

$\mathcal{F} ext{-}\mathrm{Edge}\ \mathrm{Contraction}\ \textit{is}\ W[2]\text{-}\textit{hard}\ \textit{if}$

 [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be characterized as P_{ℓ+1}-free graphs or C_ℓ-free graphs for ℓ ≥ 4

 $\mathcal{F}\text{-}\mathrm{EDGE}$ Contraction is W[2]-hard if

- [Lokshtanov et al., 2013] [Cai and Guo, 2013] F can be characterized as P_{ℓ+1}-free graphs or C_ℓ-free graphs for ℓ ≥ 4
- [Agrawal et al., 2017] F is Split Graphs

[Heggernes et al., 2012] TREE CONTRACTION does not admit a polynomial kernel unless $NP \subseteq coNP/poly$ and PATH CONTRACTION admits a linear vertex kernel.

[Heggernes et al., 2012] TREE CONTRACTION does not admit a polynomial kernel unless $NP \subseteq coNP/poly$ and PATH CONTRACTION admits a linear vertex kernel.

Why is there a polynomial kernel for PATHs but not for TREEs?

Tree Contraction with additional parameter

BOUNDED TREE CONTRACTION **Parameter:** $k + \ell$ **Input:** A graph *G* and integers k, ℓ **Question:** Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a tree with at most ℓ leaves? BOUNDED TREE CONTRACTION **Parameter:** $k + \ell$ **Input:** A graph *G* and integers k, ℓ **Question:** Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a tree with at most ℓ leaves?

Results:

• A kernel with $\mathcal{O}(k\ell)$ vertices and $\mathcal{O}(k^2 + k\ell)$ edges.

BOUNDED TREE CONTRACTION **Parameter:** $k + \ell$ **Input:** A graph *G* and integers k, ℓ **Question:** Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a tree with at most ℓ leaves?

Results:

- A kernel with $\mathcal{O}(k\ell)$ vertices and $\mathcal{O}(k^2 + k\ell)$ edges.
- It does not admit better kernel unless NP \subseteq coNP/poly.

Example : $k = 5, \ell = 4$

Example : $k = 5, \ell = 4$

Example : $k = 5, \ell = 4$

Example : $k = 5, \ell = 4$

Contraction as a Partition Problem

$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem

G is contractible to *T* if there exists a partition of V(G) into $W(t_1), W(t_2), \ldots, W(t_{|V(T)|})$ s.t.

- $\forall t \in V(T)$, G[W(t)] is connected
- $t_i t_j \in E(T)$ iff $W(t_i)$ and $W(t_j)$ are adjacent in G

$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem

$$W(t_1) = \{v_5, v_6, v_7, v_8\} \quad W(t_2) = \{v_9\} \\ W(t_3) = \{v_4\} \quad W(t_4) = \{v_1, v_2\} \\ W(t_5) = \{v_3\} \quad W(t_6) = \{v_{10}, v_{12}\} \\ W(t_7) = \{v_{11}\} \quad W(t_8) = \{v_{13}\}$$

Witness Structure : Definition

• $W = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*

Witness Structure : Definition

■ $W = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G* ■ Big-witness set if |W(t)| > 1 e.g. $W(t_1), W(t_6), W(t_4)$

Witness Structure : Definition

- $W = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*
- Big-witness set if |W(t)| > 1 e.g. $W(t_1), W(t_6), W(t_4)$
- $k = \sum_{t \in V(T)} (|W(t)| 1)$ We say G is k-contractable to graph T

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

•
$$|V(G)| \le |V(H)| + k;$$

If G is k-contractible to H and \mathcal{W} be its H-witness structure then,

•
$$|V(G)| \le |V(H)| + k;$$

• No witness set in W contains more than k + 1 vertices;

If G is k-contractible to H and W be its H-witness structure then,

- $|V(G)| \le |V(H)| + k;$
- No witness set in W contains more than k + 1 vertices;
- \mathcal{W} has at most k big witness sets;

If G is k-contractible to H and W be its H-witness structure then,

- $|V(G)| \le |V(H)| + k;$
- No witness set in W contains more than k + 1 vertices;
- \mathcal{W} has at most k big witness sets;
- Union of big witness sets in W contains at most 2k vertices.

 $\mathcal{F} = \{ T | T \text{ is a tree and } \# \text{leaves in it is at most } \ell \}$

 $\mathcal{F} = \{ T | T \text{ is a tree and } \# \text{leaves in it is at most } \ell \}$

 $\ensuremath{\text{Prop. 1}}\xspace$ I $\ensuremath{\mathcal{F}}\xspace$ is closed under edge contraction

 $\mathcal{F} = \{ T \mid T \text{ is a tree and } \# \text{leaves in it is at most } \ell \}$

Prop. 1 \mathcal{F} is closed under edge contraction **Prop.** 2 \mathcal{F} is closed under "uncontracting" internal vertex $\mathcal{F} = \{ T | \ T \text{ is a tree and } \# \text{leaves in it is at most } \ell \}$

Prop. 1 \mathcal{F} is closed under edge contraction **Prop.** 2 \mathcal{F} is closed under "uncontracting" internal vertex Let $L \cup R$ be a parition of $N(u^*)$. Delete u^* and edge uv s.t. N(u) = L and N(v) = R. Resulting graph is in \mathcal{F}

Kernel for Bounded Tree Contraction

Reduction Rule

 $|V(C_1)| \ge k+2 \quad |V(C_2)| \ge k+2$

Reduction Rule

Let C_1, C_2 be the connected components in $G - \{uv\}$. If $|V(C_1)|, |V(C_2)| \ge k + 2$ then contract the edge uv. The resulting instance is $(G/\{uv\}, k, \ell)$.

Reduction Rule is sound

By **Prop 1**, \mathcal{F} is closed under edge contraction

 $|V(C_1)| \ge k + 2 \quad |V(C_2)| \ge k + 2$

• To Prove : uv is not in any minimal solution of size at most k.

- Assume F is a minimal solution of size at most k and $uv \in F$.
- C_1, C_2 are too big to be contained in a witness set.
- t_{uv} is not a leaf in G/F where $u, v \in W(t_{uv})$.
- **By Prop 2**, *uncontract* node t_{uv} and resulting graph is in \mathcal{F} .
- This contradicts the minimality of *F*.

- To Prove : uv is not in any minimal solution of size at most k.
- Assume F is a minimal solution of size at most k and $uv \in F$.
- C_1, C_2 are too big to be contained in a witness set.
- t_{uv} is not a leaf in G/F where $u, v \in W(t_{uv})$.
- **By Prop 2**, *uncontract* node t_{uv} and resulting graph is in \mathcal{F} .
- This contradicts the minimality of *F*.

- To Prove : uv is not in any minimal solution of size at most k.
- Assume F is a minimal solution of size at most k and $uv \in F$.
- C_1, C_2 are too big to be contained in a witness set.
- t_{uv} is not a leaf in G/F where $u, v \in W(t_{uv})$.
- By **Prop 2**, *uncontract* node t_{uv} and resulting graph is in \mathcal{F} .
- This contradicts the minimality of *F*.

 $|V(C_1)| \ge k+2 \quad |V(C_2)| \ge k+2$

- To Prove : uv is not in any minimal solution of size at most k.
- Assume F is a minimal solution of size at most k and $uv \in F$.
- C_1, C_2 are too big to be contained in a witness set.
- t_{uv} is not a leaf in G/F where $u, v \in W(t_{uv})$.

By **Prop 2**, *uncontract* node t_{uv} and resulting graph is in F.
This contradicts the minimality of F.

- To Prove : uv is not in any minimal solution of size at most k.
- Assume F is a minimal solution of size at most k and $uv \in F$.
- C_1, C_2 are too big to be contained in a witness set.
- t_{uv} is not a leaf in G/F where $u, v \in W(t_{uv})$.
- By **Prop 2**, *uncontract* node t_{uv} and resulting graph is in \mathcal{F} .
- This contradicts the minimality of *F*.

- To Prove : uv is not in any minimal solution of size at most k.
- Assume F is a minimal solution of size at most k and $uv \in F$.
- C_1, C_2 are too big to be contained in a witness set.
- t_{uv} is not a leaf in G/F where $u, v \in W(t_{uv})$.
- **By Prop 2**, *uncontract* node t_{uv} and resulting graph is in \mathcal{F} .
- This contradicts the minimality of *F*.

- Apply Reduction Rule Exhaustively.
- We bound V(T) and then apply $|V(G)| \le |V(T)| + k$.
- $|V(T)| \le \#$ leaves \times maximum dist. between root and a leaf.
- $P = \{t_1, t_2, \dots, t_q\}$ be the longest path from root to a leaf.
- If $q \leq 2k + 5$ then $|V(T)| \leq \mathcal{O}(k\ell)$.

- Apply Reduction Rule Exhaustively.
- We bound V(T) and then apply $|V(G)| \le |V(T)| + k$.
- $|V(T)| \le \#$ leaves \times maximum dist. between root and a leaf.
- $P = \{t_1, t_2, \dots, t_q\}$ be the longest path from root to a leaf.
- If $q \leq 2k + 5$ then $|V(T)| \leq \mathcal{O}(k\ell)$.

- Apply Reduction Rule Exhaustively.
- We bound V(T) and then apply $|V(G)| \le |V(T)| + k$.
- $|V(T)| \le \#$ leaves \times maximum dist. between root and a leaf.
- $P = \{t_1, t_2, \dots, t_q\}$ be the longest path from root to a leaf.
- If $q \leq 2k + 5$ then $|V(T)| \leq \mathcal{O}(k\ell)$.

- Apply Reduction Rule Exhaustively.
- We bound V(T) and then apply $|V(G)| \le |V(T)| + k$.
- $|V(T)| \le \#$ leaves \times maximum dist. between root and a leaf.
- $P = \{t_1, t_2, \dots, t_q\}$ be the longest path from root to a leaf.
- If $q \leq 2k + 5$ then $|V(T)| \leq \mathcal{O}(k\ell)$.

- Apply Reduction Rule Exhaustively.
- We bound V(T) and then apply $|V(G)| \le |V(T)| + k$.
- $|V(T)| \le \#$ leaves \times maximum dist. between root and a leaf.
- $P = \{t_1, t_2, \dots, t_q\}$ be the longest path from root to a leaf.
- If $q \leq 2k + 5$ then $|V(T)| \leq \mathcal{O}(k\ell)$.

- If q > 2k + 5 then partition into *left, right* and *middle portion*
- No two consecutive small witness set in *middle portion*
- There are at most k big witness set

- If q > 2k + 5 then partition into *left, right* and *middle portion*
- No two consecutive small witness set in middle portion
- There are at most k big witness set

- If q > 2k + 5 then partition into *left, right* and *middle portion*
- No two consecutive small witness set in middle portion
- There are at most k big witness set

- There are at most k big witness set
- $q \le 4k + 4$ and $|V(T)| \le \ell(4k + 4)$.
- |V(G)| is at most $\mathcal{O}(k\ell)$.

- There are at most k big witness set
- $q \le 4k + 4$ and $|V(T)| \le \ell(4k + 4)$.
- |V(G)| is at most $\mathcal{O}(k\ell)$.

- There are at most k big witness set
- $q \le 4k + 4$ and $|V(T)| \le \ell(4k + 4)$.
- |V(G)| is at most $\mathcal{O}(k\ell)$.

• G - V(F) is a forest and $|V(F)| \le 2k$

- G V(F) is a forest and $|V(F)| \le 2k$
- $Max_deg(T) \le \ell \Rightarrow Max_deg(G) \le \ell + k$.

- G V(F) is a forest and $|V(F)| \le 2k$
- $Max_deg(T) \le \ell \Rightarrow Max_deg(G) \le \ell + k$.
- # edges contained in V(F) is $\mathcal{O}(k^2)$

- G V(F) is a forest and $|V(F)| \le 2k$
- $Max_deg(T) \le \ell \Rightarrow Max_deg(G) \le \ell + k$.
- # edges contained in V(F) is $\mathcal{O}(k^2)$
- # edges contained in $V(G) \setminus V(F)$ is $\mathcal{O}(k\ell)$

- G V(F) is a forest and $|V(F)| \le 2k$
- $Max_deg(T) \le \ell \Rightarrow Max_deg(G) \le \ell + k$.
- # edges contained in V(F) is $\mathcal{O}(k^2)$
- # edges contained in $V(G) \setminus V(F)$ is $\mathcal{O}(k\ell)$
- # edges across V(F) and $V(G) \setminus V(F)$ is $\mathcal{O}(k^2 + k\ell)$

• Apply Reduction Rule exhaustively.

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most *m* many times.

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most *m* many times.
- Get *reduced* instance in polynomial time.

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most *m* many times.
- Get *reduced* instance in polynomial time.
- $\bullet\,$ If vertices or edges are not bounded, return a $\rm NO$ instance.

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most *m* many times.
- Get *reduced* instance in polynomial time.
- $\bullet\,$ If vertices or edges are not bounded, return a $\rm NO$ instance.

- Apply Reduction Rule exhaustively.
- Each application of Reduction Rule contracts an edge and hence it can be applied at most *m* many times.
- Get *reduced* instance in polynomial time.
- If vertices or edges are not bounded, return a NO instance.

Theorem

BOUNDED TREE CONTRACTION admits a kernel of size $\mathcal{O}(k^2 + k\ell)$.

Definition

An *out-tree* T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

Definition

An *out-tree* T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

• Root has in-degree 0; all directed paths are away from the root.

Definition

An *out-tree* T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0; all directed paths are away from the root.
- Similar algorithm with adapation of witness structure to directed graph.

Definition

An *out-tree* T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0; all directed paths are away from the root.
- Similar algorithm with adapation of witness structure to directed graph.

Definition

An *out-tree* T is a digraph where each vertex has in-degree at most 1 and underlying undirected graph is a tree.

- Root has in-degree 0; all directed paths are away from the root.
- Similar algorithm with adapation of witness structure to directed graph.

Theorem

BOUNDED OUT-TREE CONTRACTION admits a kernel of size $\mathcal{O}(k^2 + k\ell)$.

Definition

Definition

A *cactus* is an undirected graph such that every edge is contained in at most one cycle.

• *block* : A maximal 2-connected subgraph.

Definition

- *block* : A maximal 2-connected subgraph.
- *Block decomposition* of a connected graph is unique and is a tree.

Definition

- *block* : A maximal 2-connected subgraph.
- *Block decomposition* of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.

Definition

- *block* : A maximal 2-connected subgraph.
- *Block decomposition* of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.
- # *leaves* in a cactus is defined to be # leaves in its block decomposition.

Definition

- *block* : A maximal 2-connected subgraph.
- *Block decomposition* of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.
- # *leaves* in a cactus is defined to be # leaves in its block decomposition.

Definition

A *cactus* is an undirected graph such that every edge is contained in at most one cycle.

- *block* : A maximal 2-connected subgraph.
- *Block decomposition* of a connected graph is unique and is a tree.
- A block in a cactus can be either a cycle or an edge.
- # *leaves* in a cactus is defined to be # leaves in its block decomposition.

Theorem

BOUNDED CACTUS CONTRACTION admits a kernel of size $\mathcal{O}(k^2 + k\ell)$.

Kernel Lower Bounds

DOMINATING SET **Parameter:** k **Input:** Graph G and integer k**Question:** Does there exists $X \subseteq V(G)$ of size at most k, such that for each $v \in V(G)$, $X \cap N[v] \neq \emptyset$? DOMINATING SET **Parameter:** k **Input:** Graph G and integer k**Question:** Does there exists $X \subseteq V(G)$ of size at most k, such that for each $v \in V(G)$, $X \cap N[v] \neq \emptyset$?

[Jansen and Pieterse, 2015] proved that DOMINATING SET does not admit a compression of bit size $\mathcal{O}(n^{2-\epsilon})$, for any $\epsilon > 0$ unless NP \subseteq coNP/poly.

Kernel Lower Bounds

RED-BLUE DOMINATING SET **Parameter:** k **Input:** Bipartite Graph $G := (R \cup B; E)$ and integer k **Question:** Does there exists $X \subseteq R$ of size at most k, such that for each $v \in B$, $X \cap N[v] \neq \emptyset$? RED-BLUE DOMINATING SET **Parameter:** k **Input:** Bipartite Graph $G := (R \cup B; E)$ and integer k **Question:** Does there exists $X \subseteq R$ of size at most k, such that for each $v \in B$, $X \cap N[v] \neq \emptyset$?

By [Jansen and Pieterse, 2015]; RED-BLUE DOMINATING SET does not admit a polynomial compression of bit size $\mathcal{O}(n^{2-\epsilon})$, for any $\epsilon > 0$ unless NP \subseteq coNP/poly.

Kernel Lower Bounds

Figure 1: From RBDS to BOUNDED TC

Theorem

BOUNDED TC does not admit a compression of size $\mathcal{O}((k^2 + k\ell)^{1-\epsilon})$, for any $\epsilon > 0$.

Theorem

BOUNDED CC does not admit a compression of size $\mathcal{O}((k^2 + k\ell)^{1-\epsilon})$, for any $\epsilon > 0$.

Theorem

BOUNDED OTC does not admit a compression of size $\mathcal{O}((k^2 + k\ell)^{1-\epsilon})$, for any $\epsilon > 0$.

Thank you!

References

- Agrawal, A., Lokshtanov, D., Saurabh, S., and Zehavi, M. (2017).

Split contraction: The untold story.

In 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, pages 5:1–5:14.

📄 Cai, L. and Guo, C. (2013).

Contracting few edges to remove forbidden induced subgraphs.

In IPEC, pages 97-109.

- Golovach, P. A., van 't Hof, P., and Paulusma, D. (2013).
 Obtaining planarity by contracting few edges. Theoretical Computer Science, 476:38–46.
- Guillemot, S. and Marx, D. (2013).

A faster FPT algorithm for bipartite contraction.

42