Parameterized and Exact Algorithms for Class Domination Coloring

R. Krithika ${ }^{1} \quad$ A. Rai ${ }^{1} \quad \underline{\text { S. Saurabh }}{ }^{1,2}$ and P. Tale ${ }^{1}$

${ }^{1}$ The Institute of Mathematical Sciences, HBNI, Chennai, India
${ }^{2}$ University Of Bergen, Norway

$$
\text { January 16, } 2017
$$

Coloring of graph

Coloring
Input: A graph G
Question: Find minimum integer q such that graph G can be partitioned into q independent sets

Coloring of graph

Coloring of graph

- One of Karp's 21 NP-Complete problems
- Computational Complexity: Determining whether given planer graph (which can be 4-colored) is 3-coloring or not is NP-Complete
- Exact Algorithms: $\mathcal{O}\left(2^{n}\right)$ which optimal under some widely believed complexity assumption
- Parameterized Complexity: Reduction from Coloring to refute existence of certain kind of algorithms

Dominating Set of Graph

Dominating Set
Input: A graph G
Question: Find minimum int k such that there exists set dominating set D of cardinality k i.e. $V(G)=N[D]$

Dominating Set of Graph

Dominating Set of Graph

- Exact Algorithm : $\mathcal{O}\left(1.4969^{n}\right)$ time and polynomial space.
- $\mathcal{O}\left(n^{k}\right)$ is optimal under certain complexity assumption
- Complete for certain classes in parameterized complexity

Class Domination Coloring

> CD-Coloring
> Input: A graph G
> Question: Find minimum int q such that graph G can be partitioned into q independent sets and every independent set is contained in closed neighbourhood of some vertex

Class Domination Coloring

Class Domination Coloring

- Coloring such that for every color class, there is a vertex that dominates it
- flavour of both Coloring and Dominating Set
- NP-Complete even for Chordal Graphs

Outline

- Parameterized Complexity and Kernalization
- Short introduction
- FPT algorithms parameterized by solution size and tree-width
- FPT algorithms on chordal graphs
- Kernel for cd-coloring on graphs with girth ≥ 5
- Exact Algorithm
- $\mathcal{O}^{*}\left(2^{n}\right)$ algorithm to compute cd-chromatic number
- cd-Partization problem
- Hardness results
- On Split graphs
- Exact algorithm to solve

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|I|^{\mathcal{O}(1)}\right)$

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance /
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I,k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|\||^{\mathcal{O}(1)}\right)$

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $O\left(f(k) \cdot\left\|\|^{O(1)}\right)\right.$

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|I|^{\mathcal{O}(1)}\right)$

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|I|^{\mathcal{O}(1)}\right)$

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|I|^{\mathcal{O}(1)}\right)$

> CD-Coloring
> Input: A graph G
> Question: Find minimum int q such that graph G can be partitioned into q independent sets and every independent set is contained in closed neighbourhood of some vertex

Parameterized complexity

- Pioneered by Downey and Fellows around 1978
- Goal : Find better ways to solve NP-hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}\left(f(k) \cdot|I|^{\mathcal{O}(1)}\right)$

```
CD-Coloring
Parameter: q
Input: A graph \(G\), integer \(q\)
Question: Can graph \(G\) be partitioned into \(q\) independent sets such that every independent set is contained in closed neighbourhood of some vertex?
```


Parameterized complexity

Problem	$f(k)$
$\operatorname{Vertex} \operatorname{Cover}(G, k)$	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$
$\operatorname{Feedback~} \operatorname{Vertex~} \operatorname{Set}(G, k)$	$\mathcal{O}\left(3.6181^{k} \cdot n^{c}\right)$
Independent $\operatorname{Set}(G, k)$	No $f(k) \cdot\left\|/\| \|^{\mathcal{O}(1)}\right.$ algorithm
$\operatorname{Coloring}(G, k)$	$\operatorname{No} f(k) \cdot\left\|\left\|\left\|\left.\right\|^{\mathcal{O}(1)}\right.\right.\right.$ algorithm

Kernelization

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem ($I, k)$ admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance $\left(I^{\prime}, k^{\prime}\right)$ such that $\left|I^{\prime}\right|+k^{\prime} \leq h(k)$.

Kernelization

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance $\left(I^{\prime}, k^{\prime}\right)$ such that $\left|I^{\prime}\right|+k^{\prime} \leq h(k)$.

Kernelization

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance (I^{\prime}, k^{\prime}) such that $\left|I^{\prime}\right|+k^{\prime} \leq h(k)$.

Kernelization

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance (I^{\prime}, k^{\prime}) such that $\left|I^{\prime}\right|+k^{\prime} \leq h(k)$.

Kernelization

- Mathematical analysis of pre-processing
- Goal: Reduce the size of input instance without changing the answer (in polynomial time)
- Parameterized problem (I, k) admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces (I, k) to an equisatisfiable instance $\left(I^{\prime}, k^{\prime}\right)$ such that $\left|I^{\prime}\right|+k^{\prime} \leq h(k)$.

Problem	$h(k)$
$\operatorname{Vertex} \operatorname{Cover}(G, k)$	$2 k$
$\operatorname{Feedback} \operatorname{Vertex} \operatorname{Set}(G, k)$	$4 k^{2}$
$\operatorname{Independent~} \operatorname{Set}(G, k)$	No such $h(k)$ exists
$\operatorname{Coloring}(G, k)$	No such $h(k)$ exists

FPT algorithms and Kernalization

Problem	FPT	Kernel
VERTEX Cover	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$	$2 k$
Feedback Vertex Set	$\mathcal{O}\left(3.6181^{k} \cdot n^{c}\right)$	$4 k^{2}$
Independent Set	No $f(k) \cdot\|I\| \mathcal{O}(1)$	No $h(k)$
Coloring	No $\left.f(k) \cdot\|I\|\right\|^{\mathcal{O}(1)}$	No $h(k)$

Theorem

Δ parameterized problem (l, k) is FPT if and only if it admits a kernel.

FPT algorithms and Kernalization

Problem	FPT	Kernel
VERTEX Cover	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$	$2 k$
Feedback Vertex Set	$\mathcal{O}\left(3.6181^{k} \cdot n^{c}\right)$	$4 k^{2}$
Independent Set	No $f(k) \cdot\|I\| \mathcal{O}(1)$	No $h(k)$
Coloring	No $\left.f(k) \cdot\|I\|\right\|^{\mathcal{O}(1)}$	No $h(k)$

Theorem

A parameterized problem (I, k) is FPT if and only if it admits a kernel.

FPT algorithm on general graph

- Parameter : Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?

Theorem

$\operatorname{Coloring}(G, 3)$ is NP-complete.

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?

Theorem

Coloring $(G, 3)$ is NP-complete.

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?

Theorem

CD-Coloring $(G, 4)$ is NP-complete.

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-CoLoring?
- para-NP-hard problems

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for cD-Coloring?
$\Rightarrow \mathcal{O}\left(f(4) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-CoLORING when $q=4$
$\Rightarrow \mathcal{O}\left(n^{\mathcal{O}(1)}\right)$ algorithm for NP-Complete problem
- para-NP-hard problems

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?

$$
\Rightarrow \mathcal{O}\left(f(4) \cdot n^{\mathcal{O}(1)}\right) \text { algorithm for CD-ColORING when } q=4
$$

- para-NP-hard problems

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?
$\Rightarrow \mathcal{O}\left(f(4) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring when $q=4$
$\Rightarrow \mathcal{O}\left(n^{\mathcal{O}(1)}\right)$ algorithm for NP-Complete problem
- para-NP-hard problems

FPT algorithm on general graph

- Parameter: Solution size
- $\mathcal{O}\left(f(k) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring?
$\Rightarrow \mathcal{O}\left(f(4) \cdot n^{\mathcal{O}(1)}\right)$ algorithm for CD-Coloring when $q=4$
$\Rightarrow \mathcal{O}\left(n^{\mathcal{O}(1)}\right)$ algorithm for NP-Complete problem
- para-NP-hard problems

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- Treewidth: Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- Treewidth: Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-granhs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth: Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

FPT algorithm on general graph

- Parameter: Treewidth
- Used by Robertson and Seymour in their work on Graph Minors
- Important in algorithm design
- Structural Parameter: measures resemblance with tree
- \#vertices needs to be deleted to get a tree
- \#edges needs to be deleted to get a tree
- \#cycles
- Separators can be arranged in tree-like fashion
- Treewidth : Size of maximum separator is best tree-like arrangement of separator
- Most of NP-hard problems on general graph are polynomial time solvable on trees
- Dynamic Programming works on trees
- Dynamic Programming on sub-graphs with small boundary

Treewidth

Diagram from 'Metric tree-like structures in real-life networks: an empirical study' by M. Abu-Ata and F. Dragan

Treewidth

Complete Bipartite graphs

Grids

Not tree-like

FPT algorithms(treewidth + \#colors)

Theorem (Courcelle's theorem, [Cou92])

If ϕ : a graph property that is expressible in $\mathbf{M S O}_{2}$ then \exists an algorithm that verifies whether ϕ is satisfied in G in $f(\|\phi\|, t w(G)) \cdot n$ time.

FPT algorithms(treewidth + \#colors)

Theorem (Courcelle's theorem, [Cou92])

If ϕ : a graph property that is expressible in $\mathbf{M S O}_{2}$ then \exists an algorithm that verifies whether ϕ is satisfied in G in $f(\|\phi\|, t w(G)) \cdot n$ time.

- $\mathbf{M S O}_{2}$: variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- $\phi(G, q)$: $\mathbf{M S O}_{2}$ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-COLORING is FPT when parameterized by length of $\phi(G, q)$ plus treewidth of G

FPT algorithms(treewidth + \#colors)

Theorem (Courcelle's theorem, [Cou92])

If ϕ : a graph property that is expressible in $\mathbf{M S O}_{2}$ then \exists an algorithm that verifies whether ϕ is satisfied in G in $f(\|\phi\|, t w(G)) \cdot n$ time .

- $\mathbf{M S O}_{2}$: variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- $\phi(G, q)$: MSO_{2} formula which states that G has cd-chromatic number at most q
e (\Rightarrow) CD-Cor oping is FPT when parameterized by length of $\phi(G, q)$ plus treewidth of G

FPT algorithms(treewidth + \#colors)

Theorem (Courcelle's theorem, [Cou92])

If ϕ : a graph property that is expressible in $\mathbf{M S O}_{2}$ then \exists an algorithm that verifies whether ϕ is satisfied in G in $f(\|\phi\|, \operatorname{tw}(G)) \cdot n$ time.

- $\mathbf{M S O}_{2}$: variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- $\phi(G, q)$: $\mathbf{M S O}_{2}$ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-COLORING is FPT when parameterized by length of $\phi(G, q)$ plus treewidth of G

FPT algorithms(treewidth + \#colors)

Theorem (Courcelle's theorem, [Cou92])

If ϕ : a graph property that is expressible in $\mathbf{M S O}_{2}$ then \exists an algorithm that verifies whether ϕ is satisfied in G in $f(\|\phi\|, t w(G)) \cdot n$ time.

- $\mathbf{M S O}_{2}$: variables for single vertices; single edges; subset of vertices; subset of edges
- f is some computable function
- $\phi(G, q)$: $\mathbf{M S O}_{2}$ formula which states that G has cd-chromatic number at most q.
- (\Rightarrow) CD-Coloring is FPT when parameterized by length of $\phi(G, q)$ plus treewidth of G

FPT algorithms(treewidth + \#colors)

$\phi(G, q) \equiv$ There are q sets of $V(G)[$ Which partitions $V(G) \wedge$ Each of them is independent set \wedge There exists a vertex dominating it]

$\phi(G, q)$ is $\mathbf{M S O}_{2}$ formula of length $\mathcal{O}(q)$

Theorem

CD-COLORING parameterized by the number of colors and the treewidth of the input graph is FPT.

FPT algorithms(treewidth + \#colors)

$$
\begin{aligned}
\phi(G, q) \equiv & \text { There are } q \text { sets of } V(G)[\text { Which partitions } V(G) \wedge \\
& \text { Each of them is independent set } \wedge \\
& \text { There exists a vertex dominating it }] \\
\phi(G, q) \equiv & \exists V_{1}, V_{2}, \ldots, V_{q} \subseteq V(G)\left[\operatorname{Part}\left(V_{1}, V_{2}, \ldots, V_{q}\right) \wedge\right. \\
& \operatorname{IndSet}\left(V_{1}\right) \wedge \cdots \wedge \operatorname{IndSet}\left(V_{q}\right) \wedge \\
& \left.\operatorname{Dom}\left(V_{1}\right) \wedge \cdots \wedge \operatorname{Dom}\left(V_{q}\right)\right]
\end{aligned}
$$

$$
\phi(G, q) \text { is } \mathrm{MSO}_{2} \text { formula of length } \mathcal{O}(q)
$$

Theorem
CD-CoLoring parameterized by the number of colors and the treewidth of the input graph is FPT.

FPT algorithms(treewidth + \#colors)

$$
\begin{aligned}
& \phi(G, q) \equiv \text { There are } q \text { sets of } V(G)[\text { Which partitions } V(G) \wedge \\
& \text { Each of them is independent set } \wedge \\
&\text { There exists a vertex dominating it }] \\
& \phi(G, q) \equiv \exists V_{1}, V_{2}, \ldots, V_{q} \subseteq V(G)\left[\operatorname{Part}\left(V_{1}, V_{2}, \ldots, V_{q}\right) \wedge\right. \\
& \operatorname{IndSet}\left(V_{1}\right) \wedge \cdots \wedge \operatorname{IndSet}\left(V_{q}\right) \wedge \\
&\left.\operatorname{Dom}\left(V_{1}\right) \wedge \cdots \wedge \operatorname{Dom}\left(V_{q}\right)\right] \\
& \phi(G, q) \text { is } \mathbf{M S O}_{2} \text { formula of length } \mathcal{O}(q)
\end{aligned}
$$

Theorem

CD-COLORING parameterized by the number of colors and the treewidth of the input graph is FPT.

FPT algorithms(treewidth + \#colors)

$$
\begin{aligned}
& \phi(G, q) \equiv \text { There are } q \text { sets of } V(G)[\text { Which partitions } V(G) \wedge \\
& \text { Each of them is independent set } \wedge \\
& \text { There exists a vertex dominating it] } \\
& \phi(G, q) \equiv \exists V_{1}, V_{2}, \ldots, V_{q} \subseteq V(G)\left[\operatorname{Part}\left(V_{1}, V_{2}, \ldots, V_{q}\right) \wedge\right. \\
& \text { IndSet }\left(V_{1}\right) \wedge \cdots \wedge \operatorname{IndSet}\left(V_{q}\right) \wedge \\
&\left.\operatorname{Dom}\left(V_{1}\right) \wedge \cdots \wedge \operatorname{Dom}\left(V_{q}\right)\right] \\
& \phi(G, q) \text { is } \mathbf{M S O}_{2} \text { formula of length } \mathcal{O}(q)
\end{aligned}
$$

Theorem

CD-COLORING parameterized by the number of colors and the treewidth of the input graph is FPT.

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem
CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

- Chordal Graphs: Every cycle on 4 or more vertices has a chord
\square NP-Complete - Existance of FP^{-}algorithm on Chordal graphs - Graph of girth (lenght of shortest cycle) at least 5

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
- Coloring is poly-time solvable but CD-Coloring is NP-Complete
- Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
- Coloring is poly-time solvable but CD-Coloring is NP-Complete
- Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
- Coloring is poly-time solvable but CD-Coloring is NP-Complete
- Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
- Coloring is para-NP-hard [LK07]. In contrast,

CD-Coloring is FPT

- Admits an algorithm running in $\mathcal{O}\left(2^{\mathcal{O}}\left(q^{3}\right) q^{12} \log q^{3}\right)$ time and an $\mathcal{O}\left(q^{3}\right)$ sized vertex kernel on graphs with girth at least 5 .

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5 .

- Chordal Graphs: Every cycle on 4 or more vertices has a chord
- Coloring is poly-time solvable but CD-Coloring is NP-Complete
- Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
- Coloring is para-NP-hard [LK07]. In contrast, cd-Coloring is FPT
- Admits an algorithm running in $\mathcal{O}\left(2^{\mathcal{O}}\left(q^{3}\right) q^{12} \log q^{3}\right)$ time and an $\mathcal{O}\left(q^{3}\right)$ sized vertex kernel on graphs with girth at least 5 .

FPT algorithms on class of graphs

What is the class of graphs on which it is FPT when parameterized by \#colors (only)?

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs and on graphs with girth at least 5.

- Chordal Graphs : Every cycle on 4 or more vertices has a chord
- Coloring is poly-time solvable but CD-Coloring is NP-Complete
- Existance of FPT algorithm on Chordal graphs
- Graph of girth (lenght of shortest cycle) at least 5
- Coloring is para-NP-hard [LK07]. In contrast, cd-Coloring is FPT
- Admits an algorithm running in $\mathcal{O}\left(2^{\mathcal{O}}\left(q^{3}\right) q^{12} \log q^{3}\right)$ time and an $\mathcal{O}\left(q^{3}\right)$ sized vertex kernel on graphs with girth at least 5 .

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, \operatorname{tw}(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.

Theorem

CD-CoLORING parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.

Theorem
CD-COLORING parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
- if $\omega(G) \geq q$ then (G, q) is NO instance of CD-Coloring

Theorem
CD-Coloring parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
- if $\omega(G) \geq q$ then (G, q) is NO instance of CD-Coloring
- if $\omega(G) \leq q$ then $t w(G) \leq q$

Theorem
CD-Coloring parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
- if $\omega(G) \geq q$ then (G, q) is NO instance of CD-Coloring
- if $\omega(G) \leq q$ then $t w(G) \leq q$

Theorem
CD-Coloring parameterized by the number of colors is FPT on chordal graphs

FPT algorithms on chordal graphs

- Let $\omega(G)$ be the size of a maximum clique in G
- For a graph $G, t w(G) \geq \omega(G)-1$
- For a chordal graph $G, t w(G)=\omega(G)-1$
- Finding $w(G)$ is poly-time in chordal graphs
- No two vertices in a clique can be in the same color class of cd-coloring.
- if $\omega(G) \geq q$ then (G, q) is NO instance of CD-Coloring
- if $\omega(G) \leq q$ then $t w(G) \leq q$

Theorem

CD-Coloring parameterized by the number of colors is FPT on chordal graphs

- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{\prime} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G)=\bigcup_{v \in S} N[v]$ - Total Dominating Set: S s.t. $V(G)=\bigcup_{v \in S} N(v)$
- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{\prime} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subset V(G)$ s.t. $V(G)=U_{v \in S} N[v]$ - Total Dominating Set: S s.t. $V(G)=\bigcup_{v \in S} N(v)$
- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{\prime} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G)=\bigcup_{v \in S} N[v]$
- Total Dominating Set: S s.t. $V(G)=\bigcup_{v \in S} N(v)$
- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{l} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G)=\bigcup_{v \in S} N[v]$
- Total Dominating Set: S s.t. $V(G)=\bigcup_{v \in S} N(v)$
- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{l} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G)=\bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G)=\bigcup_{v \in S} N(v)$
- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{l} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G)=\bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G)=\bigcup_{v \in S} N(v)$

```
CD-Coloring
Input: A graph \(G\), integer \(q\)
Question: Can graph \(G\) be partitioned into \(q\) independent sets such that every independent set is contained in closed neighbourhood of some vertex?
```

- If G_{1}, \ldots, G_{l} are the connected components of G, then $\chi_{c d}(G)=\sum_{i=1}^{l} \chi_{c d}\left(G_{i}\right)$.
- wlog assume that input graph is connected
- Let $\chi_{c d}(G)$ be the minimum number of colors in any cd-coloring of graph G
- Dominating Set : $S \subseteq V(G)$ s.t. $V(G)=\bigcup_{v \in S} N[v]$
- Total Dominating Set : S s.t. $V(G)=\bigcup_{v \in S} N(v)$

```
CD-Coloring
Input: A connected graph \(G\), integer \(q\)
Question: Can graph \(G\) be partitioned into \(q\) independent sets such that every independent set is contained in open neighbourhood of some vertex?
```


FPT algorithms and Kernalization

Dominating Set $=\{b, c, f\}$
Total Dominating Set $=\{b, c, f, e\}$
which dominates color classes $C_{1}, C_{2}, C_{3}, C_{4}$ resp.

FPT algorithms and Kernalization

Dominating Set $=\{b, c, f\}$
Total Dominating Set $=\{b, c, f, e\}$ which dominates color classes $C_{1}, C_{2}, C_{3}, C_{4}$ resp.

FPT algorithm for \mathcal{G}_{5}

- $\mathcal{G}_{5}=\{G \mid$ girth of $G \geq 5\}$
- For a graph $G \in \mathcal{G}_{5}$, for any $u, v:|N(v) \cap N(u)| \leq 1$.
- In any cd-coloring of G, every color class has unique vertex which dominates it
- For general graphs : $\min T D S(G) \leq \chi_{c d}(G)$
- For graph $G \in \mathcal{G}_{5}: \min T D S(G)=\chi_{c d}(G)$
- cd-Coloring $(G, q) \Leftrightarrow \operatorname{Total}$ Dominating $\operatorname{Set}(G, q)$ for $G \in \mathcal{G}_{5}$

FPT algorithm for \mathcal{G}_{5}

- $\mathcal{G}_{5}=\{G \mid$ girth of $G \geq 5\}$
- For a graph $G \in \mathcal{G}_{5}$, for any $u, v:|N(v) \cap N(u)| \leq 1$.
- In any cd-coloring of G, every color class has unique vertex which dominates it
- For general graphs : $\min T D S(G) \leq \chi_{c d}(G)$
- For graph $G \in \mathcal{G}_{5}: \min T D S(G)=\chi_{c d}(G)$
- cd-Coloring $(G, q) \Leftrightarrow \operatorname{Total} \operatorname{Dominating~} \operatorname{Set}(G, q)$ for $G \in \mathcal{G}_{5}$

FPT algorithm for \mathcal{G}_{5}

- $\mathcal{G}_{5}=\{G \mid$ girth of $G \geq 5\}$
- For a graph $G \in \mathcal{G}_{5}$, for any $u, v:|N(v) \cap N(u)| \leq 1$.
- In any cd-coloring of G, every color class has unique vertex which dominates it
- For general graphs : $\min \operatorname{TDS}(G) \leq \chi_{c d}(G)$
- For graph $G \in \mathcal{G}_{5}: \min T D S(G)=\chi_{c d}(G)$
- cd-Coloring $(G, q) \Leftrightarrow \operatorname{Total}$ Dominating $\operatorname{Set}(G, q)$ for $G \in \mathcal{G}_{5}$

FPT algorithm for \mathcal{G}_{5}

- $\mathcal{G}_{5}=\{G \mid$ girth of $G \geq 5\}$
- For a graph $G \in \mathcal{G}_{5}$, for any $u, v:|N(v) \cap N(u)| \leq 1$.
- In any cd-coloring of G, every color class has unique vertex which dominates it
- For general graphs : $\min T D S(G) \leq \chi_{c d}(G)$

- cd-Coloring $(G, q) \Leftrightarrow \operatorname{Total} \operatorname{Dominating~} \operatorname{Set}(G, q)$ for $G \in \mathcal{G}_{5}$

FPT algorithm for \mathcal{G}_{5}

- $\mathcal{G}_{5}=\{G \mid$ girth of $G \geq 5\}$
- For a graph $G \in \mathcal{G}_{5}$, for any $u, v:|N(v) \cap N(u)| \leq 1$.
- In any cd-coloring of G, every color class has unique vertex which dominates it
- For general graphs : $\min T D S(G) \leq \chi_{c d}(G)$
- For graph $G \in \mathcal{G}_{5}: \min T D S(G)=\chi_{c d}(G)$

FPT algorithm for \mathcal{G}_{5}

- $\mathcal{G}_{5}=\{G \mid$ girth of $G \geq 5\}$
- For a graph $G \in \mathcal{G}_{5}$, for any $u, v:|N(v) \cap N(u)| \leq 1$.
- In any cd-coloring of G, every color class has unique vertex which dominates it
- For general graphs : $\min T D S(G) \leq \chi_{c d}(G)$
- For graph $G \in \mathcal{G}_{5}: \min T D S(G)=\chi_{c d}(G)$
- Cd-Coloring $(G, q) \Leftrightarrow \operatorname{Total} \operatorname{Dominating~} \operatorname{Set}(G, q)$ for $G \in \mathcal{G}_{5}$

Kernalization for Total-Dom-Set

Claim

For $G \in \mathcal{G}_{5}$, if $\operatorname{deg}(u) \geq k+1$, then any total dominating set of size at most k contains u.

- Consider Total Dominating Set $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ which doesn't contain u
- Note : v_{i} may be equal to w_{j}
- By Pigeon-hole principle, there exists some w_{j} which is adjacent to two vertices in
 $N(u)$
- This contradicts the fact that $G \in \mathcal{G}_{5}$

Kernalization for Total-Dom-Set

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

Kernalization for Total-Dom-Set

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

H

$$
\text { - } \begin{aligned}
H & =\{u \backslash \operatorname{deg}(u) \geq k+1\} \\
J & =N[H] \backslash H \\
R & =V(G) \backslash(H \cup J)
\end{aligned}
$$

Kernalization for Total-Dom-Set

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

H

J

- $H=\{u \mid \operatorname{deg}(u) \geq k+1\}$

$$
\begin{aligned}
& J=N[H] \backslash H \\
& R=V(G) \backslash(H \cup J)
\end{aligned}
$$

- H is contained in solution

$$
\Rightarrow|H| \leq k
$$

Kernalization for Total-Dom-Set

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

- $H=\{u \mid \operatorname{deg}(u) \geq k+1\}$

$$
\begin{aligned}
& J=N[H] \backslash H \\
& R=V(G) \backslash(H \cup J)
\end{aligned}
$$

- H is contained in solution $\Rightarrow|H| \leq k$
- Vertices in R can't be dominated by vertices in H and every vertex in $J \cup R$ has degree at most k, $\Rightarrow|R| \leq \mathcal{O}\left(k^{2}\right)$

Kernalization for Total-Dom-Set

Partition graph into 3 parts: High degree vertices which will be part of any solution (H), vertices which have been dominated by partial solution (J) and rest of the graph(R)

- $H=\{u \mid \operatorname{deg}(u) \geq k+1\}$

$$
\begin{aligned}
& J=N[H] \backslash H \\
& R=V(G) \backslash(H \cup J)
\end{aligned}
$$

- H is contained in solution $\Rightarrow|H| \leq k$
- Vertices in R can't be dominated by vertices in H and every vertex in $J \cup R$ has degree at most k, $\Rightarrow|R| \leq \mathcal{O}\left(k^{2}\right)$
- $|J \cup R| \leq|R| * k \leq \mathcal{O}\left(k^{3}\right)$

Reduction Rule

For $u, v \in J \backslash N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Reduction Rule

For $u, v \in J \backslash N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.
Apply reduction rule exhaustively

Reduction Rule

For $u, v \in J \backslash N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.
Apply reduction rule exhaustively
 Partition $J \backslash N(R)$ into J_{1} and J_{2} $J_{1}=\{u \mid$ s.t. $|N(u) \cap H|=1\}$ $J_{2}=\{u \mid$ s.t. $|N(u) \cap H| \geq 2\}$

Reduction Rule

For $u, v \in J \backslash N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively Partition $J \backslash N(R)$ into J_{1} and J_{2}
$J_{1}=\{u \mid$ s.t. $|N(u) \cap H|=1\}$
$J_{2}=\{u \mid$ s.t. $|N(u) \cap H| \geq 2\}$
$\left|J_{1}\right| \leq|H| \leq k$
(Otherwise reduction rule will be applicable)

Reduction Rule

For $u, v \in J \backslash N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.
Apply reduction rule exhaustively
 Partition $J \backslash N(R)$ into J_{1} and J_{2}
$J_{1}=\{u \mid$ s.t. $|N(u) \cap H|=1\}$
$J_{2}=\{u \mid$ s.t. $|N(u) \cap H| \geq 2\}$
$\left|J_{1}\right| \leq|H| \leq k$
(Otherwise reduction rule will be applicable)
$\left|J_{2}\right| \leq\binom{ k}{2} \leq \mathcal{O}\left(k^{2}\right)$
(If $\left|J_{2}\right|$ is larger we will find cycle of lenght 4)

Reduction Rule

For $u, v \in J \backslash N(R)$, if $N(u) \cap H \subseteq N(v) \cap H$ then delete u.

Apply reduction rule exhaustively Partition $J \backslash N(R)$ into J_{1} and J_{2}
$J_{1}=\{u \mid$ s.t. $|N(u) \cap H|=1\}$ $J_{2}=\{u \mid$ s.t. $|N(u) \cap H| \geq 2\}$
$\left|J_{1}\right| \leq|H| \leq k$
(Otherwise reduction rule will be applicable)
$\left|J_{2}\right| \leq\binom{ k}{2} \leq \mathcal{O}\left(k^{2}\right)$
(If $\left|J_{2}\right|$ is larger we will find cycle of lenght 4)

Lemma

Total Dominating Set admits a kernel of $\mathcal{O}\left(k^{3}\right)$ vertices on \mathcal{G}_{5}.

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G
\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph $I^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in I^{1}\right.$ s.t. $X_{1} \cup X_{2}=Y$ and $\left.X_{1} \cap X_{2}=\emptyset\right\}$
\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$
\mathcal{I}^{3}=\left\{Z \mid \exists X \in \mathcal{I}^{1}, Y \in \mathcal{I}^{2} \text { s.t } X \cup Y=Z \text { and } X \cap Y=\emptyset\right\}
$$

\mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph
To compute $\chi_{c d}(G)$, we need to find minimum q such that
$V(G) \in I^{q}$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph $\mathcal{I}^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in \mathcal{I}^{1}\right.$ s.t. $X_{1} \cup X_{2}=Y$ and $\left.X_{1} \cap X_{2}=\emptyset\right\}$
\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

\mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph
To compute $\chi_{c d}(G)$, we need to find minimum q such that $V(G) \in I^{q}$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph

\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

\mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph
To compute $\chi_{c d}(G)$, we need to find minimum q such that $V(G) \in I^{q}$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph

$$
\mathcal{I}^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in \mathcal{I}^{1} \text { s.t. } X_{1} \cup X_{2}=Y \text { and } X_{1} \cap X_{2}=\emptyset\right\}
$$

I^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph
> \mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph
> To compute $\chi_{c d}(G)$, we need to find minimum q such that $V(G) \in \mathcal{I}^{q}$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph

$$
\mathcal{I}^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in \mathcal{I}^{1} \text { s.t. } X_{1} \cup X_{2}=Y \text { and } X_{1} \cap X_{2}=\emptyset\right\}
$$

\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph

$$
\mathcal{I}^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in \mathcal{I}^{1} \text { s.t. } X_{1} \cup X_{2}=Y \text { and } X_{1} \cap X_{2}=\emptyset\right\}
$$

\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$
\mathcal{I}^{3}=\left\{Z \mid \exists X \in \mathcal{I}^{1}, Y \in \mathcal{I}^{2} \text { s.t } X \cup Y=Z \text { and } X \cap Y=\emptyset\right\}
$$

\mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph To compute $\chi_{c d}(G)$, we need to find minimum q such that $V(G) \in I^{q}$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph

$$
\mathcal{I}^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in \mathcal{I}^{1} \text { s.t. } X_{1} \cup X_{2}=Y \text { and } X_{1} \cap X_{2}=\emptyset\right\}
$$

\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$
\mathcal{I}^{3}=\left\{Z \mid \exists X \in \mathcal{I}^{1}, Y \in \mathcal{I}^{2} \text { s.t } X \cup Y=Z \text { and } X \cap Y=\emptyset\right\}
$$

\mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph
To compute $\chi_{c d}(G)$, we need to find minimum q such that $V(G) \in I^{q}$

Exact algorithm to compute cd-chromatic number

Let \mathcal{I} be the set containing all independent sets in G

$$
\mathcal{I}^{1}=\{X \mid X \in \mathcal{I} \text { and } \exists u \in V(G) \text { s.t. } X \subseteq N(u)\}
$$

\mathcal{I}^{1} : Possible candidates for color classes in cd-coloring of graph

$$
\mathcal{I}^{2}=\left\{Y \mid \exists X_{1}, X_{2} \in \mathcal{I}^{1} \text { s.t. } X_{1} \cup X_{2}=Y \text { and } X_{1} \cap X_{2}=\emptyset\right\}
$$

\mathcal{I}^{2} : Possible subgraphs which will need 2 color classes in some cd-coloring of graph

$$
\mathcal{I}^{3}=\left\{Z \mid \exists X \in \mathcal{I}^{1}, Y \in \mathcal{I}^{2} \text { s.t } X \cup Y=Z \text { and } X \cap Y=\emptyset\right\}
$$

\mathcal{I}^{3} : Possible subgraphs which will need 3 color classes in some cd-coloring of graph
To compute $\chi_{c d}(G)$, we need to find minimum q such that $V(G) \in \mathcal{I}^{q}$

Set and its representation

Universe $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with fixed ordering on elements.
Characteristic vector of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j]=1$ iff $u_{j} \in S$
Hamming weight of a vector ϕ is the number of 1 s in ϕ and its denoted by $\mathcal{H}(\phi)$
$\operatorname{val}(\phi)$ denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_{1}, S_{2} \subseteq U$, define modefied multiplication (\star)

Objective : To compute $z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}$ without explicitely looking at S_{1}, S_{2}

Set and its representation

Universe $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with fixed ordering on elements.
Characteristic vector of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j]=1$ iff $u_{j} \in S$
Hamming weight of a vector ϕ is the number of $1 s$ in ϕ and its denoted by $\mathcal{H}(\phi)$
$\boldsymbol{v a l}(\phi)$ denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_{1}, S_{2} \subseteq U$, define modefied multiplication (\star)

Objective : To compute $z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}$ without explicitely looking at S_{1}, S_{2}

Set and its representation

Universe $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with fixed ordering on elements. Characteristic vector of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j]=1$ iff $u_{j} \in S$
Hamming weight of a vector ϕ is the number of 1 s in ϕ and its denoted by $\mathcal{H}(\phi)$
$\operatorname{val}(\phi)$ denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_{1}, S_{2} \subseteq U$, define modefied multiplication (\star)

Objective : To compute $z^{\operatorname{val}\left(\left(\psi\left(S_{1}\right)\right)\right.} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}$ without explicitely looking at S_{1}, S_{2}

Set and its representation

Universe $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with fixed ordering on elements. Characteristic vector of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j]=1$ iff $u_{j} \in S$
Hamming weight of a vector ϕ is the number of 1 s in ϕ and its denoted by $\mathcal{H}(\phi)$
$\operatorname{val}(\phi)$ denotes the integer d of which ϕ is the binary representation.
multiplication (\star)

Objective : To compute $z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}$ without explicitely looking at S_{1}, S_{2}

Set and its representation

Universe $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with fixed ordering on elements. Characteristic vector of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j]=1$ iff $u_{j} \in S$
Hamming weight of a vector ϕ is the number of 1 s in ϕ and its denoted by $\mathcal{H}(\phi)$
$\operatorname{val}(\phi)$ denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_{1}, S_{2} \subseteq U$, define modefied multiplication (\star)

$$
z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}= \begin{cases}z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)+\operatorname{val}\left(\psi\left(S_{2}\right)\right)} & \text { if } S_{1} \cap S_{2}=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Objective : To compute $z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\left.\operatorname{val}(\psi)\left(S_{2}\right)\right)}$ without explicitely

Set and its representation

Universe $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with fixed ordering on elements. Characteristic vector of a set $S \subseteq U$ is bit vector $\psi(S)$, of length n s.t. $\psi(S)[j]=1$ iff $u_{j} \in S$
Hamming weight of a vector ϕ is the number of 1 s in ϕ and its denoted by $\mathcal{H}(\phi)$
$\operatorname{val}(\phi)$ denotes the integer d of which ϕ is the binary representation. Let z be an indeterminate variable. For $S_{1}, S_{2} \subseteq U$, define modefied multiplication (\star)

$$
z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}= \begin{cases}z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)+\operatorname{val}\left(\psi\left(S_{2}\right)\right)} & \text { if } S_{1} \cap S_{2}=\emptyset \\ 0 & \text { otherwise }\end{cases}
$$

Objective : To compute $z^{\operatorname{val}\left(\psi\left(S_{1}\right)\right)} \star z^{\operatorname{val}\left(\psi\left(S_{2}\right)\right)}$ without explicitely looking at S_{1}, S_{2}

Set and its representation

Universe $U=\{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_{1}=\{a, c\}$	$B_{1}=1010$	2
$S_{2}=\{b\}$	$B_{2}=0100$	1
$S_{3}=\{c, d\}$	$B_{3}=0011$	2
$S_{1} \cup S_{2}=\{a, b, c\}$	$B_{12}=1110$	3
$S_{1} \cup S_{3}=\{a, c, d\}$	$B_{13}=1011$	3

$$
\begin{aligned}
& S_{1} \cap S_{2}=\emptyset \text { and } \mathcal{H}\left(B_{12}\right)=\mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right) \\
& S_{1} \cap S_{3} \neq \emptyset \text { and } \mathcal{H}\left(B_{13}\right) \neq \mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)
\end{aligned}
$$

1-bit is lost while adding two bit-vectors B and B^{\prime} if there is an index $i \in[n]$ such that $B[i]=B^{\prime}[i]=1$ i.e. while adding two bit-vectors corresponds to sets which are not disjoint

Set and its representation

Universe $U=\{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_{1}=\{a, c\}$	$B_{1}=1010$	2
$S_{2}=\{b\}$	$B_{2}=0100$	1
$S_{3}=\{c, d\}$	$B_{3}=0011$	2
$S_{1} \cup S_{2}=\{a, b, c\}$	$B_{12}=1110$	3
$S_{1} \cup S_{3}=\{a, c, d\}$	$B_{13}=1011$	3

$S_{1} \cap S_{2}=\emptyset$ and $\mathcal{H}\left(B_{12}\right)=\mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)$
$S_{1} \cap S_{3} \neq \emptyset$ and $\mathcal{H}\left(B_{13}\right) \neq \mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)$

1-bit is lost while adding two bit-vectors B and B^{\prime} if there is an index $i \in[n]$ such that $B[i]=B^{\prime}[i]=1$ i.e. while adding two bit-vectors corresponds to sets which are not disjoint

Set and its representation

Universe $U=\{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_{1}=\{a, c\}$	$B_{1}=1010$	2
$S_{2}=\{b\}$	$B_{2}=0100$	1
$S_{3}=\{c, d\}$	$B_{3}=0011$	2
$S_{1} \cup S_{2}=\{a, b, c\}$	$B_{12}=1110$	3
$S_{1} \cup S_{3}=\{a, c, d\}$	$B_{13}=1011$	3

$$
\begin{aligned}
& S_{1} \cap S_{2}=\emptyset \text { and } \mathcal{H}\left(B_{12}\right)=\mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right) \\
& S_{1} \cap S_{3} \neq \emptyset \text { and } \mathcal{H}\left(B_{13}\right) \neq \mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)
\end{aligned}
$$

1-bit is lost while adding two bit-vectors B and B^{\prime} if there is an index $i \in[n\rceil$ such that $B[i]=B^{\prime}[i]=1$ i.e. while adding two bit-vectors corresponds to sets which are not disjoint

Set and its representation

Universe $U=\{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_{1}=\{a, c\}$	$B_{1}=1010$	2
$S_{2}=\{b\}$	$B_{2}=0100$	1
$S_{3}=\{c, d\}$	$B_{3}=0011$	2
$S_{1} \cup S_{2}=\{a, b, c\}$	$B_{12}=1110$	3
$S_{1} \cup S_{3}=\{a, c, d\}$	$B_{13}=1011$	3

$$
\begin{aligned}
& S_{1} \cap S_{2}=\emptyset \text { and } \mathcal{H}\left(B_{12}\right)=\mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right) \\
& S_{1} \cap S_{3} \neq \emptyset \text { and } \mathcal{H}\left(B_{13}\right) \neq \mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)
\end{aligned}
$$

1-bit is lost while adding two bit-vectors B and B^{\prime} if there is an index $i \in[n]$ such that $B[i]=B^{\prime}[i]=1$ i.e. while adding two bit-vectors corresponds to sets which are not disjoint

Set and its representation

Universe $U=\{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_{1}=\{a, c\}$	$B_{1}=1010$	2
$S_{2}=\{b\}$	$B_{2}=0100$	1
$S_{3}=\{c, d\}$	$B_{3}=0011$	2
$S_{1} \cup S_{2}=\{a, b, c\}$	$B_{12}=1110$	3
$S_{1} \cup S_{3}=\{a, c, d\}$	$B_{13}=1011$	3

$$
\begin{aligned}
& S_{1} \cap S_{2}=\emptyset \text { and } \mathcal{H}\left(B_{12}\right)=\mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right) \\
& S_{1} \cap S_{3} \neq \emptyset \text { and } \mathcal{H}\left(B_{13}\right) \neq \mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)
\end{aligned}
$$

1-bit is lost while adding two bit-vectors B and B^{\prime} if there is an index $i \in[n]$ such that $B[i]=B^{\prime}[i]=1$

Set and its representation

Universe $U=\{a, b, c, d\}$

Sets	Char. Vector	Ham-Wt
$S_{1}=\{a, c\}$	$B_{1}=1010$	2
$S_{2}=\{b\}$	$B_{2}=0100$	1
$S_{3}=\{c, d\}$	$B_{3}=0011$	2
$S_{1} \cup S_{2}=\{a, b, c\}$	$B_{12}=1110$	3
$S_{1} \cup S_{3}=\{a, c, d\}$	$B_{13}=1011$	3

$$
\begin{aligned}
& S_{1} \cap S_{2}=\emptyset \text { and } \mathcal{H}\left(B_{12}\right)=\mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right) \\
& S_{1} \cap S_{3} \neq \emptyset \text { and } \mathcal{H}\left(B_{13}\right) \neq \mathcal{H}\left(B_{1}\right)+\mathcal{H}\left(B_{2}\right)
\end{aligned}
$$

1-bit is lost while adding two bit-vectors B and B^{\prime} if there is an index $i \in[n]$ such that $B[i]=B^{\prime}[i]=1$ i.e. while adding two bit-vectors corresponds to sets which are not disjoint

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)

Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do
$3 \quad s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i Compute $s_{i j}(z)=s_{i}(z) * s_{j}(z)$ (standard multiplication) $t(z) \leftarrow t(z)+$ monomials in $s_{i j}(z)$ whose exponent has Ham-Wt $i+j$
7 return $t(z)$
Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)

Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0

```
each ordered pair (i,j) such that i}+j\leqn d
```

$s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i
$s_{j}(z) \leftarrow$ monomials in $r(z)$ whose exponent as Ham-Wt j
Compute $s_{i j}(z)=s_{i}(z) * s_{j}(z)$ (standard multiplication)
$t(z) \leftarrow t(z)+$ monomials in $s_{i j}(z)$ whose exponent has Ham-Wt
7 return $t(z)$

Running time: $O\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0

7 return $t(z)$
Running time : $O\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication ($*$)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do

3	$S_{i}(z)$
4	$S_{j}(z) \leftarrow$
5	Compute
6	$t(z) \leftarrow t$
$i+j$	
7	

Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do
$3 \quad s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i Compute $s_{i j}(z)=s_{i}(z) * s_{j}(z)$ (standard multiplication) $t(z) \leftarrow t(z)+$ monomials in $s_{i j}(z)$ whose exponent has Ham-Wt return $t(z)$

Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do
$3 \quad s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i
4 $s_{j}(z) \leftarrow$ monomials in $r(z)$ whose exponent as Ham-Wt j $t(z) \leftarrow t$
$i+j$
eturn $t(z)$

Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do
$3 \quad s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i $s_{j}(z) \leftarrow$ monomials in $r(z)$ whose exponent as Ham-Wt j Compute $s_{i j}(z)=s_{i}(z) * s_{j}(z)$ (standard multiplication)

Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do
$3 \quad s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i
4
5
6 $s_{j}(z) \leftarrow$ monomials in $r(z)$ whose exponent as Ham-Wt j Compute $s_{i j}(z)=s_{i}(z) * s_{j}(z)$ (standard multiplication) $t(z) \leftarrow t(z)+$ monomials in $s_{i j}(z)$ whose exponent has Ham-Wt $i+j$
7 return $t(z)$
Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Algorithm to compute (\star)

Algorithm to compute modified multiplication (\star)
Input: Two polynomials $p(z), r(z)$
Output: $p(z) \star r(z)$
1 Initialize polynomial $t(z)$ to 0
2 for each ordered pair (i, j) such that $i+j \leq n$ do
$3 \quad s_{i}(z) \leftarrow$ monomials in $p(z)$ whose exponent as Ham-Wt i
4
5
6 $s_{j}(z) \leftarrow$ monomials in $r(z)$ whose exponent as Ham-Wt j Compute $s_{i j}(z)=s_{i}(z) * s_{j}(z)$ (standard multiplication) $t(z) \leftarrow t(z)+$ monomials in $s_{i j}(z)$ whose exponent has Ham-Wt $i+j$
7 return $t(z)$
Running time : $\mathcal{O}\left(n^{2} \times d^{2}\right)$ where d is degree of polynomial

Exact Algorithm

Maximum degree of $q(z)$ is $2^{n}(\Rightarrow)$ running time $\mathcal{O}\left(n^{2} \times 4^{n}\right)$
Lemma (Fast Fourier Transform [SS71)
Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R}.
(\Rightarrow) running time $\mathcal{O}\left(n^{2} \times 2^{n} \cdot n \cdot \log n\right)$
Since $\chi_{c d}(G) \leq|V(G)|$, we need to multiply two polynomials at most n times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}\left(2^{n} n^{4} \log n\right)$ time.

Exact Algorithm

Maximum degree of $q(z)$ is $2^{n}(\Rightarrow)$ running time $\mathcal{O}\left(n^{2} \times 4^{n}\right)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R}.
(\Rightarrow) running time $\mathcal{O}\left(n^{2} \times 2^{n} \cdot n \cdot \log n\right)$
Since $\chi_{c d}(G) \leq|V(G)|$, we need to multiply two polynomials at most n times

Theorem
Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}\left(2^{n} n^{4} \log n\right)$ time.

Exact Algorithm

Maximum degree of $q(z)$ is $2^{n}(\Rightarrow)$ running time $\mathcal{O}\left(n^{2} \times 4^{n}\right)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R}.
(\Rightarrow) running time $\mathcal{O}\left(n^{2} \times 2^{n} \cdot n \cdot \log n\right)$
Since $\chi_{c d}(G) \leq|V(G)|$, we need to multiply two polynomials at
most n times
Theorem
Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}\left(2^{n} n^{4} \log n\right)$ time.

Exact Algorithm

Maximum degree of $q(z)$ is $2^{n}(\Rightarrow)$ running time $\mathcal{O}\left(n^{2} \times 4^{n}\right)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R}.
(\Rightarrow) running time $\mathcal{O}\left(n^{2} \times 2^{n} \cdot n \cdot \log n\right)$
Since $\chi_{c d}(G) \leq|V(G)|$, we need to multiply two polynomials at most n times

Theorem
Given a graph G on n vertices, there is an algorithm which finds its cd-chromatic number in $\mathcal{O}\left(2^{n} n^{4} \log n\right)$ time.

Exact Algorithm

Maximum degree of $q(z)$ is $2^{n}(\Rightarrow)$ running time $\mathcal{O}\left(n^{2} \times 4^{n}\right)$

Lemma (Fast Fourier Transform [SS71])

Two polynomials of degree at most d over any commutative ring \mathcal{R} can be multiplied using $\mathcal{O}(d \cdot \log d \cdot \log \log d)$ additions and multiplications in \mathcal{R}.
(\Rightarrow) running time $\mathcal{O}\left(n^{2} \times 2^{n} \cdot n \cdot \log n\right)$
Since $\chi_{c d}(G) \leq|V(G)|$, we need to multiply two polynomials at most n times

Theorem

Given a graph G on n vertices, there is an algorithm which finds its $c d$-chromatic number in $\mathcal{O}\left(2^{n} n^{4} \log n\right)$ time.

cd-Partization

$$
\text { CD-PARTIZATION } \quad \text { Parameter: } k, q
$$

Input: Graph G, integers k and q
Question: Does there exist $S \subseteq V(G),|S| \leq k$, such that $\chi_{c d}(G-S) \leq q$?

Theorem

q-CD-Partization is NP-complete for $q \in\{2,3\}$

cd-Partization

CD-Partization
Parameter: k, q
Input: Graph G, integers k and q
Question: Does there exist $S \subseteq V(G),|S| \leq k$, such that $\chi_{c d}(G-S) \leq q$?

Theorem

q-CD-Partization is NP-complete for $q \in\{2,3\}$.

- Note $\mathcal{G}=\left\{G \mid \chi_{c d}(G) \leq q\right\}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from q-Partization

cd-Partization

cd-Partization

Parameter: k, q
Input: Graph G, integers k and q
Question: Does there exist $S \subseteq V(G),|S| \leq k$, such that $\chi_{c d}(G-S) \leq q$?

Theorem

q-CD-Partization is NP-complete for $q \in\{2,3\}$.

- Note $\mathcal{G}=\left\{G \mid \chi_{c d}(G) \leq q\right\}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from q-PARTIZATION

cd-Partization

cd-Partization

Parameter: k, q
Input: Graph G, integers k and q
Question: Does there exist $S \subseteq V(G),|S| \leq k$, such that $\chi_{c d}(G-S) \leq q$?

Theorem

q-CD-Partization is NP-complete for $q \in\{2,3\}$.

- Note $\mathcal{G}=\left\{G \mid \chi_{c d}(G) \leq q\right\}$ is not a hereditary graph class
- Result of Lewis and Yannakakis [LY80] does not imply NP-hardness.
- Reduction from q-Partization

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

CD-PARTIZATION on split graphs is NP-hard.

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem
CD-Partization on split graphs is NP-hard.
(Parameter preserving) Reduction from Set Cover

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

CD-Partization on split graphs is NP-hard.
(Parameter preserving) Reduction from Set Cover

Corollary

cD-Partization on split graphs parameterized by q is $W[2]$-hard.

cd-Partization on Split Graphs

Split Graph : Vertex set can be partitioned into a clique and an independent set.

Theorem

cD-Partization on split graphs is NP-hard.
(Parameter preserving) Reduction from Set Cover

Corollary

cD-Partization on split graphs parameterized by q is $W[2]$-hard.

Theorem

CD-Partization on split graphs is FPT with respect to parameters q and k. Furthermore, the problem does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Exact Algorithms for cd-Partization

Theorem

Given a graph G and an integer k, there is an algorithm that determines if there is a set S of size k whose deletion results in a graph H with $\chi_{c d}(H) \leq 3$ in $\mathcal{O}^{*}\left(2.3146^{k}\right)$ time.

Exact Algorithms for cd-Partization

Theorem

Given a graph G and an integer k, there is an algorithm that determines if there is a set S of size k whose deletion results in a graph H with $\chi_{c d}(H) \leq 3$ in $\mathcal{O}^{*}\left(2.3146^{k}\right)$ time.

- Complete characterization of class $\mathcal{H}=\left\{H \mid \chi_{c d}(H) \leq 3\right\}$
- Use exact algorithms for Vertex Cover and Odd Cycle Transversal as sub-routine

References

國 Bruno Courcelle．
The Monadic Second－order Logic of Graphs III：
Tree－decompositions，Minor and Complexity Issues．
ITA，26：257－286， 1992.
嗇 Vadim V Lozin and Marcin Kaminski．
Coloring Edges and Vertices of Graphs Without Short or Long Cycles．
Contributions to Discrete Mathematics，2（1）：61－66， 2007.
囯 J．M．Lewis and M．Yannakakis．
The Node－Deletion Problem for Hereditary Properties is NP－Complete．
Journal of Computer and System Sciences，20（2）：219－230， 1980.

圊 Doz Dr A Schönhage and Volker Strassen．
Schnelle Multiplikation Grosser Zahlen．

Thank you!

