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Graph Contraction Problems



Graph Contraction Problems

F is a graph class and G/F is graph obtained from G by
contracting edges in F

F-Contraction Parameter: k
Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is in F?
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F-Contraction: Parameterized Complexity

[HvtHL+12] Tree Contraction 4k

Path Contraction 2k+o(k)

[GvtHP13] Planar Contraction FPT
[CG13] Clique Contraction 2O(k log k)

[HvtHLP13] Bipartite Contraction FPT
[GM13] 2O(k2)
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F-Contraction: Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [LMS13] [CG13] F can be characterized as P`+1-free graphs or
C`-free graphs for ` ≥ 4.
P` and C` are path and cycle on ` vertices, respectively.

• [ALSZ17] F is Split Graphs
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F-Contraction: Kernelization

Theorem
[HvtHL+12] Tree Contraction does not admit a polynomial
kernel unless NP ⊆ coNP/poly and Path Contraction admits
a linear vertex kernel.
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Starting Point

1. Why is there a polynomial kernel for Paths but not for Trees?
2. Why is F-Contraction FPT when F is Trees (which are

C3-free) but W [1]-hard when F is family of Ct-free graphs
(t ≥ 4)? Or other simple graph classes like Pt+1-free graphs Or
Split Graphs?

7



Starting Point

What additional parameter we can associate with F -Contraction
such that :

1. it admits a polynomial kernel?
2. an FPT algorithm for super classes of Trees?
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Starting Point

What additional parameter we can associate with F -Contraction
such that :

1. it admits a polynomial kernel? Paths to Trees (CIAC ’17)
2. an FPT algorithm for super classes of Trees? This Work

9



Problem Definition



Generalization of Tree Contraction

F` := {T | T can be made into a tree by deleting at most ` edges}

Observe that F0 is family of Trees
F`-Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F ∈ F`?

Results:

• FPT algorithm running in time O((2
√
`+ 2)O(k+`) · nO(1)).

• No polynomial kernel, when parameterized by k, for any (fixed)
` ∈ N.

• Lossy Kernelization
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Contraction as a Partition Problem



F-Contraction as a Partition Problem
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F-Contraction as a Partition Problem
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F-Contraction as a Partition Problem
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G is contractible to T if there exists a partition of V (G) into
W (t1),W (t2), . . .W (t|V (T )|) s.t.

• ∀ t ∈ V (T ), G [W (t)] is connected
• ti tj ∈ E (T ) iff W (ti ) and W (tj) are adjacent in G
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Witness Structure : Definition
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W = {W (t) | t ∈ V (T )} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)
k =

∑
t∈V (T )(|W (t)| − 1)

We say G is k-contractible to graph T
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Witness Structure : Observations
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If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.
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FPT Algorithm



Few Definitions
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W ← a T -witness structure of G
Fix a spanning tree of T and mark edges outside the spanning tree

16



Few Definitions
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Important Nodes in T

• Nodes corresponding to big-witness set (t1, t4, t6)
• Nodes incident on extra edges (t4, t7)
• Nodes of degree at least 3 (t1)
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Few Definitions
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Important vertices in G are the vertices contained in bags
corresponding to important nodes.
Lemma
There are at most O(k + `) important vertices.
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Good Coloring φ : V (G)→ [2
√
`+ 2] is good coloring (wrt W) if

1. Each witness set is monochromatic (Ex. {v5, v6, v7, v8})
2. Color of two important vertices which are adjacent or

connected by path consisting of non-important vertices are
different. (Ex. v2, v11)
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Randomized FPT Algorithm
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Step 1: Color vertices of input graph uniformly at random with√
`+ 2 colors.

Step 2: Extract witness sets out of each colored components of a
good coloring.
Ex. Extract {v1, v2} out of {v1, v2, v3, v4}
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Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with√
`+ 2 colors.

Lemma
Probability that a random coloring is a good coloring is sufficiently
high.

Step 2: Extract witness sets out of each colored components of a
good coloring.
Lemma
Extracting a witness set from a color class is equivalent of finding
its connected vertex cover.

Theorem
F`-Contraction is FPT when parameterized by k for fixed `.
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No-Polynomial Kernel



No-Polynomial Kernel

Theorem ([HvtHL+12])
Tree Contraction does not admit a polynomial kernel unless
NP ⊆ coNP/poly .

Lemma
(G , k) is a YES instance of Tree Contraction if and only if
(G ′, k ′) is a YES instance of F`-Contraction, here k ′ = k.

Theorem
F`-Contraction does not admit a polynomial kernel unless
NP ⊆ coNP/poly .
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Lossy Kernelization



Kernelization

Parameterized problem Q admits a h(k)-kernel if there exists a
poly-time algorithm A which given an input (I, k) outputs (I ′, k ′)
such that

• |I ′|+ k ′ ≤ h(k)
• (I, k) is YES instance iff (I ′, k ′) is YES instance

How about optimization version?
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Optimization Version

For a parameterized problem Q, its optimization analogue is a
computable function

Π : Σ∗ × N× Σ∗ → R ∪ {±∞}

Given instance I, parameter k and a solution S, the value of a
solution S to an instance (I, k) of Q is Π(I, k,S).

For parameterized minimization problems,

OPTΠ(I, k) = min
S∈Σ∗
{Π(I, k,S)}
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Lossy Kernelization

Given a solution S ′ of (I ′, k ′) can we construct a solution S of (I, k)
which is as good as S ′?
Quality of solution S ′ of (I ′, k ′) is Π(I′,k′,S′)

OPT(I′,k′)
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Lossy Kernelization

Given (I ′, k ′,S ′) can we construct a solution S of (I, k) such that

Π(I, k,S)
OPT(I, k) ≤ α

Π(I ′, k ′, S ′)
OPT(I ′, k ′)

for some constant α?
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Lossy Kernelization

Definition (α-PTAS)
An α-approximate polynomial-time preprocessing algorithm
(α-PTAS) is pair of two polynomial time algorithms as follows:

Input Output
Reduction Algorithm (I, k) (I ′, k ′)

Solution Lifting Algorithm (I, k) and (I ′, k ′,S ′) S
such that

Π(I, k, S)
OPT(I, k) ≤ α ·

Π(I ′, k ′,S ′)
OPT(I ′, k ′)
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Lossy Kernelization

Definition (α-approximate kernel)
For a parameterized minimization problem Π if

1. α-PTAS
2. the size of the output instance is upper bounded by a

computable function g : N→ N of k.
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Strict α-approximate kernel

Definition (Strict α-approximate kernel)
An α-approximate kernel is said to be strict if the solution lifting
algorithm returns a solution S such that

Π(I, k,S)
OPT(I, k) ≤ max{ Π(I ′, k ′, S ′)

OPT(I ′, k ′) , α}
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Lossy Kernelization

Π(I, k, S) =
{

∞ if S is not a solution
min{|S|, k + 1} otherwise

Since we are interested in solutions of size at most k
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Lossy Kernelization : Reduction Rule

Definition (α-safe)
A reduction rule is α-safe for Π if there is a solution lifting
algorithm s.t. together they constitute a strict α-approximate
polynomial-time preprocessing algorithm for Π.
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Lossy Kernelization

Let (G , k) be an instance of F`-Contraction and α > 1 is a
fixed constant. Fix d = d α

α−1e
In polynomial time (nO(d)) we can find vertices h1, h2, . . . , hd s.t.

• all these vertices are in witness set W (t)
• there exists v such that {h1, h2, . . . , hd} ⊆ N(v)
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Can we utilize this information to simplify graph? 32



Lossy Kernelization

Notice : we can’t find entire W (t); v may or may not be in W (t).
Introducing Lossy-ness : Add vertex v to W (t)

v
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Contract all edges vhi for all i ∈ [d ] to get new instance
(G ′, k − (d − 1))
Notice : We contracted d edges but reduced the budget by d − 1.
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Lossy Kernelization

h1, h2, . . . , hd are in big-witness set ⇒ there are d − 1 solution
edges incident these vertices
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We are contracting d-many edges for every (d − 1) edges in the
solution.
The number of extra edge contracted in this process is d

d−1 = α

factor of the optimum solution 34



Lossy Kernelization

This reduction rule coupled with other two reduction rules leads to
following theorem.

Theorem
F`-Contraction admits a strict PSAKS, where the number of
vertices is bounded by c[k(k + 2`)](d

α
α−1 e+1), where c is some

fixed constant.
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Thank you!
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