
Parameterized and Exact Algorithms for Class
Domination Coloring

R. Krithika1 A. Rai1 S. Saurabh1,2 and P. Tale1

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
2 University Of Bergen, Norway

January 16, 2017

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



Coloring of graph

Coloring
Input: A graph G
Question: Find minimum integer q such that graph G can be
partitioned into q independent sets
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Coloring of graph

One of Karp’s 21 NP-Complete problems

Computational Complexity : Determining whether given planer
graph (which can be 4-colored) is 3-coloring or not is
NP-Complete

Exact Algorithms : O(2n) which optimal under some widely
believed complexity assumption

Parameterized Complexity : Reduction from Coloring to
refute existence of certain kind of algorithms
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Dominating Set of Graph

Dominating Set
Input: A graph G
Question: Find minimum int k such that there exists set domi-
nating set D of cardinality k i.e. V (G ) = N[D]
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Dominating Set of Graph

Exact Algorithm : O(1.4969n)time and polynomial space.

O(nk) is optimal under certain complexity assumption

Complete for certain classes in parameterized complexity
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Class Domination Coloring

cd-Coloring
Input: A graph G
Question: Find minimum int q such that graph G can be par-
titioned into q independent sets and every independent set is
contained in closed neighbourhood of some vertex
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Class Domination Coloring

Coloring such that for every color class, there is a vertex
that dominates it

flavour of both Coloring and Dominating Set

NP-Complete even for Chordal Graphs
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Outline

Parameterized Complexity and Kernalization

Short introduction
FPT algorithms parameterized by solution size and tree-width
FPT algorithms on chordal graphs
Kernel for cd-coloring on graphs with girth ≥ 5

Exact Algorithm

O∗(2n) algorithm to compute cd-chromatic number

cd-Partization problem

Hardness results
On Split graphs
Exact algorithm to solve
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Parameterized complexity

Pioneered by Downey and Fellows around 1978

Goal : Find better ways to solve NP-hard problems

Associate (small) parameter k to each instance I

Restrict the combinatorial explosion to a parameter k

Parameterized problem (I , k) is fixed-parameter tractable
(FPT) if there is an algorithm that solves it in time
O(f (k) · |I |O(1))
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Parameterized complexity

Pioneered by Downey and Fellows around 1978

Goal : Find better ways to solve NP-hard problems

Associate (small) parameter k to each instance I

Restrict the combinatorial explosion to a parameter k

Parameterized problem (I , k) is fixed-parameter tractable
(FPT) if there is an algorithm that solves it in time
O(f (k) · |I |O(1))

cd-Coloring Parameter: q
Input: A graph G , integer q
Question: Can graph G be partitioned into q independent sets
such that every independent set is contained in closed neighbour-
hood of some vertex?
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Parameterized complexity

Problem f (k)

Vertex Cover(G , k) O(1.27k · n2)
Feedback Vertex Set(G , k) O(3.6181k · nc)

Independent Set(G , k) No f (k) · |I |O(1) algorithm

Coloring(G , k) No f (k) · |I |O(1) algorithm
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Kernelization

Mathematical analysis of pre-processing

Goal: Reduce the size of input instance without changing the
answer (in polynomial time)

Parameterized problem (I , k) admits a h(k)-kernel if there is a
polynomial time algorithm that reduces (I , k) to an
equisatisfiable instance (I ′, k ′) such that |I ′|+ k ′ ≤ h(k).

Problem h(k)

Vertex Cover(G , k) 2k
Feedback Vertex Set(G , k) 4k2

Independent Set(G , k) No such h(k) exists
Coloring(G , k) No such h(k) exists
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FPT algorithms and Kernalization

Problem FPT Kernel

Vertex Cover O(1.27k · n2) 2k
Feedback Vertex Set O(3.6181k · nc) 4k2

Independent Set No f (k) · |I |O(1) No h(k)

Coloring No f (k) · |I |O(1) No h(k)

Theorem

A parameterized problem (I , k) is FPT if and only if it admits a
kernel.
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FPT algorithm on general graph

Parameter : Solution size
O(f (k) · nO(1)) algorithm for cd-Coloring?

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



FPT algorithm on general graph

Parameter : Solution size
O(f (k) · nO(1)) algorithm for cd-Coloring?

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



FPT algorithm on general graph

Parameter : Solution size
O(f (k) · nO(1)) algorithm for cd-Coloring?

Theorem

Coloring(G , 3) is NP-complete.
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FPT algorithm on general graph

Parameter : Solution size
O(f (k) · nO(1)) algorithm for cd-Coloring?

Theorem

cd-Coloring(G , 4) is NP-complete.
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FPT algorithm on general graph

Parameter : Solution size

O(f (k) · nO(1)) algorithm for cd-Coloring?

⇒ O(f (4) · nO(1)) algorithm for cd-Coloring when q = 4
⇒ O(nO(1)) algorithm for NP-Complete problem

para-NP-hard problems
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FPT algorithm on general graph

Parameter : Treewidth

Used by Robertson and Seymour in their work on Graph Minors

Important in algorithm design

Structural Parameter: measures resemblance with tree

#vertices needs to be deleted to get a tree
#edges needs to be deleted to get a tree
#cycles
Separators can be arranged in tree-like fashion

Treewidth : Size of maximum separator is best tree-like
arrangement of separator

Most of NP-hard problems on general graph are polynomial
time solvable on trees

Dynamic Programming works on trees

Dynamic Programming on sub-graphs with small boundary
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Treewidth

Diagram from ’Metric tree-like structures in real-life networks: an empirical study’ by M. Abu-Ata and F. Dragan
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Treewidth

Tree like Not tree-like
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FPT algorithms(treewidth + #colors)

Theorem (Courcelle’s theorem, [Cou92])

If φ : a graph property that is expressible in MSO2 then ∃ an
algorithm that verifies whether φ is satisfied in G in
f (||φ||, tw(G )) · n time.

MSO2 : variables for single vertices; single edges; subset of
vertices; subset of edges

f is some computable function

φ(G , q) : MSO2 formula which states that G has cd-chromatic
number at most q.

(⇒) cd-Coloring is FPT when parameterized by length of
φ(G , q) plus treewidth of G
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FPT algorithms(treewidth + #colors)

φ(G , q) ≡ There are q sets of V (G )[Which partitions V (G ) ∧
Each of them is independent set ∧
There exists a vertex dominating it]

φ(G , q) ≡ ∃V1,V2, . . . ,Vq ⊆ V (G ) [Part(V1,V2, . . . ,Vq)∧
IndSet(V1) ∧ · · · ∧ IndSet(Vq) ∧
Dom(V1) ∧ · · · ∧ Dom(Vq)]

φ(G , q) is MSO2 formula of length O(q)

Theorem

cd-Coloring parameterized by the number of colors and the
treewidth of the input graph is FPT.
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FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized
by #colors (only)?

Theorem

cd-Coloring parameterized by the number of colors is FPT on
chordal graphs and on graphs with girth at least 5.

Chordal Graphs : Every cycle on 4 or more vertices has a chord

Coloring is poly-time solvable but cd-Coloring is
NP-Complete
Existance of FPT algorithm on Chordal graphs

Graph of girth (lenght of shortest cycle) at least 5

Coloring is para-NP-hard [LK07]. In contrast,
cd-Coloring is FPT
Admits an algorithm running in O(2O(q3)q12 log q3) time and
an O(q3) sized vertex kernel on graphs with girth at least 5.
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FPT algorithms on chordal graphs

Let ω(G ) be the size of a maximum clique in G

For a graph G , tw(G ) ≥ ω(G )− 1

For a chordal graph G , tw(G ) = ω(G )− 1

Finding w(G ) is poly-time in chordal graphs

No two vertices in a clique can be in the same color class of
cd-coloring.

if ω(G ) ≥ q then (G , q) is NO instance of cd-Coloring
if ω(G ) ≤ q then tw(G ) ≤ q

Theorem

cd-Coloring parameterized by the number of colors is FPT on
chordal graphs
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If G1, . . . ,Gl are the connected components of G , then
χcd(G ) =

∑l
i=1 χcd(Gi ).

wlog assume that input graph is connected

Let χcd(G ) be the minimum number of colors in any
cd-coloring of graph G

Dominating Set : S ⊆ V (G ) s.t. V (G ) =
⋃

v∈S N[v ]

Total Dominating Set : S s.t. V (G ) =
⋃

v∈S N(v)

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



If G1, . . . ,Gl are the connected components of G , then
χcd(G ) =

∑l
i=1 χcd(Gi ).

wlog assume that input graph is connected

Let χcd(G ) be the minimum number of colors in any
cd-coloring of graph G

Dominating Set : S ⊆ V (G ) s.t. V (G ) =
⋃

v∈S N[v ]

Total Dominating Set : S s.t. V (G ) =
⋃

v∈S N(v)

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



If G1, . . . ,Gl are the connected components of G , then
χcd(G ) =

∑l
i=1 χcd(Gi ).

wlog assume that input graph is connected

Let χcd(G ) be the minimum number of colors in any
cd-coloring of graph G

Dominating Set : S ⊆ V (G ) s.t. V (G ) =
⋃

v∈S N[v ]

Total Dominating Set : S s.t. V (G ) =
⋃

v∈S N(v)

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



If G1, . . . ,Gl are the connected components of G , then
χcd(G ) =

∑l
i=1 χcd(Gi ).

wlog assume that input graph is connected

Let χcd(G ) be the minimum number of colors in any
cd-coloring of graph G

Dominating Set : S ⊆ V (G ) s.t. V (G ) =
⋃

v∈S N[v ]

Total Dominating Set : S s.t. V (G ) =
⋃

v∈S N(v)

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



If G1, . . . ,Gl are the connected components of G , then
χcd(G ) =

∑l
i=1 χcd(Gi ).

wlog assume that input graph is connected

Let χcd(G ) be the minimum number of colors in any
cd-coloring of graph G

Dominating Set : S ⊆ V (G ) s.t. V (G ) =
⋃

v∈S N[v ]

Total Dominating Set : S s.t. V (G ) =
⋃

v∈S N(v)

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring
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⋃

v∈S N[v ]
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cd-Coloring Parameter: q
Input: A graph G , integer q
Question: Can graph G be partitioned into q independent sets
such that every independent set is contained in closed neighbour-
hood of some vertex?

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



If G1, . . . ,Gl are the connected components of G , then
χcd(G ) =

∑l
i=1 χcd(Gi ).

wlog assume that input graph is connected

Let χcd(G ) be the minimum number of colors in any
cd-coloring of graph G

Dominating Set : S ⊆ V (G ) s.t. V (G ) =
⋃

v∈S N[v ]

Total Dominating Set : S s.t. V (G ) =
⋃

v∈S N(v)

cd-Coloring Parameter: q
Input: A connected graph G , integer q
Question: Can graph G be partitioned into q independent sets
such that every independent set is contained in open neighbour-
hood of some vertex?

R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



FPT algorithms and Kernalization

Dominating Set = {b, c , f }
Total Dominating Set = {b, c , f , e}
which dominates color classes C1,C2,C3,C4 resp.
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FPT algorithm for G5

G5 = {G | girth of G ≥ 5}
For a graph G ∈ G5, for any u, v : |N(v) ∩ N(u)| ≤ 1.

In any cd-coloring of G , every color class has unique vertex
which dominates it

For general graphs : minTDS(G ) ≤ χcd(G )

For graph G ∈ G5 : minTDS(G ) = χcd(G )

cd-Coloring(G , q) ⇔ Total Dominating Set(G , q) for
G ∈ G5
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Kernalization for Total-Dom-Set

Claim

For G ∈ G5, if deg(u) ≥ k + 1, then any total dominating set of
size at most k contains u.

Consider Total Dominating
Set {w1,w2, . . . ,wk} which
doesn’t contain u

Note : vi may be equal to wj

By Pigeon-hole principle,
there exists some wj which is
adjacent to two vertices in
N(u)

This contradicts the fact
that G ∈ G5
R. Krithika1, A. Rai1, S. Saurabh1,2, and P. Tale1 Class Domination Coloring



Kernalization for Total-Dom-Set

Partition graph into 3 parts: High degree vertices which will be part
of any solution (H), vertices which have been dominated by partial
solution (J) and rest of the graph(R)

H = {u| deg(u) ≥ k + 1}
J = N[H] \ H
R = V (G ) \ (H ∪ J)

H is contained in solution
⇒ |H| ≤ k

Vertices in R can’t be dominated by
vertices in H and every vertex in
J ∪ R has degree at most k,
⇒ |R| ≤ O(k2)

|J ∪ R| ≤ |R| ∗ k ≤ O(k3)
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Vertices in R can’t be dominated by
vertices in H and every vertex in
J ∪ R has degree at most k ,
⇒ |R| ≤ O(k2)

|J ∪ R| ≤ |R| ∗ k ≤ O(k3)
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Reduction Rule

For u, v ∈ J \ N(R), if N(u) ∩ H ⊆ N(v) ∩ H then delete u.

Apply reduction rule exhaustively
Partition J \ N(R) into J1 and J2
J1 = {u| s.t. |N(u) ∩ H| = 1}
J2 = {u| s.t. |N(u) ∩ H| ≥ 2}
|J1| ≤ |H| ≤ k
(Otherwise reduction rule will be
applicable)
|J2| ≤

(k
2

)
≤ O(k2)

(If |J2| is larger we will find cycle
of lenght 4)

Lemma

Total Dominating Set admits a kernel of O(k3) vertices on G5.
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Exact algorithm to compute cd-chromatic number

Let I be the set containing all independent sets in G

I1 = {X | X ∈ I and ∃u ∈ V (G ) s.t. X ⊆ N(u)}

I1 : Possible candidates for color classes in cd-coloring of graph

I2 = {Y | ∃X1,X2 ∈ I1 s.t. X1 ∪ X2 = Y and X1 ∩ X2 = ∅}

I2 : Possible subgraphs which will need 2 color classes in some
cd-coloring of graph

I3 = {Z | ∃X ∈ I1,Y ∈ I2 s.t X ∪ Y = Z and X ∩ Y = ∅}

I3 : Possible subgraphs which will need 3 color classes in some
cd-coloring of graph
To compute χcd(G ), we need to find minimum q such that
V (G ) ∈ Iq
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Set and its representation

Universe U = {u1, u2, . . . , un} with fixed ordering on elements.
Characteristic vector of a set S ⊆ U is bit vector ψ(S), of length
n s.t. ψ(S)[j ] = 1 iff uj ∈ S
Hamming weight of a vector φ is the number of 1s in φ and its
denoted by H(φ)
val(φ) denotes the integer d of which φ is the binary representation.
Let z be an indeterminate variable. For S1, S2 ⊆ U, define modefied
multiplication (?)

zval(ψ(S1)) ? zval(ψ(S2)) =

{
zval(ψ(S1))+val(ψ(S2)) if S1 ∩ S2 = ∅
0 otherwise

Objective : To compute zval(ψ(S1)) ? zval(ψ(S2)) without explicitely
looking at S1, S2
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Set and its representation

Universe U = {a, b, c , d}

Sets Char. Vector Ham-Wt

S1 = {a, c} B1 = 1010 2
S2 = {b} B2 = 0100 1

S3 = {c , d} B3 = 0011 2

S1 ∪ S2 = {a, b, c} B12 = 1110 3
S1 ∪ S3 = {a, c , d} B13 = 1011 3

S1 ∩ S2 = ∅ and H(B12) = H(B1) +H(B2)
S1 ∩ S3 6= ∅ and H(B13) 6= H(B1) +H(B2)

1-bit is lost while adding two bit-vectors B and B ′ if there is an
index i ∈ [n] such that B[i ] = B ′[i ] = 1 i.e. while adding two
bit-vectors corresponds to sets which are not disjoint
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Algorithm to compute (?)

Algorithm to compute modified multiplication (?)

Input: Two polynomials p(z), r(z)
Output: p(z) ? r(z)

1 Initialize polynomial t(z) to 0
2 for each ordered pair (i , j) such that i + j ≤ n do
3 si (z)← monomials in p(z) whose exponent as Ham-Wt i
4 sj(z)← monomials in r(z) whose exponent as Ham-Wt j
5 Compute sij(z) = si (z) ∗ sj(z) (standard multiplication)
6 t(z)← t(z)+ monomials in sij(z) whose exponent has Ham-Wt

i + j

7 return t(z)

Running time : O(n2 × d2) where d is degree of polynomial
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7 return t(z)

Running time : O(n2 × d2) where d is degree of polynomial
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Exact Algorithm

Maximum degree of q(z) is 2n (⇒) running time O(n2 × 4n)

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring R
can be multiplied using O(d · log d · log log d) additions and
multiplications in R.

(⇒) running time O(n2 × 2n · n · log n)
Since χcd(G ) ≤ |V (G )|, we need to multiply two polynomials at
most n times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its
cd-chromatic number in O(2nn4 log n) time.
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cd-Partization

cd-Partization Parameter: k , q
Input: Graph G , integers k and q
Question: Does there exist S ⊆ V (G ), |S | ≤ k, such that
χcd(G − S) ≤ q?

Theorem

q-cd-Partization is NP-complete for q ∈ {2, 3}.

Note G = {G | χcd(G ) ≤ q} is not a hereditary graph class

Result of Lewis and Yannakakis [LY80] does not imply
NP-hardness.

Reduction from q-Partization
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cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an
independent set.

Theorem

cd-Partization on split graphs is NP-hard.

(Parameter preserving) Reduction from Set Cover

Corollary

cd-Partization on split graphs parameterized by q is W [2]-hard.

Theorem

cd-Partization on split graphs is FPT with respect to parameters
q and k . Furthermore, the problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly .
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Exact Algorithms for cd-Partization

Theorem

Given a graph G and an integer k , there is an algorithm that
determines if there is a set S of size k whose deletion results in a
graph H with χcd(H) ≤ 3 in O∗(2.3146k) time.

Complete characterization of class H = {H | χcd(H) ≤ 3}
Use exact algorithms for Vertex Cover and Odd Cycle
Transversal as sub-routine
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