Contraction to Generalization of Trees

A. Agrawal 1 S. Saurabh 1,2 and P. Tale 2 September 7, 2017

¹ University of Bergen, Bergen, Norway
 ² The Institute of Mathematical Sciences, HBNI, Chennai, India

Outline

Graph Contraction Problems

Problem Definition

FPT Algorithm

No-Polynomial Kernel

Lossy Kernelization

Graph Contraction Problems

 ${\mathcal F}$ is a graph class and G/F is graph obtained from G by contracting edges in F

 \mathcal{F} -CONTRACTIONParameter: kInput: A graph G and an integer kQuestion: Does there exist $F \subseteq E(G)$ of size at most k such that G/F is in \mathcal{F} ?

$\mathcal{F}\text{-}\textbf{Contraction:}$ Parameterized Complexity

[HvtHL ⁺ 12]	TREE CONTRACTION	4 ^{<i>k</i>}
	PATH CONTRACTION	$2^{k+o(k)}$
[GvtHP13]	PLANAR CONTRACTION	FPT
[CG13]	CLIQUE CONTRACTION	$2^{\mathcal{O}(k \log k)}$
[HvtHLP13]	BIPARTITE CONTRACTION	FPT
[GM13]		$2^{\mathcal{O}(k^2)}$

Theorem

 $\mathcal{F}\text{-}\mathrm{EDGE}$ Contraction is W[2]-hard if

 [LMS13] [CG13] F can be characterized as P_{ℓ+1}-free graphs or C_ℓ-free graphs for ℓ ≥ 4.

 P_ℓ and C_ℓ are path and cycle on ℓ vertices, respectively.

• [ALSZ17] *F* is Split Graphs

Theorem

[$HvtHL^+12$] TREE CONTRACTION does not admit a polynomial kernel unless NP \subseteq coNP/poly and PATH CONTRACTION admits a linear vertex kernel.

- 1. Why is there a polynomial kernel for PATHs but not for $\operatorname{TREEs}?$
- Why is *F*-CONTRACTION FPT when *F* is TREES (which are C₃-free) but *W*[1]-hard when *F* is family of C_t-free graphs (t ≥ 4)? Or other simple graph classes like P_{t+1}-free graphs Or Split Graphs?

What additional parameter we can associate with $\mathcal{F}\text{-}\mathrm{CONTRACTION}$ such that :

- 1. it admits a polynomial kernel?
- 2. an FPT algorithm for super classes of $\mathrm{TREEs?}$

What additional parameter we can associate with $\mathcal{F}\text{-}\mathrm{CONTRACTION}$ such that :

- 1. it admits a polynomial kernel? Paths to Trees (CIAC '17)
- 2. an FPT algorithm for super classes of $\mathrm{TREEs}?$ This Work

Problem Definition

Generalization of Tree Contraction

 $\mathcal{F}_{\ell} := \{ T \mid T \text{ can be made into a tree by deleting at most } \ell \text{ edges} \}$

Observe that \mathcal{F}_0 is family of TREEs

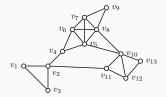
 \mathcal{F}_{ℓ} -CONTRACTIONParameter: kInput: A graph G and an integer k.Question: Does there exist $F \subseteq E(G)$ of size at most k such that $G/F \in \mathcal{F}_{\ell}$?

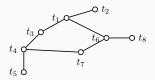
Results:

- FPT algorithm running in time $\mathcal{O}((2\sqrt{\ell}+2)^{\mathcal{O}(k+\ell)} \cdot n^{\mathcal{O}(1)})$.
- No polynomial kernel, when parameterized by k, for any (fixed) $\ell \in \mathbb{N}$.
- Lossy Kernelization

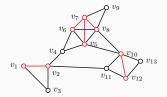
Contraction as a Partition Problem

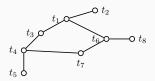
$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem





$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem



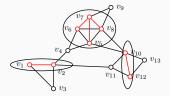


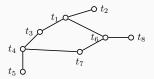
$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem

G is contractible to *T* if there exists a partition of V(G) into $W(t_1), W(t_2), \ldots, W(t_{|V(T)|})$ s.t.

- $\forall t \in V(T)$, G[W(t)] is connected
- $t_i t_j \in E(T)$ iff $W(t_i)$ and $W(t_j)$ are adjacent in G

Witness Structure : Definition





- $W = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*
- Big-witness set if |W(t)| > 1 e.g. $W(t_1), W(t_6), W(t_4)$
- $k = \sum_{t \in V(T)} (|W(t)| 1)$ We say G is k-contractible to graph T

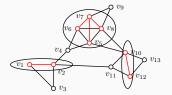
Witness Structure : Observations

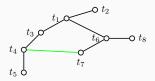
If G is k-contractible to T and W be its T-witness structure then,

- No witness set in W contains more than k + 1 vertices;
- \mathcal{W} has at most k big witness sets;
- Union of big witness sets in W contains at most 2k vertices.

FPT Algorithm

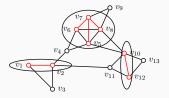
Few Definitions

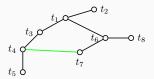




 $\mathcal{W} \leftarrow a \ T$ -witness structure of GFix a spanning tree of T and mark edges outside the spanning tree

Few Definitions





Important Nodes in T

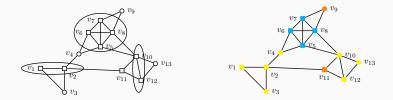
- Nodes corresponding to *big-witness* set (t_1, t_4, t_6)
- Nodes incident on extra edges (*t*₄, *t*₇)
- Nodes of degree at least 3 (t₁)

Few Definitions

Important vertices in G are the vertices contained in bags corresponding to important nodes.

Lemma

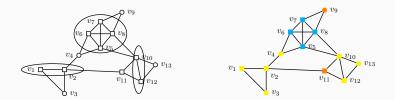
There are at most $O(k + \ell)$ important vertices.



Good Coloring $\phi: V(G) \rightarrow [2\sqrt{\ell}+2]$ is good coloring (wrt \mathcal{W}) if

- 1. Each witness set is monochromatic (Ex. $\{v_5, v_6, v_7, v_8\}$)
- Color of two *important vertices* which are adjacent or connected by path consisting of *non-important vertices* are different. (Ex. v₂, v₁₁)

Randomized FPT Algorithm



Step 1: Color vertices of input graph uniformly at random with $\sqrt{\ell} + 2$ colors.

Step 2: Extract witness sets out of each colored components of a *good* coloring.

Ex. Extract $\{v_1, v_2\}$ out of $\{v_1, v_2, v_3, v_4\}$

Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with $\sqrt{\ell} + 2$ colors.

Lemma

Probability that a random coloring is a good coloring is sufficiently high.

Step 2: Extract witness sets out of each colored components of a *good* coloring.

Lemma

Extracting a witness set from a color class is equivalent of finding its connected vertex cover.

Theorem

 \mathcal{F}_{ℓ} -CONTRACTION is FPT when parameterized by k for fixed ℓ .

No-Polynomial Kernel

Theorem ([HvtHL+12])

TREE CONTRACTION does not admit a polynomial kernel unless $NP \subseteq coNP/poly$.

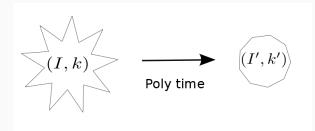
Lemma

(G, k) is a YES instance of TREE CONTRACTION if and only if (G', k') is a YES instance of \mathcal{F}_{ℓ} -CONTRACTION, here k' = k.

Theorem

 \mathcal{F}_{ℓ} -CONTRACTION does not admit a polynomial kernel unless $NP \subseteq coNP/poly$.

Kernelization



Parameterized problem Q admits a h(k)-kernel if there exists a poly-time algorithm A which given an input (I, k) outputs (I', k') such that

- $|I'| + k' \leq h(k)$
- (I, k) is YES instance iff (I', k') is YES instance

How about optimization version?

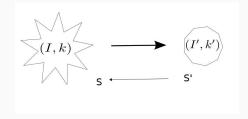
For a parameterized problem Q, its optimization analogue is a computable function

$$\Pi: \Sigma^* \times \mathbb{N} \times \Sigma^* \to \mathbb{R} \cup \{\pm \infty\}$$

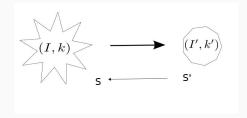
Given instance I, parameter k and a solution S, the value of a solution S to an instance (I, k) of Q is $\Pi(I, k, S)$.

For parameterized minimization problems,

$$OPT_{\Pi}(I,k) = \min_{S \in \Sigma^*} \{\Pi(I,k,S)\}$$



Given a solution S' of (I', k') can we construct a solution S of (I, k) which is as good as S'? *Quality of solution* S' of (I', k') is $\frac{\Pi(I', k', S')}{OPT(I', k')}$



Given (I', k', S') can we construct a solution S of (I, k) such that

$$\frac{\Pi(I, k, S)}{\operatorname{OPT}(I, k)} \le \alpha \frac{\Pi(I', k', S')}{\operatorname{OPT}(I', k')}$$

for some constant α ?

Definition (α **-PTAS)**

An α -approximate polynomial-time preprocessing algorithm (α -PTAS) is pair of two polynomial time algorithms as follows:

	Input	Output	
Reduction Algorithm	(<i>I</i> , <i>k</i>)	(l', k')	
Solution Lifting Algorithm	(I, k) and (I', k', S')	S	
such that $\frac{\Pi(I, k, S)}{\operatorname{OPT}(I, k)} \leq \alpha \cdot \frac{\Pi(I', k', S')}{\operatorname{OPT}(I', k')}$			

Definition (α -approximate kernel)

For a parameterized minimization problem Π if

- 1. α -PTAS
- 2. the size of the output instance is upper bounded by a computable function $g : \mathbb{N} \to \mathbb{N}$ of k.

Definition (Strict α -approximate kernel)

An α -approximate kernel is said to be *strict* if the solution lifting algorithm returns a solution *S* such that

$$\frac{\Pi(I, k, S)}{\operatorname{OPT}(I, k)} \le \max\{\frac{\Pi(I', k', S')}{\operatorname{OPT}(I', k')}, \alpha\}$$

$$\Pi(I, k, S) = \begin{cases} \infty & \text{if } S \text{ is not a solution} \\ \min\{|S|, k+1\} & \text{otherwise} \end{cases}$$

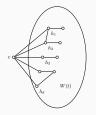
Since we are interested in solutions of size at most k

Definition (α -safe)

A reduction rule is α -safe for Π if there is a solution lifting algorithm s.t. together they constitute a strict α -approximate polynomial-time preprocessing algorithm for Π .

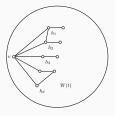
Let (G, k) be an instance of \mathcal{F}_{ℓ} -CONTRACTION and $\alpha > 1$ is a fixed constant. Fix $d = \lceil \frac{\alpha}{\alpha - 1} \rceil$ In *polynomial time* $(n^{\mathcal{O}(d)})$ we can find vertices h_1, h_2, \ldots, h_d s.t.

- all these vertices are in witness set W(t)
- there exists v such that $\{h_1, h_2, \ldots, h_d\} \subseteq N(v)$



Can we utilize this information to simplify graph?

Notice : we can't find entire W(t); v may or may not be in W(t). Introducing Lossy-ness : Add vertex v to W(t)



Contract all edges vh_i for all $i \in [d]$ to get new instance (G', k - (d - 1)) Notice : We contracted d edges but reduced the budget by d - 1.

 h_1, h_2, \ldots, h_d are in big-witness set \Rightarrow there are d-1 solution edges incident these vertices



We are contracting *d*-many edges for every (d-1) edges in the solution.

The number of extra edge contracted in this process is $\frac{d}{d-1} = \alpha$ factor of the optimum solution

This reduction rule coupled with other two reduction rules leads to following theorem.

Theorem

 \mathcal{F}_{ℓ} -CONTRACTION admits a strict PSAKS, where the number of vertices is bounded by $c[k(k+2\ell)]^{(\lceil \frac{\alpha}{\alpha-1} \rceil+1)}$, where c is some fixed constant.

Thank you!

References i

A. Agrawal, D. Lokshtanov, S. Saurabh, and M. Zehavi. **Split contraction: The untold story.**

In 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, pages 5:1–5:14, 2017.

🔋 Leizhen Cai and Chengwei Guo.

Contracting few edges to remove forbidden induced subgraphs.

In IPEC, pages 97-109, 2013.

References ii

- Sylvain Guillemot and DÃąniel Marx.
 A faster FPT algorithm for bipartite contraction.
 Inf. Process. Lett., 113(22–24):906–912, 2013.
- Petr A. Golovach, Pim van 't Hof, and Daniel Paulusma.
 Obtaining planarity by contracting few edges.
 Theoretical Computer Science, 476:38–46, 2013.
- Pinar Heggernes, Pim van 't Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul.

Contracting graphs to paths and trees.

In Proceedings of the 6th International Conference on Parameterized and Exact Computation, IPEC'11, pages 55–66, Berlin, Heidelberg, 2012. Springer-Verlag.

References iii

Pinar Heggernes, Pim van 't Hof, Daniel Lokshtanov, and Christophe Paul.

Obtaining a bipartite graph by contracting few edges. *SIAM Journal on Discrete Mathematics*, 27(4):2143–2156, 2013.

 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
 On the hardness of eliminating small induced subgraphs by contracting edges.
 In *IPEC*, pages 243–254, 2013.