Parameterized and Exact Algorithms for Class Domination Coloring

R. Krithika¹ A. Rai¹ <u>S. Saurabh^{1,2}</u> and P. Tale¹

¹ The Institute of Mathematical Sciences, HBNI, Chennai, India ² University Of Bergen, Norway

January 16, 2017

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

Coloring of graph

COLORING **Input:** A graph *G* **Question:** Find minimum integer *q* such that graph *G* can be partitioned into *q* independent sets

Coloring of graph

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

э

Coloring of graph

- One of Karp's 21 NP-Complete problems
- Computational Complexity : Determining whether given planer graph (which can be 4-colored) is 3-coloring or not is NP-Complete
- Exact Algorithms : $O(2^n)$ which optimal under some widely believed complexity assumption
- Parameterized Complexity : Reduction from COLORING to refute existence of certain kind of algorithms

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

Dominating Set of Graph

DOMINATING SET **Input:** A graph G **Question:** Find minimum int k such that there exists set dominating set D of cardinality k i.e. V(G) = N[D]

Dominating Set of Graph

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

æ

Dominating Set of Graph

- Exact Algorithm : $\mathcal{O}(1.4969^n)$ time and polynomial space.
- $\mathcal{O}(n^k)$ is optimal under certain complexity assumption
- Complete for certain classes in parameterized complexity

Class Domination Coloring

CD-COLORING **Input:** A graph G **Question:** Find minimum int q such that graph G can be partitioned into q independent sets and every independent set is contained in closed neighbourhood of some vertex

Class Domination Coloring

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

Class Domination Coloring

- COLORING such that for every color class, there is a vertex that dominates it
- \bullet flavour of both $\operatorname{Coloring}$ and $\operatorname{Dominating}$ Set
- NP-Complete even for Chordal Graphs

Outline

- Parameterized Complexity and Kernalization
 - Short introduction
 - FPT algorithms parameterized by solution size and tree-width
 - FPT algorithms on chordal graphs
 - $\bullet\,$ Kernel for cd-coloring on graphs with girth ≥ 5
- Exact Algorithm
 - $\mathcal{O}^*(2^n)$ algorithm to compute cd-chromatic number
- CD-PARTIZATION problem
 - Hardness results
 - On Split graphs
 - Exact algorithm to solve

• Pioneered by Downey and Fellows around 1978

- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance l
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance l
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

CD-COLORING **Input:** A graph G **Question:** Find minimum int q such that graph G can be partitioned into q independent sets and every independent set is contained in closed neighbourhood of some vertex

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (*small*) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (1, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time O(f(k) · |I|^{O(1)})

CD-COLORING **Parameter:** *q* **Input:** A graph *G*, integer *q* **Question:** Can graph *G* be partitioned into *q* independent sets such that every independent set is contained in closed neighbourhood of some vertex?

Problem	f(k)
VERTEX COVER (G, k)	$\mathcal{O}(1.27^k \cdot n^2)$
Feedback Vertex $Set(G, k)$	$\mathcal{O}(3.6181^k \cdot n^c)$
INDEPENDENT SET (G, k)	No $f(k) \cdot I ^{\mathcal{O}(1)}$ algorithm
$\operatorname{Coloring}(G, k)$	No $f(k) \cdot I ^{\mathcal{O}(1)}$ algorithm

• Mathematical analysis of pre-processing

- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (1, k) admits a h(k)-kernel if there is a polynomial time algorithm that reduces (1, k) to an equisatisfiable instance (1', k') such that |1'| + k' ≤ h(k).

Problem	h(k)
VERTEX COVER (G, k)	2 <i>k</i>
Feedback Vertex $Set(G, k)$	$4k^2$
INDEPENDENT $Set(G, k)$	No such $h(k)$ exists
$\operatorname{Coloring}(G,k)$	No such $h(k)$ exists

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (1, k) admits a h(k)-kernel if there is a polynomial time algorithm that reduces (1, k) to an equisatisfiable instance (1', k') such that |1'| + k' ≤ h(k).

Problem	h(k)
VERTEX COVER (G, k)	2 <i>k</i>
Feedback Vertex $Set(G, k)$	$4k^{2}$
INDEPENDENT $Set(G, k)$	No such $h(k)$ exists
$\operatorname{Coloring}(G, k)$	No such $h(k)$ exists

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a h(k)-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance (I', k') such that $|I'| + k' \le h(k)$.

Problem	h(k)
VERTEX COVER (G, k)	2 <i>k</i>
Feedback Vertex $Set(G, k)$	$4k^2$
INDEPENDENT $Set(G, k)$	No such $h(k)$ exists
$\operatorname{Coloring}(G,k)$	No such $h(k)$ exists

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a h(k)-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance (I', k') such that $|I'| + k' \le h(k)$.

Problem	h(k)
VERTEX COVER (G, k)	2 <i>k</i>
Feedback Vertex $Set(G, k)$	$4k^2$
INDEPENDENT $Set(G, k)$	No such $h(k)$ exists
$\operatorname{Coloring}(G,k)$	No such $h(k)$ exists

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a h(k)-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance (I', k') such that $|I'| + k' \le h(k)$.

Problem	h(k)
VERTEX COVER (G, k)	2 <i>k</i>
FEEDBACK VERTEX $Set(G, k)$	4 <i>k</i> ²
INDEPENDENT SET (G, k)	No such $h(k)$ exists
$\operatorname{Coloring}(G, k)$	No such $h(k)$ exists

FPT algorithms and Kernalization

Problem	FPT	Kernel
Vertex Cover	$\mathcal{O}(1.27^k \cdot n^2)$	2 <i>k</i>
Feedback Vertex Set	$\mathcal{O}(3.6181^k \cdot n^c)$	$4k^{2}$
INDEPENDENT SET	No $f(k) \cdot I ^{\mathcal{O}(1)}$	No <i>h</i> (<i>k</i>)
Coloring	No $f(k) \cdot I ^{\mathcal{O}(1)}$	No $h(k)$

Theorem

A parameterized problem (I, k) is FPT if and only if it admits a kernel.

FPT algorithms and Kernalization

Problem	FPT	Kernel
Vertex Cover	$\mathcal{O}(1.27^k \cdot n^2)$	2 <i>k</i>
Feedback Vertex Set	$\mathcal{O}(3.6181^k \cdot n^c)$	$4k^{2}$
INDEPENDENT SET	No $f(k) \cdot I ^{\mathcal{O}(1)}$	No <i>h</i> (<i>k</i>)
Coloring	No $f(k) \cdot I ^{\mathcal{O}(1)}$	No $h(k)$

Theorem

A parameterized problem (I, k) is FPT if and only if it admits a kernel.

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING?

< ∃ >

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING?

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING?

Theorem

COLORING (G, 3) is NP-complete.

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING?

Theorem

COLORING(G, 3) is NP-complete.

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING?

Theorem

CD-COLORING(G, 4) is NP-complete.

• Parameter : Solution size

O(f(k) · n^{O(1)}) algorithm for CD-COLORING? ⇒ O(f(4) · n^{O(1)}) algorithm for CD-COLORING when q = 4 ⇒ O(n^{O(1)}) algorithm for NP-Complete problem

para-NP-hard problems

→ 3 → < 3</p>

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING?

 $\Rightarrow \mathcal{O}(f(4) \cdot n^{\mathcal{O}(1)}) \text{ algorithm for CD-COLORING when } q = 4$ $\Rightarrow \mathcal{O}(n^{\mathcal{O}(1)}) \text{ algorithm for NP-Complete problem}$

para-NP-hard problems

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING? $\Rightarrow \mathcal{O}(f(4) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING when q = 4 $\Rightarrow \mathcal{O}(n^{\mathcal{O}(1)})$ algorithm for NP-Complete problem
- para-NP-hard problems

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING? $\Rightarrow \mathcal{O}(f(4) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING when q = 4 $\Rightarrow \mathcal{O}(n^{\mathcal{O}(1)})$ algorithm for NP-Complete problem
- para-NP-hard problems

- Parameter : Solution size
- $\mathcal{O}(f(k) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING? $\Rightarrow \mathcal{O}(f(4) \cdot n^{\mathcal{O}(1)})$ algorithm for CD-COLORING when q = 4 $\Rightarrow \mathcal{O}(n^{\mathcal{O}(1)})$ algorithm for NP-Complete problem
- para-NP-hard problems
• Parameter : Treewidth

- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

• Parameter : Treewidth

• Used by Robertson and Seymour in their work on Graph Minors

- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors

• Important in algorithm design

- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

R. Krithika¹, A. Rai¹, <u>S. Saurabh</u>^{1,2}, and P. Tale¹

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

A B + A B +

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - $\bullet~\# edges$ needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

R. Krithika¹, A. Rai¹, <u>S. Saurabh</u>^{1,2}, and P. Tale¹

A B + A B +

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - $\bullet~\# edges$ needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

A B M A B M

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - $\bullet~\# edges$ needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

A B > A B >

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

A B M A B M

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

- Parameter : Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
 - #vertices needs to be deleted to get a tree
 - #edges needs to be deleted to get a tree
 - #cycles
 - Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is *best* tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

Treewidth

Diagram from 'Metric tree-like structures in real-life networks: an empirical study' by M. Abu-Ata and F. Dragan

<ロ> <同> <同> < 同> < 同>

э

Treewidth

Chordal Graphs

Tree like

Complete Bipartite graphs

Cliques

Grids

Not tree-like

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

R. Krithika¹, A. Rai¹, <u>S. Saurabh</u>^{1,2}, and P. Tale¹

- MSO₂: variables for single vertices; single edges; subset of vertices; subset of edges
- *f* is some computable function
- \$\phi(G,q): MSO₂\$ formula which states that G has cd-chromatic number at most q.
- (⇒) CD-COLORING is FPT when parameterized by length of φ(G, q) plus treewidth of G

- MSO₂ : variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- φ(G,q): MSO₂ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-COLORING is FPT when parameterized by length of $\phi(G,q)$ plus treewidth of G

- MSO₂ : variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- φ(G, q) : MSO₂ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-COLORING is FPT when parameterized by length of $\phi(G,q)$ plus treewidth of G

- MSO₂ : variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- φ(G, q) : MSO₂ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-COLORING is FPT when parameterized by length of $\phi(G,q)$ plus treewidth of G

- MSO₂: variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- φ(G,q): MSO₂ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-COLORING is FPT when parameterized by length of $\phi(G,q)$ plus treewidth of G

- $\phi(G,q) \equiv$ There are q sets of V(G)[Which partitions $V(G) \land$ Each of them is independent set \land There exists a vertex dominating it]
- $\phi(G,q) \equiv \exists V_1, V_2, \dots, V_q \subseteq V(G) [Part(V_1, V_2, \dots, V_q) \land \\ IndSet(V_1) \land \dots \land IndSet(V_q) \land \\ Dom(V_1) \land \dots \land Dom(V_q)]$

 $\phi(G,q)$ is **MSO**₂ formula of length $\mathcal{O}(q)$

Theorem

- $\phi(G,q) \equiv$ There are q sets of V(G)[Which partitions $V(G) \land$ Each of them is independent set \land There exists a vertex dominating it]
- $\phi(G,q) \equiv \exists V_1, V_2, \dots, V_q \subseteq V(G) [Part(V_1, V_2, \dots, V_q) \land \\ IndSet(V_1) \land \dots \land IndSet(V_q) \land \\ Dom(V_1) \land \dots \land Dom(V_q)]$

 $\phi(G,q)$ is **MSO**₂ formula of length $\mathcal{O}(q)$

Theorem

 $\phi(G,q) \equiv$ There are q sets of V(G)[Which partitions $V(G) \land$ Each of them is independent set \land There exists a vertex dominating it]

$$\phi(G,q) \equiv \exists V_1, V_2, \dots, V_q \subseteq V(G) [Part(V_1, V_2, \dots, V_q) \land \\ IndSet(V_1) \land \dots \land IndSet(V_q) \land \\ Dom(V_1) \land \dots \land Dom(V_q)]$$

 $\phi(G,q)$ is **MSO**₂ formula of length $\mathcal{O}(q)$

Theorem

 $\phi(G,q) \equiv$ There are q sets of V(G)[Which partitions $V(G) \land$ Each of them is independent set \land There exists a vertex dominating it]

$$\phi(G,q) \equiv \exists V_1, V_2, \dots, V_q \subseteq V(G) [Part(V_1, V_2, \dots, V_q) \land \\ IndSet(V_1) \land \dots \land IndSet(V_q) \land \\ Dom(V_1) \land \dots \land Dom(V_q)]$$

 $\phi(G,q)$ is **MSO**₂ formula of length $\mathcal{O}(q)$

Theorem

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 Contourus is poly-time solvable but con Contourus is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - Conormic is pare NP-hard [LK07]. In contrast, OPEOHOMMO Is FPT
 - \sim Admits on algorithm running in $O(2^{O(q^2)}q^2 \log q^2)$ time and on $O(q^2)$ sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 Contoning is poly-time solvable but co-Contoning is NP-Complete
 - Existance of EPT algorithm on Chordal graphs.
- Graph of girth (lenght of shortest cycle) at least 5
 - COLUMENTS is pare NP-hard [LK07]. In contrast, OD-COLUMENTS is FPT
 - → Admits an algorithm running in $O(2^{O(q^2)}q^{12}\log q^2)$ time and an $O(q^2)$ sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 - COLORING is poly-time solvable but CD-COLORING is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - COLORING is para-NP-hard [LK07]. In contrast, CD-COLORING is FPT
 - Admits an algorithm running in O(2^{O(q²)}q¹² log q³) time and an O(q³) sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 - \bullet COLORING is poly-time solvable but CD-COLORING is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - COLORING is para-NP-hard [LK07]. In contrast, CD-COLORING is FPT
 - Admits an algorithm running in O(2^{O(q²)}q¹² log q³) time and an O(q³) sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 - \bullet COLORING is poly-time solvable but CD-COLORING is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - COLORING is para-NP-hard [LK07]. In contrast, CD-COLORING is FPT
 - Admits an algorithm running in O(2^{O(q²)}q¹² log q³) time and an O(q³) sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 - \bullet COLORING is poly-time solvable but <code>CD-COLORING</code> is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - COLORING is para-NP-hard [LK07]. In contrast, CD-COLORING is FPT
 - Admits an algorithm running in \$\mathcal{O}(2^{\mathcal{O}(q^3)}q^{12}\log q^3)\$ time and an \$\mathcal{O}(q^3)\$ sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 - \bullet COLORING is poly-time solvable but <code>CD-COLORING</code> is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - COLORING is para-NP-hard [LK07]. In contrast, CD-COLORING is FPT
 - Admits an algorithm running in \$\mathcal{O}(2^{\mathcal{O}(q^3)}q^{12}\log q^3)\$ time and an \$\mathcal{O}(q^3)\$ sized vertex kernel on graphs with girth at least 5.

What is the class of graphs on which it is FPT when parameterized by #colors (only)?

Theorem

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
 - \bullet COLORING is poly-time solvable but <code>CD-COLORING</code> is NP-Complete
 - Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
 - COLORING is para-NP-hard [LK07]. In contrast, CD-COLORING is FPT
 - Admits an algorithm running in \$\mathcal{O}(2^{\mathcal{O}(q^3)}q^{12}\log q^3)\$ time and an \$\mathcal{O}(q^3)\$ sized vertex kernel on graphs with girth at least 5.

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \ge q$ then (G, q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \ge q$ then (G, q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \ge q$ then (G, q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \ge q$ then (G, q) is NO instance of CD-COLORING
 - If $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \ge q$ then (G, q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem
- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \geq q$ then (G,q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \geq q$ then (G,q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \geq q$ then (G,q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph G, $tw(G) \ge \omega(G) 1$
- For a chordal graph G, $tw(G) = \omega(G) 1$
- Finding w(G) is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
 - if $\omega(G) \geq q$ then (G,q) is NO instance of CD-COLORING
 - if $\omega(G) \leq q$ then $tw(G) \leq q$

Theorem

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

CD-COLORING **Parameter:** *q* **Input:** A graph *G*, integer *q* **Question:** Can graph *G* be partitioned into *q* independent sets such that every independent set is contained in closed neighbourhood of some vertex?

- If G_1, \ldots, G_l are the connected components of G, then $\chi_{cd}(G) = \sum_{i=1}^{l} \chi_{cd}(G_i)$.
- wlog assume that input graph is connected
- Let χ_{cd}(G) be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G) = \bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G) = \bigcup_{v \in S} N(v)$

CD-COLORING **Parameter:** *q* **Input:** A connected graph *G*, integer *q* **Question:** Can graph *G* be partitioned into *q* independent sets such that every independent set is contained in open neighbourhood of some vertex?

FPT algorithms and Kernalization

Dominating Set = $\{b, c, f\}$ Total Dominating Set = $\{b, c, f, e\}$ which dominates color classes C_1, C_2, C_3, C_4 resp.

FPT algorithms and Kernalization

Dominating Set = $\{b, c, f\}$ Total Dominating Set = $\{b, c, f, e\}$ which dominates color classes C_1, C_2, C_3, C_4 resp.

• $\mathcal{G}_5 = \{G | \text{ girth of } G \geq 5\}$

- For a graph $G \in \mathcal{G}_5$, for any $u, v: |N(v) \cap N(u)| \le 1$.
- In any cd-coloring of *G*, every color class has unique vertex which dominates it
- For general graphs : $minTDS(G) \le \chi_{cd}(G)$
- For graph $G \in \mathcal{G}_5$: $minTDS(G) = \chi_{cd}(G)$
- CD-COLORING(G,q) \Leftrightarrow TOTAL DOMINATING SET(G,q) for $G \in \mathcal{G}_5$

- $\mathcal{G}_5 = \{G | \text{ girth of } G \geq 5\}$
- For a graph $G \in \mathcal{G}_5$, for any u, v: $|N(v) \cap N(u)| \le 1$.
- In any cd-coloring of *G*, every color class has unique vertex which dominates it
- For general graphs : $minTDS(G) \le \chi_{cd}(G)$
- For graph $G \in \mathcal{G}_5$: $minTDS(G) = \chi_{cd}(G)$
- CD-COLORING(G,q) \Leftrightarrow TOTAL DOMINATING SET(G,q) for $G \in \mathcal{G}_5$

- $\mathcal{G}_5 = \{G | \text{ girth of } G \geq 5\}$
- For a graph $G \in \mathcal{G}_5$, for any u, v: $|N(v) \cap N(u)| \le 1$.
- In any cd-coloring of *G*, every color class has unique vertex which dominates it
- For general graphs : $minTDS(G) \le \chi_{cd}(G)$
- For graph $G \in \mathcal{G}_5$: $minTDS(G) = \chi_{cd}(G)$
- CD-COLORING(G,q) \Leftrightarrow TOTAL DOMINATING SET(G,q) for $G \in \mathcal{G}_5$

- $\mathcal{G}_5 = \{G | \text{ girth of } G \geq 5\}$
- For a graph $G \in \mathcal{G}_5$, for any u, v: $|N(v) \cap N(u)| \le 1$.
- In any cd-coloring of *G*, every color class has unique vertex which dominates it
- For general graphs : $minTDS(G) \le \chi_{cd}(G)$
- For graph $G \in \mathcal{G}_5$: $minTDS(G) = \chi_{cd}(G)$
- CD-COLORING(G,q) \Leftrightarrow TOTAL DOMINATING SET(G,q) for $G \in \mathcal{G}_5$

• $\mathcal{G}_5 = \{G | \text{ girth of } G \geq 5\}$

- For a graph $G \in \mathcal{G}_5$, for any u, v: $|N(v) \cap N(u)| \le 1$.
- In any cd-coloring of *G*, every color class has unique vertex which dominates it
- For general graphs : $minTDS(G) \le \chi_{cd}(G)$
- For graph $G \in \mathcal{G}_5$: $minTDS(G) = \chi_{cd}(G)$
- CD-COLORING(G,q) \Leftrightarrow TOTAL DOMINATING SET(G,q) for $G \in \mathcal{G}_5$

• $\mathcal{G}_5 = \{G | \text{ girth of } G \geq 5\}$

- For a graph $G \in \mathcal{G}_5$, for any u, v: $|N(v) \cap N(u)| \le 1$.
- In any cd-coloring of *G*, every color class has unique vertex which dominates it
- For general graphs : $minTDS(G) \le \chi_{cd}(G)$
- For graph $G \in \mathcal{G}_5$: $minTDS(G) = \chi_{cd}(G)$
- CD-COLORING(G,q) \Leftrightarrow TOTAL DOMINATING SET(G,q) for $G \in \mathcal{G}_5$

Claim

For $G \in G_5$, if $deg(u) \ge k + 1$, then any total dominating set of size at most k contains u.

- Consider Total Dominating Set {w₁, w₂,..., w_k} which doesn't contain u
- Note : v_i may be equal to w_j
- By Pigeon-hole principle, there exists some w_j which is adjacent to two vertices in N(u)
- This contradicts the fact that $G \in \mathcal{G}_5$

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

•
$$H = \{u | deg(u) \ge k + 1\}$$

 $J = N[H] \setminus H$
 $R = V(G) \setminus (H \cup J)$

Н

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

•
$$H = \{u | deg(u) \ge k + 1\}$$

 $J = N[H] \setminus H$
 $R = V(G) \setminus (H \cup J)$

• *H* is contained in solution $\Rightarrow |H| \le k$

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

•
$$H = \{u | deg(u) \ge k + 1\}$$

 $J = N[H] \setminus H$
 $R = V(G) \setminus (H \cup J)$

- *H* is contained in solution $\Rightarrow |H| \le k$
- Vertices in R can't be dominated by vertices in H and every vertex in J ∪ R has degree at most k,
 ⇒ |R| ≤ O(k²)

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

- $H = \{u | deg(u) \ge k + 1\}$ $J = N[H] \setminus H$ $R = V(G) \setminus (H \cup J)$
- *H* is contained in solution $\Rightarrow |H| \le k$
- Vertices in R can't be dominated by vertices in H and every vertex in J ∪ R has degree at most k, ⇒ |R| ≤ O(k²)
- $|J \cup R| \le |R| * k \le \mathcal{O}(k^3)$

For $u, v \in J \setminus N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

< ∃ >

э

For $u, v \in J \setminus N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively

For $u, v \in J \setminus N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively Partition $J \setminus N(R)$ into J_1 and J_2 $J_1 = \{u | \text{ s.t. } |N(u) \cap H| = 1\}$ $J_2 = \{u | \text{ s.t. } |N(u) \cap H| \ge 2\}$

For $u, v \in J \setminus N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively Partition $J \setminus N(R)$ into J_1 and J_2 $J_1 = \{u | \text{ s.t. } |N(u) \cap H| = 1\}$ $J_2 = \{u | \text{ s.t. } |N(u) \cap H| \ge 2\}$ $|J_1| \le |H| \le k$ (Otherwise reduction rule will be applicable)

For $u, v \in J \setminus N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively Partition $J \setminus N(R)$ into J_1 and J_2 $J_1 = \{u | \text{ s.t. } |N(u) \cap H| = 1\}$ $J_2 = \{u | \text{ s.t. } |N(u) \cap H| \ge 2\}$ $|J_1| \le |H| \le k$ (Otherwise reduction rule will be applicable) $|J_2| \le {k \choose 2} \le \mathcal{O}(k^2)$ (If $|J_2|$ is larger we will find cycle of lenght 4)

For $u, v \in J \setminus N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively Partition $J \setminus N(R)$ into J_1 and J_2 $J_1 = \{u | \text{ s.t. } |N(u) \cap H| = 1\}$ $J_2 = \{u | \text{ s.t. } |N(u) \cap H| \ge 2\}$ $|J_1| \le |H| \le k$ (Otherwise reduction rule will be applicable) $|J_2| \le {k \choose 2} \le \mathcal{O}(k^2)$ (If $|J_2|$ is larger we will find cycle of lenght 4)

Lemma

TOTAL DOMINATING SET admits a kernel of $\mathcal{O}(k^3)$ vertices on \mathcal{G}_5 .

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

Let $\mathcal I$ be the set containing all independent sets in G

$\mathcal{I}^1 = \{ X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u) \}$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

 $\mathcal{I}^2 = \{Y \mid \exists X_1, X_2 \in \mathcal{I}^1 ext{ s.t. } X_1 \cup X_2 = Y ext{ and } X_1 \cap X_2 = \emptyset\}$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

 $\mathcal{I}^3 = \{ Z | \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \text{ s.t } X \cup Y = Z \text{ and } X \cap Y = \emptyset \}$

Let ${\mathcal I}$ be the set containing all independent sets in ${\it G}$

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph $\mathcal{I}^2 = \{Y | \exists X_1, X_2 \in \mathcal{I}^1 \text{ s.t. } X_1 \cup X_2 = Y \text{ and } X_1 \cap X_2 = \emptyset\}$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

 $\mathcal{I}^3 = \{ Z | \; \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \text{ s.t } X \cup Y = Z \text{ and } X \cap Y = \emptyset \}$

Let $\mathcal I$ be the set containing all independent sets in G

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

 $\mathcal{I}^2 = \{Y \mid \exists X_1, X_2 \in \mathcal{I}^1 ext{ s.t. } X_1 \cup X_2 = Y ext{ and } X_1 \cap X_2 = \emptyset\}$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

 $\mathcal{I}^3 = \{Z | \; \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \; \text{s.t} \; X \cup Y = Z \; \text{and} \; X \cap Y = \emptyset \}$

Let \mathcal{I} be the set containing all independent sets in G

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

$$\mathcal{I}^2 = \{ Y | \; \exists X_1, X_2 \in \mathcal{I}^1 \; ext{s.t.} \; X_1 \cup X_2 = Y \; ext{and} \; X_1 \cap X_2 = \emptyset \}$$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

 $\mathcal{I}^3 = \{ Z | \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \text{ s.t } X \cup Y = Z \text{ and } X \cap Y = \emptyset \}$

Let \mathcal{I} be the set containing all independent sets in G

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

$$\mathcal{I}^2=\{ Y| \; \exists X_1,X_2\in \mathcal{I}^1 \; ext{s.t.} \; X_1\cup X_2=Y \; ext{and} \; X_1\cap X_2=\emptyset \}$$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

 $\mathcal{I}^3 = \{Z | \; \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \; \mathsf{s.t} \; X \cup Y = Z \; \mathsf{and} \; X \cap Y = \emptyset\}$
Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

$$\mathcal{I}^2=\{ Y| \; \exists X_1,X_2\in \mathcal{I}^1 \; ext{s.t.} \; X_1\cup X_2=Y \; ext{and} \; X_1\cap X_2=\emptyset \}$$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$\mathcal{I}^3 = \{Z | \; \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \; \text{s.t} \; X \cup Y = Z \; \text{and} \; X \cap Y = \emptyset \}$$

 \mathcal{I}^3 : Possible subgraphs which will need 3 color classes in some cd-coloring of graph To compute $\chi_{cd}(G)$, we need to find minimum q such that $V(G) \in \mathcal{I}^q$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

$$\mathcal{I}^2=\{ Y| \; \exists X_1,X_2\in \mathcal{I}^1 \; ext{s.t.} \; X_1\cup X_2=Y \; ext{and} \; X_1\cap X_2=\emptyset \}$$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$\mathcal{I}^3 = \{Z | \; \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \; \text{s.t} \; X \cup Y = Z \; \text{and} \; X \cap Y = \emptyset \}$$

 \mathcal{I}^3 : Possible subgraphs which will need 3 color classes in some cd-coloring of graph

To compute $\chi_{cd}(G)$, we need to find minimum q such that $V(G)\in \mathcal{I}^q$

Exact algorithm to compute cd-chromatic number

Let $\mathcal I$ be the set containing all independent sets in G

$$\mathcal{I}^1 = \{X \mid X \in \mathcal{I} \text{ and } \exists u \in V(G) \text{ s.t. } X \subseteq N(u)\}$$

 \mathcal{I}^1 : Possible candidates for color classes in cd-coloring of graph

$$\mathcal{I}^2 = \{ Y | \; \exists X_1, X_2 \in \mathcal{I}^1 \; \mathsf{s.t.} \; X_1 \cup X_2 = Y \; \mathsf{and} \; X_1 \cap X_2 = \emptyset \}$$

 \mathcal{I}^2 : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$\mathcal{I}^3 = \{Z | \; \exists X \in \mathcal{I}^1, Y \in \mathcal{I}^2 \; \text{s.t} \; X \cup Y = Z \; \text{and} \; X \cap Y = \emptyset \}$$

 \mathcal{I}^3 : Possible subgraphs which will need 3 color classes in some cd-coloring of graph To compute $\chi_{cd}(G)$, we need to find minimum q such that $V(G) \in \mathcal{I}^q$

Universe $U = \{u_1, u_2, ..., u_n\}$ with fixed ordering on elements. **Characteristic vector** of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j] = 1$ iff $u_j \in S$ **Hamming weight** of a vector ϕ is the number of 1s in ϕ and its denoted by $\mathcal{H}(\phi)$ **val** (ϕ) denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_1, S_2 \subseteq U$, define modefied multiplication (\star)

$$z^{val}(\psi(S_1)) \star z^{val}(\psi(S_2)) = \begin{cases} z^{val}(\psi(S_1)) + val(\psi(S_2)) & \text{if } S_1 \cap S_2 = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Objective : To compute $z^{val(\psi(S_1))}\star z^{val(\psi(S_2))}$ without explicitely looking at S_1,S_2

Universe $U = \{u_1, u_2, ..., u_n\}$ with fixed ordering on elements. **Characteristic vector** of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j] = 1$ iff $u_j \in S$

Hamming weight of a vector ϕ is the number of 1s in ϕ and its denoted by $\mathcal{H}(\phi)$

val(ϕ) denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_1, S_2 \subseteq U$, define modefied multiplication (*)

$$z^{val}(\psi(S_1)) \star z^{val}(\psi(S_2)) = \begin{cases} z^{val}(\psi(S_1)) + val(\psi(S_2)) & \text{if } S_1 \cap S_2 = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Objective : To compute $z^{val(\psi(S_1))} \star z^{val(\psi(S_2))}$ without explicitely looking at S_1, S_2

Universe $U = \{u_1, u_2, ..., u_n\}$ with fixed ordering on elements. **Characteristic vector** of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j] = 1$ iff $u_j \in S$ **Hamming weight** of a vector ϕ is the number of 1s in ϕ and its denoted by $\mathcal{H}(\phi)$

val(ϕ) denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_1, S_2 \subseteq U$, define modefied multiplication (*)

$$z^{val}(\psi(S_1)) \star z^{val}(\psi(S_2)) = \begin{cases} z^{val}(\psi(S_1)) + val(\psi(S_2)) & \text{if } S_1 \cap S_2 = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Objective : To compute $z^{val(\psi(S_1))}\star z^{val(\psi(S_2))}$ without explicitely looking at S_1,S_2

Universe $U = \{u_1, u_2, ..., u_n\}$ with fixed ordering on elements. **Characteristic vector** of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j] = 1$ iff $u_j \in S$ **Hamming weight** of a vector ϕ is the number of 1s in ϕ and its denoted by $\mathcal{H}(\phi)$ **val** (ϕ) denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_1, S_2 \subseteq U$, define modefied multiplication (\star)

$$z^{val}(\psi(S_1)) \star z^{val}(\psi(S_2)) = \begin{cases} z^{val}(\psi(S_1)) + val(\psi(S_2)) & \text{if } S_1 \cap S_2 = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Objective : To compute $z^{val(\psi(S_1))}\star z^{val(\psi(S_2))}$ without explicitely looking at S_1,S_2

Universe $U = \{u_1, u_2, ..., u_n\}$ with fixed ordering on elements. **Characteristic vector** of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j] = 1$ iff $u_j \in S$ **Hamming weight** of a vector ϕ is the number of 1s in ϕ and its denoted by $\mathcal{H}(\phi)$ **val** (ϕ) denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_1, S_2 \subseteq U$, define modefied multiplication (\star)

$$z^{val(\psi(S_1))} \star z^{val(\psi(S_2))} = \begin{cases} z^{val(\psi(S_1)) + val(\psi(S_2))} & \text{if } S_1 \cap S_2 = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Objective : To compute $z^{val(\psi(S_1))}\star z^{val(\psi(S_2))}$ without explicitely looking at S_1,S_2

• • = • • = •

Universe $U = \{u_1, u_2, ..., u_n\}$ with fixed ordering on elements. **Characteristic vector** of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j] = 1$ iff $u_j \in S$ **Hamming weight** of a vector ϕ is the number of 1s in ϕ and its denoted by $\mathcal{H}(\phi)$ **val** (ϕ) denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_1, S_2 \subseteq U$, define modefied multiplication (\star)

$$z^{val(\psi(S_1))} \star z^{val(\psi(S_2))} = \begin{cases} z^{val(\psi(S_1)) + val(\psi(S_2))} & \text{if } S_1 \cap S_2 = \emptyset \\ 0 & \text{otherwise} \end{cases}$$

Objective : To compute $z^{val(\psi(S_1))} \star z^{val(\psi(S_2))}$ without explicitely looking at S_1, S_2

Universe $U = \{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_1 = \{a, c\}$	$B_1 = 1010$	2
$S_2 = \{b\}$	$B_2 = 0100$	1
$S_3 = \{c, d\}$	$B_3 = 0011$	2
$S_1 \cup S_2 = \{a, b, c\}$	$B_{12} = 1110$	3
$S_1 \cup S_3 = \{a, c, d\}$	$B_{13} = 1011$	3

 $S_1 \cap S_2 = \emptyset$ and $\mathcal{H}(B_{12}) = \mathcal{H}(B_1) + \mathcal{H}(B_2)$ $S_1 \cap S_3 \neq \emptyset$ and $\mathcal{H}(B_{13}) \neq \mathcal{H}(B_1) + \mathcal{H}(B_2)$

Universe $U = \{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_1 = \{a, c\}$	$B_1 = 1010$	2
$S_2 = \{b\}$	$B_2 = 0100$	1
$S_3 = \{c, d\}$	$B_3 = 0011$	2
$S_1 \cup S_2 = \{a, b, c\}$	$B_{12} = 1110$	3
$S_1 \cup S_3 = \{a, c, d\}$	$B_{13} = 1011$	3

 $S_1 \cap S_2 = \emptyset$ and $\mathcal{H}(B_{12}) = \mathcal{H}(B_1) + \mathcal{H}(B_2)$ $S_1 \cap S_3 \neq \emptyset$ and $\mathcal{H}(B_{13}) \neq \mathcal{H}(B_1) + \mathcal{H}(B_2)$

Universe $U = \{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_1 = \{a, c\}$	$B_1 = 1010$	2
$S_2 = \{b\}$	$B_2 = 0100$	1
$S_3 = \{c, d\}$	$B_3 = 0011$	2
$S_1 \cup S_2 = \{a, b, c\}$	$B_{12} = 1110$	3
$S_1 \cup S_3 = \{a, c, d\}$	$B_{13} = 1011$	3

 $S_1 \cap S_2 = \emptyset$ and $\mathcal{H}(B_{12}) = \mathcal{H}(B_1) + \mathcal{H}(B_2)$ $S_1 \cap S_3 \neq \emptyset$ and $\mathcal{H}(B_{13}) \neq \mathcal{H}(B_1) + \mathcal{H}(B_2)$

Universe $U = \{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_1 = \{a, c\}$	$B_1 = 1010$	2
$S_2 = \{b\}$	$B_2 = 0100$	1
$S_3 = \{c, d\}$	$B_3 = 0011$	2
$S_1 \cup S_2 = \{a, b, c\}$	$B_{12} = 1110$	3
$S_1 \cup S_3 = \{a, c, d\}$	$B_{13} = 1011$	3

$$S_1 \cap S_2 = \emptyset$$
 and $\mathcal{H}(B_{12}) = \mathcal{H}(B_1) + \mathcal{H}(B_2)$
 $S_1 \cap S_3 \neq \emptyset$ and $\mathcal{H}(B_{13}) \neq \mathcal{H}(B_1) + \mathcal{H}(B_2)$

1-bit is *lost* while adding two bit-vectors B and B' if there is an index $i \in [n]$ such that B[i] = B'[i] = 1 i.e. while adding two bit-vectors corresponds to sets which are not disjoint

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

Universe $U = \{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_1 = \{a, c\}$	$B_1 = 1010$	2
$S_2 = \{b\}$	$B_2 = 0100$	1
$S_3 = \{c, d\}$	$B_3 = 0011$	2
$S_1 \cup S_2 = \{a, b, c\}$	$B_{12} = 1110$	3
$S_1 \cup S_3 = \{a, c, d\}$	$B_{13} = 1011$	3

$$S_1 \cap S_2 = \emptyset$$
 and $\mathcal{H}(B_{12}) = \mathcal{H}(B_1) + \mathcal{H}(B_2)$
 $S_1 \cap S_3 \neq \emptyset$ and $\mathcal{H}(B_{13}) \neq \mathcal{H}(B_1) + \mathcal{H}(B_2)$

Universe $U = \{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_1 = \{a, c\}$	$B_1 = 1010$	2
$S_2 = \{b\}$	$B_2 = 0100$	1
$S_3 = \{c, d\}$	$B_3 = 0011$	2
$S_1 \cup S_2 = \{a, b, c\}$	$B_{12} = 1110$	3
$S_1 \cup S_3 = \{a, c, d\}$	$B_{13} = 1011$	3

$$S_1 \cap S_2 = \emptyset$$
 and $\mathcal{H}(B_{12}) = \mathcal{H}(B_1) + \mathcal{H}(B_2)$
 $S_1 \cap S_3 \neq \emptyset$ and $\mathcal{H}(B_{13}) \neq \mathcal{H}(B_1) + \mathcal{H}(B_2)$

Algorithm to compute modified multiplication (*)

Input: Two polynomials p(z), r(z)Output: p(z) * r(z)1 Initialize polynomial t(z) to 02 for each ordered pair (i, j) such that $i + j \le n$ do3 $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i4 $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j5Compute $s_{ij}(z) = s_i(z) * s_j(z)$ (standard multiplication)6 $t(z) \leftarrow t(z)$ + monomials in $s_{ij}(z)$ whose exponent has Ham-Wt

7 return t(z)

Running time : $\mathcal{O}(n^2 \times d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)**Output**: $p(z) \star r(z)$

Initialize polynomial t(z) to 0

2 for each ordered pair (i,j) such that $i+j \leq n$ do

- $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i
- $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j
- 6 Compute $s_{ij}(z) = s_i(z) * s_j(z)$ (standard multiplication)
- $t(z) \leftarrow t(z) + \text{ monomials in } s_{ij}(z) \text{ whose exponent has Ham-Wt}$ i + j
- 7 return t(z)

Running time : $\mathcal{O}(n^2 \times d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)

- **Output**: $p(z) \star r(z)$
- 1 Initialize polynomial t(z) to 0

2 for each ordered pair (i, j) such that $i + j \le n$ do

- $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i
- $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j
- 6 Compute $s_{ij}(z) = s_i(z) * s_j(z)$ (standard multiplication)
- $t(z) \leftarrow t(z) + \text{ monomials in } s_{ij}(z) \text{ whose exponent has Ham-Wt}$ i+j
- 7 return t(z)

Running time : $\mathcal{O}(n^2 imes d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)

- **Output**: $p(z) \star r(z)$
- 1 Initialize polynomial t(z) to 0
- 2 for each ordered pair (i,j) such that $i+j \leq n$ do
- 3 $s_i(z) \leftarrow \text{monomials in } p(z) \text{ whose exponent as Ham-Wt } i$ 4 $s_j(z) \leftarrow \text{monomials in } r(z) \text{ whose exponent as Ham-Wt } j$ 5 Compute $s_{ij}(z) = s_i(z) * s_j(z) \text{ (standard multiplication)}$ 6 $t(z) \leftarrow t(z) + \text{monomials in } s_{ij}(z) \text{ whose exponent has Ham-Wt}$ i + j
- 7 return t(z)

Running time : $\mathcal{O}(n^2 \times d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)Output: $p(z) \star r(z)$ 1 Initialize polynomial t(z) to 02 for each ordered pair (i, j) such that $i + j \leq n$ do3 $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i4 $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j5Compute $s_{ij}(z) = s_i(z) * s_j(z)$ (standard multiplication)6 $t(z) \leftarrow t(z) +$ monomials in $s_{ij}(z)$ whose exponent has Ham-Wt

7 return t(z)

Running time : $O(n^2 \times d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)Output: $p(z) \star r(z)$ 1 Initialize polynomial t(z) to 02 for each ordered pair (i, j) such that $i + j \leq n$ do3 $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i4 $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j5Compute $s_{ij}(z) = s_i(z) \star s_j(z)$ (standard multiplication)6 $t(z) \leftarrow t(z) +$ monomials in $s_{ij}(z)$ whose exponent has Ham-Wt

7 return t(z)

Running time : $O(n^2 \times d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)Output: $p(z) \star r(z)$ 1 Initialize polynomial t(z) to 02 for each ordered pair (i, j) such that $i + j \leq n$ do3 $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i4 $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j5Compute $s_{ij}(z) = s_i(z) \star s_j(z)$ (standard multiplication)6 $t(z) \leftarrow t(z) +$ monomials in $s_{ij}(z)$ whose exponent has Ham-Wt

7 return t(z)

Running time : $\mathcal{O}(n^2 \times d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)Output: $p(z) \star r(z)$ 1 Initialize polynomial t(z) to 02 for each ordered pair (i, j) such that $i + j \leq n$ do3 $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i4 $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j5Compute $s_{ij}(z) = s_i(z) * s_j(z)$ (standard multiplication)6 $t(z) \leftarrow t(z)$ + monomials in $s_{ij}(z)$ whose exponent has Ham-Wt

7 return t(z)

Running time : $\mathcal{O}(n^2 imes d^2)$ where d is degree of polynomial

Algorithm to compute modified multiplication (\star)

Input: Two polynomials p(z), r(z)Output: $p(z) \star r(z)$ 1 Initialize polynomial t(z) to 02 for each ordered pair (i, j) such that $i + j \leq n$ do3 $s_i(z) \leftarrow$ monomials in p(z) whose exponent as Ham-Wt i4 $s_j(z) \leftarrow$ monomials in r(z) whose exponent as Ham-Wt j5Compute $s_{ij}(z) = s_i(z) * s_j(z)$ (standard multiplication)6 $t(z) \leftarrow t(z)$ + monomials in $s_{ij}(z)$ whose exponent has Ham-Wt

7 return t(z)

Running time : $O(n^2 \times d^2)$ where d is degree of polynomial

Maximum degree of q(z) is $2^n (\Rightarrow)$ running time $\mathcal{O}(n^2 \times 4^n)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log \log \log d)$ additions and multiplications in \mathcal{R} .

(⇒) running time $\mathcal{O}(n^2 \times 2^n \cdot n \cdot \log n)$ Since $\chi_{cd}(G) \leq |V(G)|$, we need to multiply two polynomials at most *n* times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $O(2^n n^4 \log n)$ time.

Maximum degree of q(z) is $2^n (\Rightarrow)$ running time $\mathcal{O}(n^2 \times 4^n)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log \log \log d)$ additions and multiplications in \mathcal{R} .

(⇒) running time $\mathcal{O}(n^2 \times 2^n \cdot n \cdot \log n)$ Since $\chi_{cd}(G) \leq |V(G)|$, we need to multiply two polynomials at most *n* times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}(2^n n^4 \log n)$ time.

Maximum degree of q(z) is $2^n (\Rightarrow)$ running time $\mathcal{O}(n^2 \times 4^n)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log \log \log d)$ additions and multiplications in \mathcal{R} .

(\Rightarrow) running time $\mathcal{O}(n^2 \times 2^n \cdot n \cdot \log n)$

Since $\chi_{cd}(G) \leq |V(G)|$, we need to multiply two polynomials at most *n* times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}(2^n n^4 \log n)$ time.

Maximum degree of q(z) is $2^n (\Rightarrow)$ running time $\mathcal{O}(n^2 \times 4^n)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R} .

(⇒) running time $O(n^2 \times 2^n \cdot n \cdot \log n)$ Since $\chi_{cd}(G) \leq |V(G)|$, we need to multiply two polynomials at most *n* times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}(2^n n^4 \log n)$ time.

Maximum degree of q(z) is $2^n (\Rightarrow)$ running time $\mathcal{O}(n^2 \times 4^n)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R} .

(⇒) running time $O(n^2 \times 2^n \cdot n \cdot \log n)$ Since $\chi_{cd}(G) \leq |V(G)|$, we need to multiply two polynomials at most *n* times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $O(2^n n^4 \log n)$ time.

CD-PARTIZATION Parameter: k, qInput: Graph G, integers k and qQuestion: Does there exist $S \subseteq V(G)$, $|S| \leq k$, such that $\chi_{cd}(G-S) \leq q$?

Theorem

q-CD-PARTIZATION *is* NP*-complete for* $q \in \{2, 3\}$ *.*

- Note $\mathcal{G} = \{ G \mid \chi_{cd}(G) \leq q \}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from *q*-PARTIZATION

CD-PARTIZATION **Parameter:** k, q **Input:** Graph G, integers k and q**Question:** Does there exist $S \subseteq V(G)$, $|S| \leq k$, such that $\chi_{cd}(G-S) \leq q$?

Theorem

q-CD-PARTIZATION is NP-complete for $q \in \{2, 3\}$.

- Note $\mathcal{G} = \{ \mathcal{G} \mid \chi_{cd}(\mathcal{G}) \leq q \}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from *q*-PARTIZATION

CD-PARTIZATION **Parameter:** k, q **Input:** Graph G, integers k and q**Question:** Does there exist $S \subseteq V(G)$, $|S| \leq k$, such that $\chi_{cd}(G-S) \leq q$?

Theorem

q-CD-PARTIZATION is NP-complete for $q \in \{2,3\}$.

- Note $\mathcal{G} = \{ \mathcal{G} \mid \chi_{cd}(\mathcal{G}) \leq q \}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from *q*-PARTIZATION

CD-PARTIZATION **Parameter:** k, q **Input:** Graph G, integers k and q**Question:** Does there exist $S \subseteq V(G)$, $|S| \leq k$, such that $\chi_{cd}(G-S) \leq q$?

Theorem

q-CD-PARTIZATION is NP-complete for $q \in \{2,3\}$.

- Note $\mathcal{G} = \{ \mathcal{G} \mid \chi_{cd}(\mathcal{G}) \leq q \}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from *q*-PARTIZATION

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

CD-PARTIZATION on split graphs is NP-hard.

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

CD-PARTIZATION on split graphs is NP-hard.

(Parameter preserving) Reduction from $\operatorname{Set}\,\operatorname{Cover}$
cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

CD-PARTIZATION on split graphs is NP-hard.

(Parameter preserving) Reduction from SET COVER

Corollary

CD-PARTIZATION on split graphs parameterized by q is W[2]-hard.

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

CD-PARTIZATION on split graphs is NP-hard.

(Parameter preserving) Reduction from SET COVER

Corollary

CD-PARTIZATION on split graphs parameterized by q is W[2]-hard.

Theorem

CD-PARTIZATION on split graphs is FPT with respect to parameters q and k. Furthermore, the problem does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Theorem

Given a graph G and an integer k, there is an algorithm that determines if there is a set S of size k whose deletion results in a graph H with $\chi_{cd}(H) \leq 3$ in $\mathcal{O}^*(2.3146^k)$ time.

Theorem

Given a graph G and an integer k, there is an algorithm that determines if there is a set S of size k whose deletion results in a graph H with $\chi_{cd}(H) \leq 3$ in $\mathcal{O}^*(2.3146^k)$ time.

- Complete characterization of class $\mathcal{H} = \{H \mid \chi_{cd}(H) \leq 3\}$
- Use exact algorithms for VERTEX COVER and ODD CYCLE TRANSVERSAL as sub-routine

Bruno Courcelle.

The Monadic Second-order Logic of Graphs III: Tree-decompositions, Minor and Complexity Issues. ITA, 26:257-286, 1992.

Vadim V Lozin and Marcin Kaminski. Coloring Edges and Vertices of Graphs Without Short or Long Cycles.

Contributions to Discrete Mathematics, 2(1):61–66, 2007.

J. M. Lewis and M. Yannakakis. The Node-Deletion Problem for Hereditary Properties is NP-Complete.

Journal of Computer and System Sciences, 20(2):219–230, 1980.

Doz Dr A Schönhage and Volker Strassen.

Schnelle Multiplikation Grosser Zahlen.

R. Krithika¹, A. Rai¹, <u>S. Saurabh^{1,2}</u>, and P. Tale¹ Class Domination Coloring

Thank you!

R. Krithika¹, A. Rai¹, <u>S. Saurabh</u>^{1,2}, and P. Tale¹ Class Domination Coloring

æ

Э

< ⊡ >