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Abstract. For a collection F of graphs, given a graph G and an integer
k, the F-Contraction problem asks whether we can contract k edges
in G to obtain a graph in F . F-Contraction is well studied and known
to be NP-complete for several classes F . Heggerners et al. [Algorithmica
(2014)] were the first to explicitly study contraction problems in the
realm of parameterized complexity. They presented FPT algorithms for
Tree-Contraction and Path-Contraction. In this paper, we study
contraction to a class larger than trees, namely, cactus graphs. We present
an FPT algorithm for Cactus-Contraction that runs in cknO(1) time
for some constant c.

1 Introduction

For a collection F of graphs, F-Modification problem is to determine if an in-
put graph G can be converted to some graph in F using at most k modifications.
F-Modification is an abstraction of practically well motivated problems like
Vertex Cover, Feedback Vertex Set, Odd Cycle Transversal, Mini-
mum Fill-In, to name a few. In recent times, there has been increasing interest
in the study of Edge Contraction problems where the modification opera-
tion allowed is edge contraction. These problems generally turn out to be more
difficult compared to their vertex/edge deletion/addition counterparts. For ex-
ample, even determining whether a given graph G can be contracted to path
of length four turns out to be NP-complete [4]. Formally, for a collection F of
graphs, the F-Contraction problem is to determine if an input graph G can
be contracted to some graph in F using at most k edge contractions. For several
choices of F , early papers by Watanabe et al. and Asano and Hirata showed
that F-Edge Contraction is NP-complete even for several simple and well
structured graph classes such as paths, stars, trees [2,3,18,19].

Graph contraction problems have received a lot of attention in parameter-
ized complexity. It turns out that graph contraction problems are harder than
their vertex/edge deletion/addition counterparts even in this setting. One of the
intuitive reasons is that the classical branching technique does not work even for
graph classes F that have a finite forbidden structure characterization. In case
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of vertex deletion or edge deletion/addition operations, to destroy a structure
which forbids the input graph from being in F , one needs to include at least one
vertex (or edge) from that structure into the solution. This is not necessarily true
in the case of contractions. Indeed, a forbidden structure may be destroyed by
contracting edges which are not contained in the structure. Despite this inher-
ent difficulty, there are several fixed-parameter tractability results known when
the parameter is the solution size, i.e, the maximum number k of edges that
can be contracted. To best of our knowledge, Hergerners et al. [12] were the
first to explicitly study edge contraction problems in the realm of parameterized
complexity. They presented a 4knO(1) algorithm for Tree Contraction and
a 2k+o(k)nO(1) algorithm for Path Contraction. When F is the set of graphs
whose minimum degree is at least d, F is known to be FPT when parameterized
by both k and d [10]. Golovach et al. proved that Planar Contraction is FPT
[9]. Bipartite Contraction has been proved to be FPT by Heggernes et al.
[13] and a faster algorithm was presented by Guillemot et al. [11]. Cai et al. [5]
showed that Clique Contraction is FPT. On the negative side, it is known
that F-Contraction is W[2]-hard when F is either the family of P`+1-free
graphs or the family of C`-free cycles for some ` ≥ 4 [6,15]. Recently, Agarwal
et al. [1] proved that Split Contraction is W[1]-hard.

In this paper, we present an algorithm for Cactus Contraction, adding
it to the small list of graph classes for which FPT algorithms for contraction
problems are known. A graph is called a cactus if every edge is a part of at most
one simple cycle. Formally, the problem can be stated as follows.

Cactus Contraction Parameter: k
Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k whose contraction
results in a cactus?

It is easy to verify that the problem is in NP and its NP-completeness follows
from [14]. As a cactus has treewidth at most 2, it follows that if a graph is
k-contractible to a cactus, then its treewidth is at most k + 2. Therefore, the
problem is FPT by the celebrated result of Courcelle [7], as it is expressible
in MSOL. However, this approach yields an impractical algorithm whose run-
ning time involves a large function of k. The main contribution of this work is
a cknO(1) algorithm for Cactus Contraction, where c is a fixed constant.
Our algorithm builds upon ideas presented in [12], but requires a more involved
structural analysis of the graph.

Outline of the algorithm: We can think of graph contraction problem as
partition problem. The task is to find partition where each partition, called
witness set, is connected and contracting all witness set to a point leads to
desired graph. The idea is to color the graph with a small number of colors
to “highlight” certain portions of the graph that contain the desired solution.
This solution is then extracted via the structural properties of the graph. In first
phase, we color V (G) using three colors {1, 2, 3} with the hope that all vertices of
a big witness set (set with at least two vertices) receive the same color and that
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two distinct big witness sets with certain properties are “separated”. We then
identify some vertices that are not part of any big witness sets and recolor them
using new colors 4 and 5. For instance, we identify certain induced paths that
do not intersect with any minimal solution and are “adjacent” to only one big
witness set (Lemma 3). The vertices of such paths are colored 4. After this we
identify vertices that are not part of any big witness set and lie on a path between
two big witness sets (Lemma 4) and color them using color 5. This completes
the first phase. In the second phase, we extract the big witness sets from the
components highlighted in the first phase. For this purpose, we define the notion
of a connected core (Definition 4) which can be thought of as generalization
of connected vertex cover. For every monochromatic component colored with
{1, 2, 3} by the first phase, we find connected vertex cover containing certain
boundary vertices. The desired solution is the set of edges of a spanning forest
of the corresponding connected cores.

The paper is organized as follows. In Section 2 we review some graph theoretic
preliminaries. We present the properties of solution in Section 3 which are used
in proving the correctness of algorithm. Following the approach of [12], we first
give a randomized algorithm for the problem on 2-connected graphs, which is
then used to give an algorithm in general graphs. Algorithm can be divided
into two phases viz coloring phase (Section 4) and extracting a solution from
colored graph (Section 5). Finally, in Section 6 we present overall algorithm and
illustrate how this algorithm can be derandomized via (n, k)-universal sets. We
remark that the main goal of this paper is to provide a cknO(1) algorithm for
Cactus Contraction, where c is a fixed constant. For the sake of simplicity,
we have not attempted to optimize the running time.

2 Preliminaries

For graph theoretic terms and notation which are not explicitly defined here,
we refer the reader to the book by Diestel [8]. An undirected graph is a pair
consisting of a set V of vertices and a set E of edges where E ⊆ V ×V . An edge
uv between vertices u and v is specified as an unordered pair of vertices. For
a graph G, V (G) and E(G) denote the set of vertices and edges, respectively.
Two vertices u, v are said to be adjacent if there is an edge uv in the graph. The
neighbourhood of a vertex v, denoted by NG(v), is the set of vertices adjacent
to v. The degree dG(v) of a vertex v is |NG(v)|. The subscript in the notation
for neighbourhood and degree are omitted if the graph under consideration is
clear. For a set of edges F , V (F ) denotes the set of endpoints of edges in F . For
a set S ⊆ V (G), G − S denotes the graph obtained by deleting S from G and
G[S] denotes the subgraph of G induced on the set S. For sets X,Y ⊆ V (G),
E(X,Y ) denotes the set of edges with one endpoint in X and other endpoint in
Y . Similarly, E(X) denotes the set of edges whose both endpoints are in X.

A path P = (v1, . . . , vl) is a sequence of distinct vertices in which there is
an edge between any pair of consecutive vertices. The vertex set of P is the set
{v1, . . . , vl} and is denoted by V (P ). The path P is called as a cycle if v1 and
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vl are adjacent. An induced path (or cycle) is a path (or a cycle) in which no
two non-consecutive vertices are adjacent. An induced path P = (v1, v2, . . . , v`)
in G with v1 6= v` is called a simple path if NG(vi) = {vi−1, vi+1} for each
2 ≤ i ≤ `− 1. We define the neighborhood of such a path P as the set NG(P ) =
(NG(v1)∪NG(v`))\V (P ). We say that a set X ⊆ V (G) is a simple path if there
is an ordering of vertices in X that is a simple path. A graph is connected if there
is a path between every pair of its vertices and it is disconnected otherwise. A
set S ⊆ V (G) is a connected set of vertices if G[S] is connected. A component
of a disconnected graph G is a maximal connected subgraph of G. A cut-vertex
of a connected graph G is a vertex v such that G − {v} is disconnected. A
connected graph that has no cut-vertex is called 2-connected. The operation of
subdividing an edge uv results in the graph obtained by deleting uv and adding
a new vertex w adjacent to both u and v. The operation of short-circuiting a
degree two vertex v with neighbors u and w results in the graph obtained by
deleting v and then adding the edge uw if it is not already present. A graph is
called a cactus if every edge is a part of at most one cycle. Following properties
of cactus are direct consequence of the definition.

Observation 1. [14] The following statements hold for a cactus T .

1. The vertices of T can be properly colored using 3 colors.
2. Every vertex of degree at least 3 is a cut-vertex.
3. The graph obtained from T by subdividing any edge is a cactus.
4. The graph obtained from T by short-circuiting any degree 2 vertex is a cactus.

The contraction operation of an edge e = uv in G results in the deletion
of u and v and the addition of a new vertex w adjacent to vertices that were
adjacent to either u or v. The resulting graph is denoted by G/e. Formally,
V (G/e) = V (G) ∪ {w}\{u, v} and E(G/e) = {xy | x, y ∈ V (G) \ {u, v}, xy ∈
E(G)} ∪ {wx | x ∈ NG(u)∪NG(v)}. For a set of edges F ⊆ E(G), G/F denotes
the graph obtained from G by contracting the edges in F (in an arbitrary order).
It is easy to see that G/F is oblivious to the contraction sequence.

A graph G is contractible to a graph T , if T can be obtained from G by a
sequence of edge contractions. For graphs G and T with V (T ) = {t1, . . . , tl}, G
is said to have a T -witness structure W if W is a partition of V (G) into l sets
and there is a bijection W : V (T ) 7→ W such that the following properties hold.

– For each ti ∈ V (T ), G[W (ti)] is connected.
– For a pair ti, tj ∈ V (T ), titj ∈ E(T ) if and only if there is an edge between

a vertex in W (ti) and a vertex in W (tj) in G.

The sets W (t1), . . . ,W (tl) in W are called witness sets or bags. The bags W (t)
which contain a single vertex are called small bags, while the bags with more
than one vertex are called big bags. For the sake of brevity, we omit curly brackets
while denoting a singleton set. We associate a set F ⊆ E(G) with a T -witness
structure W of G, where F is the union of the set of edges of a spanning tree
of the G[W ] for each W ∈ W. Observe that G/F = T and we say that G
is |F |-contractible to T . Note that there is a unique T -witness structure of G
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corresponding to a set F of edges. There are at most |F | many big witness sets.
Also the number of vertices which are contained in a big witness set is upper
bounded by |F |+ 1.

3 Key Properties of a Solution

In this section, we start with a simplifying assumption that let us concentrate
on 2-connected graphs.

Proposition 1. [14]. A graph is k-contractible to a cactus if and only if each
of its 2-connected components is contractible to a cactus using at most k edges
in total.

Subsequently, we assume that the input graph G is 2-connected.

Observation 2 (?). For a cactus T , let W be a T -witness structure of 2-
connected graph G. If t is a cut-vertex in T , then |W (t)| > 1.

Every big witness set need not be a cut vertex in T . We now define certain
structures (or subgraphs) in T with respect to witness structure W.

Definition 1 (Internal-Cactus). The subgraph TI of T obtained by remov-
ing any vertex which does not lie on a path between two distinct vertices in T
corresponding to big bags is called as internal-cactus of T .

We see that vertices of G which are not contained in witness sets correspond-
ing to vertices in internal-cactus are easy to identify. For a given cactus T and
its leaf t, if t does not corresponds to a big witness set then it can not be part
of its internal cactus. We can say similar thing for cycles in T which have only
one vertex which corresponds to one big witness set.

Definition 2 (Pendant Cycle). A cycle in T is called as pendant cycle if
there is exactly one vertex in cycle for which corresponds to a big witness set.

If t is an unique vertex in cycle which corresponds to a big witness set, we
say that pendant cycle is incident on t. To obtain an internal cactus, we need
to delete all but one vertices in any pendant cycle. By Observation 2, every cut
vertex in T is correspond to a big bag and hence it is a part of internal-cactus.
In following observation, we bound the cardinality of neighborhood of such cut
vertices in internal-cactus.

Observation 3 (?). Let CT be the set of cut-vertices in T . The number of
neighbors of CT in internal-cactus is at most 4|CT |. In other words, the number
of vertices in NT (CT ) that are neither leaves nor part of a pendant cycle is at
most 4|CT |.

We end this section with following lemma which resolves a special instance
of Cactus Contraction in polynomial time.

Lemma 1 (?). If G is a 2-connected graph such that V (G) can be partitioned
into two simple paths P and Q in G, then we can solve the instance (G, k) of
Cactus Contraction in polynomial time.
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4 Phase 1: The Coloring Phase

In coloring phase, we start with assigning uniformly at random one of colors
{1, 2, 3} to vertices of input graph G. Once we have obtained this coloring, we
identify certain vertices of G which are contained in small witness sets. We re-
color them using new colors {4, 5} and move on to Phase 2 of algorithm to
extract a solution from components of G which are colored 1, 2 or 3.

We need notion of compatible coloring to argue the correctness of this coloring
step. Let cactus T can be obtained from graph G by contracting edges F in G.
Also, let W be T -witness structure of graph G. We determine whether a given
coloring is compatible or not with respect to this witness structure. Informally
speaking, for each big bag, a compatible coloring colors every vertex in this big
bag with same color. It separates two big witness sets which shares an edge
among them. If two big witness sets are connected by a path in G than the
coloring gives different color to end points to this path.

Definition 3 (Compatible Coloring). We say φ is compatible with W if the
following three conditions are satisfied.

– For all W (t) ∈ W, W (t) is monochromatic.
– For all tx, ty ∈ V (T ) such that |W (tx)|, |W (ty)| > 1 and there is an edge in
T between tx and ty, we have φ(W (tx)) 6= φ(W (ty)).

– For all tx, ty ∈ V (T ), such that |W (tx)|, |W (ty)| > 1 and there exists a simple
path P = (tx, t1, t2, . . . , tq, ty) in T such that |W (ti)| = 1 for all 1 ≤ i ≤ q,
we have φ(W (tx)) 6= φ(W (t1)) and φ(W (ty)) 6= φ(W (tq)).

We say that φ is compatible with solution F if φ is compatible with the
witness structure W associated with F . We later argue that if (G, k) is an YES
instance of Cactus Contraction than any random 3-coloring is compatible
coloring with respect to an optimum solution with high probability. For this
section, we assume that we are given a 3-coloring φ of G which is compatible with
some optimum solution. Notice that we are not given the optimum solution. It is
possible that same coloring can be compatible with different optimum solutions.
In this section we prune coloring components and re-color them in order to move
closer to obtain one of the optimum solution.

4.1 Properties of Coloring

We derive some structural properties of φ in G and use those properties to
compute a solution. A set X ⊆ V (G) is called a colored component of φ, if X is a
maximal connected set of vertices that have the same color in φ. Let X be the set
of all components of φ. Since X is a T -compatible partition and contracting an
edge in a cactus graph results in another cactus graph, X is the witness structure
of some cactus. For every color component X in X , either all vertices of X are
in small bags in W or X contains exactly one big witness set in W (t) ∈ W and
the remaining vertices X \W (t) are in small bags. Given a coloring φ, we are
only interested in finding an optimum solution which is compatible with this
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coloring. Hence, for any two components X,Y of φ, no edge uv in E(X,Y ) is in
optimum solution.

We start with simple case when a connected component X in X is simple
path in G. Lemma 2 states that X is either one big witness set or all vertices
in X are singleton sets. The proof of the lemma is based on the observation
that if two adjacent bags have only one edge crossing them then this edge is not
incident vertex which has degree two.

Lemma 2 (?). If colored component X in X is a simple path in G then either
all vertices of X are in small bags or X is a big witness set in W.

4.2 Identifying Vertices in Pendant Cycles and Leaves

We now specify the criteria to identify vertices inG that are contained in pendant
cycles in T or are leaves in T . We can not identify all such vertices in this phase.

Re-coloring I: For any colored component X in X , if G−X contains a vertex or
a simple path as its connected component then recolor vertices in that connected
component with color 4.

The re-coloring signifies that these vertices are part of pendant cycles or they
are leaves in T . Notice that since v is not included in X and it is adjacent with
X, initially vertex v had different color than X. We can say similar things for end
points of path P . We argue that if vertices and simple paths in G are adjacent
to only one colored components then they are either part of pendent cycles or
leaves in T .

Lemma 3 (?). For a colored component X in X , let P be a connected compo-
nent of G − X. If P is a simple path in G whose neighborhood is contained in
X then P is either a part of a pendant cycle or it is a leaf in T .

Notice that above Lemma also holds when P contains only one vertex. For
a colored component X in X , suppose there is an isolated vertex v which is
connected component of G −X. Since φ is compatible with optimum solution,
all big witness sets are monochromatic. This implies v can not be part of any
big witness set and remains as singleton witness set. As it can have path to at
most one big witness set, it is either part of some pendant cycle in T or it is a
leaf.

4.3 Identifying Vertices in Simple Paths

We now identify vertices in G that correspond to paths in T that are between
two big witness sets. Recall that in simple path no internal vertex is adjacent
to any vertex outside this path. A simple path is maximal if it is not contained
in any other simple path. In other words, in maximal simple path every internal
vertex has degree exactly two and end points have degree strictly greater than
two. We color vertices which are in maximal simple path which has neighbors in
two different colored component.
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Re-coloring II: For any two colored component Y, Z in X , if G − (Y ∪ Z)
contains a vertex or a maximal simple path as its connected component then
recolor vertices in that connected component with color 5.

The re-coloring signifies that these vertices are part of simple paths in internal
cactus of T . As in case of Re-coloring-I, a vertex and end points of paths have
different color than either Y or Z. We prove the correctness of this coloring in
following Lemma. We state this lemma when P is maximal simple path but it
holds for a vertex.

Lemma 4 (?). For two colored components Y, Z in X , let P be a connected
component of G− (Y ∪Z). If P is a maximal simple path in G then no optimum
solution contains a solution edge incident on vertices in P . Furthermore, both Y
and Z contain big witness sets.

4.4 Properties of Recoloring

By definition of compatible coloring, every colored component contains at most
one big witness set. Before re-coloring, any colored component may or may not
contain big witness set. In Lemma 5, we argue that after re-coloring, all colored
components colored with {1, 2, 3} must contains a big witness set. We can think
of Lemma 5 as (partial) completeness part for Lemma 3 and 4. In other words, in
Lemma 3 (in Lemma 4) we argue that vertices in G which satisfy some criteria
are contained in witness sets which are part of pendent cycles or are leaves
(in simple paths) of cactus T . In Lemma 5, we claim that all vertices in colored
component which do not contain a big witness set and are part of pendent cycles
or are leaves (simple paths) of cactus T satisfies the premise of Lemma 3 (Lemma
4).

Lemma 5 (?). If a colored component X in X is monochromatic with color from
{1, 2, 3} after exhaustive application of two re-coloring rules then X contains a
big witness set.

5 Phase 2: Identifying Big Witness Sets

At the start of Phase 2, we have identified colored component which must con-
tains big witness set. For a colored component X in X , let W (t) is a big witness
set contained in X. Our objective in this section is to find subset X ′ of X which
is at least as good as W (t). Informally speaking, this means we can replace edges
in spanning tree of G[W (t)] by edges in spanning tree of G[X ′] in any optimum
solution F and we get another optimum solution F ′. We examine what proper-
ties W (t) has in graph G[X]. In fact, we consider a superset X̂ of X and examine
the properties of W (t) with respect to graph G[X̂].

Let X̂ be the superset of X which contains vertices in the connected com-
ponents of G−X that are either isolated vertices or a simple path in G whose
neighborhood is contained in X. We now define the notion of connected core.
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Definition 4 (Core). A core of a graph G is a set Z ⊆ V (G) such that every
connected component of G−Z is either an isolated vertex or a simple path whose
neighborhood is contained in Z. If a core Z is a connected set in G, then we call
it a connected core of G.

Notice that any superset of a connected-core which induces a connected sub-
graph is also a connected core. We postpone discussion on how to find a con-
nected core of given graph which contains specified vertex set and is of minimum
size to Subsection 5.1. We claim that W (t) is a connected core of graph G[X̂].

Lemma 6 (?). For a colored component X in X , if W (t) is the big witness set
contained in X then W (t) is a connected core of G[X̂].

We point out that it is possible that there exists a proper superset of W (t)
which is a connected core of G[X̂]. In other words, every vertex in W (t) has at
least one of the two responsibility: it is a part of connected core of G[X] or it
is in W (t) because of external constraints. We introduce Marking Scheme 1 to
mark vertices which are in W (t) because of external constraints. Once we mark
vertices which are present in big witness set because of external constraints,
we can find any connected core of minimum cardinality which contains these
vertices and this connected core is as good as W (t) for our purposes. Marking
scheme is as follows.

Marking Scheme 1. For a colored component X in X ,

1. If there exists y in N(X) such that φ(y) = 5 then mark all the vertices in
N(y) ∩X.

2. For a colored component X in X which contains a big witness set, mark all
vertices in N(X ′) ∩X

We now prove the soundness of this marking scheme. Lemma 7 and 8 argue
that if X contains a big witness set W (t) then all the vertices marked by marking
scheme are contained in W (t).

Lemma 7 (?). If there exists v in NG(X) such that v is colored 5 then NG(v)∩
X is contained in a big witness set of X.

Lemma 8 (?). Let X,Y be two colored component in X which contain big
witness sets, say, WX and WY , respectively. Then, N(X) ∩ Y ⊆ WY and
N(Y ) ∩X ⊆WX .

In the following Lemma we prove completeness of the marking scheme. We
argue that all vertices which are present in big witness set because of external
constraints has been marked by Marking Scheme 1. It is sufficient to argue that
if t1 is neighbor of t in internal-cactus of TI then all vertices in NG(W (t1)) ∩X
has been marked. Completeness of Marking Scheme 1.1 and 1.2 follows when
|W (t1)| is one and strictly greater than one, respectively.
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Lemma 9 (?). For a colored component X in X let W (t) be the big witness set
contained in X. If t1 is a neighbor of t in the internal cactus TI of T then all
the vertices in NG(W (t1)) ∩X has been marked by Marking Scheme 1.

We now prove how this marking scheme and connected core help us to identify
a set in X which is as good as W (t).

Pruning Operation: For a given collection of colored component X, consider
another set X ′ obtained by performing following operations. For every colored-
component Y in X of cardinality at least 2, if a vertex in v got recolored to 4 or
5, remove Y from X and add Y \ {v} and {v} to X . For a colored component X
in X which contains a big witness set, let MX be set of marked vertices in X by
Marking Scheme 1. Let ZX be a connected core of G[X̂] of minimum cardinality
which contains set MX . For every colored component X in X , if ZX is proper
subset of X then remove X and add ZX to X . For every vertex v in X̂ \ ZX ,
add a singleton set {v} to X (see Figure 1 in Appendix).

We stop the pruning operation when no colored component is replaced in
X . Notice that this pruning operation stops in polynomial time with respect
to number of vertices in graph. As final lemma in this section, we argue that
if we start applying pruning operation on set of colored classes obtained from
compatible coloring φ, we end up with a witness structure corresponding with
an optimum solution. Recall that F is a minimum set of edges such that G/F is
a cactus and W is the G/F witness structure of G. Also, φ is coloring of V (G)
which is compatible coloring with respect to W. Set X is collection of colored
components of φ.

Lemma 10 (?). Let set X ′ be obtained from X by exhaustive application of
Pruning Operations. If F ∗ be a union of spanning trees of graph induced on
colored components in X ∗ then G/F ∗ is a cactus and |F ′| = |F |.

5.1 Finding Connected Cores

Recall that a connected-core of a graph G is subset Z of vertices such that, G[Z]
is connected and each connected component of G−Z is either an isolated vertex
or a simple path whose both end points have neighbors in Z. Here, we present
a simple branching algorithm that determines if G has a connected core of size
at most k or not. We use algorithm for Steiner Tree problem as subroutine.
In Steiner Tree problem, we are given a graph G and set of vertices, called
terminals, and a positive integer `. The goal is to determine whether these is a
tree with at most ` edges that connects all the terminals.

Lemma 11 (?). There is an algorithm that given a connected graph G and a
subset X of its vertices, computes a minimum connected core of G which has at
most k vertices and contains X in O∗(6k) time if one such exists in the graph.
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6 Putting it all Together: The Overall Algorithm

The pseudo-code of the algorithm is presented as Algorithm 6.1 and Theorem 1
formally states our result.

Algorithm 6.1: Randomized Algorithm for Cactus Contraction

Input: A 2-connected graph G and an integer k
Output: A set F of k edges in G such that G/F is a cactus

1 Generate random coloring φ : V (G)→ {1, 2, 3} and construct X .
2 for each X ∈ X do
3 if P is a simple path or a isolated vertex in G−X then
4 for all u ∈ P : set color of u to 4

5 for each pair X1, X2 ∈ X do
6 if P is a simple path or a isolated vertex in G− (X1 ∪X2) then
7 for all u ∈ P : set color of u to 5

8 for each X ∈ X do
9 Apply Marking Scheme to obtain the set of marked vertices YX ⊆ X

10 ZX ← minimum connected core of (G[X̂], YX)

11 Construct X ∗ from X and {ZX |X ∈ X}.
12 if a spanning forest F ∗ of X ∗ has ≤ k edges then
13 return F ∗

14 else
15 return NO

Theorem 1 (?). There is an one-sided error Monte Carlo algorithm with false
negatives which solves Cactus Contraction in time cknO(1) on 2-connected
graphs. It returns correct answer with constant probability.

We apply the arguments presented in [12] to extend above theorem to solve
Cactus Contraction on general graphs.

Theorem 2 (?). There is an one-sided error Monte Carlo algorithm with false
negatives which solves Cactus Contraction in time cknO(1). It returns cor-
rect answer with constant probability.

We can derandomize our algorithms by constructing a family of coloring
function, that is derived from a perfect hash family. The details of the same are
deferred to the appendix. This leads to the following result.

Theorem 3. Cactus Contraction can be solved in cknO(1) time.

Acknowledgements: We would like to thank Prof. Saket Saurabh for invalu-
able advice and several helpful suggestions.
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Appendix

6.1 Missing Figure from Section 5

Fig. 1. Square represents a connected component in graph. Consider a colored com-
ponent X in graph G on right hand side. Instead of contracting all of X to a vertex
tX (left side graph), we contract connected core Z of G[Ĥ] to a single vertex which
require smaller edges to be contracted. We replace X by Z and singleton set for every
vertex in X̂ \ Z in X .

6.2 Missing Proofs from Section 3

Observation. For a cactus T , let W be a T -witness structure of 2-connected
graph G. If t is a cut-vertex in T , then |W (t)| > 1.

Proof. If t is a cut-vertex in T and W (t) = {u} then we argue that u is a
cut-vertex in G. Let T1 and T2 be any two connected components obtained
by removing t from cactus T . Since t is a cut vertex there exits at least two
such components which are not empty. Consider sets of vertices V1, V2 which
are contained in witness sets corresponding to vertices in T1, T2 respectively.
Formally, V1 = {u| u ∈W (t1) and t1 ∈W1} and V2 defined in similar way. Since
T1, T2 are non-empty, so are V1, V2. There is no edge between T1, T2 in T and
since T is obtained from graph G by contracting edges, there is no edge between
V1, V2 in G. This implies that G − v has at least two connected component viz
V1, V2. This contradicts the fact that G is a 2-connected graph. Hence for every
cut vertex t in T , |W (t)| > 1.

Observation. Let CT be the set of cut-vertices in T . The number of neighbors
of CT in internal-cactus is at most 4|CT |. In other words, the number of vertices
in NT (CT ) that are neither leaves nor part of a pendant cycle is at most 4|CT |.
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Proof. We prove later part of the observation using induction hypothesis on
number of cut vertices. If CT is an empty set then the observation is vacuously
true. By induction hypothesis, assume this observation is true when the number
of cut vertices in graph are strictly smaller than |CT |. Consider any cycle C of
T which has at least two cut vertices. Let XC be the set of all cut-vertices in
V (C). Consider cut vertices t, ta, tb in XC such that ta, t, tb appear consecutively
on cycle C. Vertices ta, tb need not be two different cut vertices. Since t is a cut
vertex there exists a connected component T1 of T − t which contains vertices in
ta, tb. Let T2 be the graph obtained by adding a pendent vertex to the induced
subgraph of T on vertices in V (T ) \V (T1). Let C1, C2 are cut vertices in graphs
T1, T2 respectively. It is easy to see that C1 = CT ∩V (T1) and C2 = CT ∩V (T2).
Any vertex in NT2

(C2) that is neither leave nor part of a pendant cycle in graph
T2 is in NT (CT ) and it is not a leave nor part of pendant cycle in T . Similar
statement is true for vertices in NT1(C1). The only vertices in NT (CT ) which
are not leaves or part of pendent cycles and have not been counted in either
NT1

(C1) or NT2
(C2) are at most four vertices between path ta to t and t to tb.

Using Induction Hypothesis on graphs T1, T2, we get |NT (Ct)| ≤ |NT1
(C1)| +

|NT2
(C2)| + 4 ≤ 4|C1| + 4|C2| + 4 ≤ 4(|C \ V (T2)| − 1) + 4(|C ∩ V (T2)| + 4 =

4|CT |.

Lemma. If G is a 2-connected graph such that V (G) can be partitioned into two
simple paths P and Q in G, then we can solve the instance (G, k) of Cactus
Contraction in polynomial time.

Proof. Let p1, p2 and q1, q2 be the endpoints of the simple paths P and Q,
respectively. Observe that G has a hamiltonian cycle, as G is 2 connected and
p1, p2, q1, q2 are the only vertices that may have degree greater than two. If G is
an induced cycle, then the optimal solution is the empty set. Otherwise, G is a
cycle with either one or two additional edges between p1, p2 and q1, q2. It follows
that any optimal solution requires at most 3 edge contractions.

6.3 Missing Proofs from Section 4

Lemma. If colored component X in X is a simple path in G then either all
vertices of X are in small bags or X is a big witness set in W.

Proof. Let X be the simple path (v1, v2 . . . , v`). We consider a case when X
contains a big witness set. We argue that if W (t) is a big witness set contained
in X then X = W (t). For the sake of contradiction assume that there exists
vi ∈ V (P ) \W (t). Notice that W (t) is induces a connected subgraph and it is
entirely contained in X. This implies that either v1 or v` are not contained in
W (t). Without loss of generality, let v1 is is not contained in W (t). Let vi+1 be
the least indexed vertex in W (t). In other words, vertices {v1, v2, . . . , vi} are not
contained in W (t) and remains as singleton witness set. Since |W (t)| > 1 we have
vi+1, vi+2 ∈ W (t). Notice that vi+1 is a vertex in W (t) such that dG(vi+1) = 2
and it has exactly one neighbor vi+2 in W (t). The other neighbor of vi+1 is not
in W (t). We also note that there is no neighbor of vi in W (t) apart from vi+1.
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We now argue that such situation is not possible in a witness structure asso-
ciated with a minimal solution. Let F be an optimum solution associated with
witness structureW. Since F contains a spanning tree of all big witness sets and
there is unique edge vi+1vi+2 in G[W (t)] which is incident on vi+1, edge vi+1vi+2

is present in F . For a vertex u in V (G), W (tu) denotes the witness set in W
that contains u. Consider a graph T ′ obtained from G by contracting all edges
in F \ {vi+1vi+2} and let W ′ be T ′-witness structure of G. Notice that we can
obtain W ′ from W by first removing W (t) and then adding two new sets {vi+1}
and W (t) \ {vi+1}. In graph T ′, vertex t′vi+1

is adjacent to exactly two vertices
viz t′vi , t

′
vi+2

and T ′/tvi+1tvi+2 = T . Hence graph T ′ can be obtained from cactus
T . By Observation 1 (3), T ′ is also a cactus. This contradicts to the fact that F
is a minimal solution. Hence our assumption was wrong and this concludes the
proof of lemma.

Lemma. For a colored component X in X , let P be a connected component of
G −X. If P is a simple path in G whose neighborhood is contained in X then
P is either a part of a pendant cycle or it is a leaf in T .

Proof. For the sake of contradiction assume the lemma is false. Recall that φ is
a T -compatible coloring of G. Observe that P is a simple path in G such that,
NG(P ) is a subset of X ∈ X . Therefore, for any Y ∈ X such that Y ∩ P 6= ∅,
we have Y ⊆ P . Hence by Lemma 2, it follows that no proper subset of edges in
P is contained in the minimal solution F . Therefore all the edges of P are in F ,
which implies that P ∈ X . Let tp be the vertex corresponding to P in T , and
observe that it is adjacent to t ∈ T if and only if W (t) contains a vertex from
NG(P ) (which is a subset of X). Now it is easy to see that, if |EG(P,X)| ≤ 2,
then it is safe to un-contract all the edges of P , which contradicts the minimality
of the solution F . Hence |EG(P,X)| ≥ 3. Before proceeding further, let us make
a few observations about the graph. The set P is a big witness set in W, and
recall that either every vertex of X is a small bag in W, or X contains exactly
one big witness set in W.

In the first case, every vertex of X defines a small bag, and X is a connected
subset of T , and there are at least 3 edges in EG(P,X). If NG(P ) corresponds to
at least 3 vertices in T , then T [X ∪ tp] contains two cycles with a common edge,
i.e. T is not a cactus, which is a contradiction. Furthermore, NG(P ) must contain
at least two vertices, as P is a simple path in the 2-connected graph G and only
the end-points of P have neighbors outside P . Hence, we may conclude that
NG(P ) contains exactly two vertices of X and EG(P,X) contains either 3 or 4
edges. Let v1 and v` be the endpoints of P , and let x1 and x2 be the two vertices
in NG(P ). As G is 2 connected and every cut-vertex in T must correspond to a
big witness set in W, we conclude that no vertex of X is a cut-vertex in T or G.
As X is a connected set, let Q be the path between x1 and x2 in G. As all the
vertices of X lie in small bags, we have that Q is a path in T as well. Observe
that C = T [V (Q)∪tp] is a cycle in T with tp being the only vertex corresponding
to a big witness set in C. We claim that T = C. If not, then V (T ) \ (tP ∪V (Q))
is non-empty, and there is a vertex y ∈ V (T ) \ (V (P ) ∪ V (Q)), such that there
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are two internally vertex disjoint paths between y and tp in T . Indeed, we may
start with a arbitrarily chosen y, and consider a minimum cut between y and tp
in T . If the minimum cut is a single vertex y′, then observe that y′ /∈ V (Q), as
vertices of Q are not cut-vertices in T . We substitute y with y′ and start over.
Since the shortest path between y′ and tp in T is strictly shorter than the shortest
path between y and tp, we will obtain the vertex y in finitely many iterations,
such that there are two internally vertex disjoint paths in T between y and tP .
Let R1 and R2 be those two paths. Observe that, we must have x1 ∈ R1 and
x2 ∈ R2, and hence R1 ∪ R2 contains a path between x1 and x2, say R in T .
The path must be distinct from the path Q, because Q1 = V (Q) ∩ V (R1) and
Q2 = V (Q) ∩ V (R2) are disjoint and therefore at least one edge of Q is absent
from R. This implies that T contains three distinct paths between x1 and x2,
namely PT = (x1, tp, x2), Q and R. However, this contradicts the fact that T is
a cactus. So, we conclude that T = C and hence, G = P ] Q. Observe that,
as both P and Q are simple paths in G, it is an instance that can be solved in
polynomial time via Lemma 1. By our assumptions, this cannot be the case.

In the second case, let Z ⊆ X be a big witness set in W, and let tZ be the
vertex in T obtained by contracting Z. We claim that NG(P ) is a subset of Z.
Indeed, if this were not the case, let v ∈ NG(P ) \ Z, and let tZ and tP be the
two cactus vertices corresponding to the big witness sets Z and P . Observe that
v forms a small bag, and as X is a connected set, it lies on a path Q between
tZ and tP in T , where the internal vertices of Q are associated with vertices of
X. Observe that all internal vertices of Q are assigned the same color as the
vertices of Z by φ. This contradicts the fact that φ is a compatible coloring.
Hence NG(P ) ⊆ Z and so we conclude that NT (tp) = tZ in T . Hence G/(F −P )
is also a cactus. This contradicts the minimality of the solution F . This concludes
the proof of this lemma.

Lemma. For two colored components Y, Z in X , let P be a connected component
of G − (Y ∪ Z). If P is a maximal simple path in G then no optimum solution
contains a solution edge incident on vertices in P . Furthermore, both Y and Z
contain big witness sets.

Proof. Let P = (v1, v2, . . . , v`) be a maximal simple path in G such that there
exists Y,Z ∈ X with NG(v1) ⊆ Y ∪ v2, NG(v`) ⊆ Z ∪ v`−1. Let F be any
optimum solution which is compatible with coloring. We argue that E(P )∩F =
∅. Furthermore, both Y and Z contain big witness sets in W.

Consider the first part of lemma and suppose that it is false, i.e E(P )∩F 6= ∅.
Now observe that, as φ is a compatible coloring, for any A ∈ X , if A ∩ P 6= ∅
then we have A ⊆ P . So by Lemma 2, P must be a witness set in W. Let tP be
the vertex in T obtained from P . First, we claim that the neighborhood of P in
Y , i.e. YP = Y ∩N(P ) = Y ∩N(v1), must be in the same witness set of W. Let
ZP = Z ∩N(P ) = Z ∩N(v`). Consider YP and suppose that y1, y2 ∈ YP are in
two different witness sets in W corresponding to vertices t(y1), t(y2) in T . As G
is a 2-connected graph and P is a simple path in G, G− V (P ) is connected and
so is T − tP . Therefore the vertices t(y1), t(y2) and tz are connected in T − tP
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where tz is a vertex in T such that W (tz) ∩ ZP 6= ∅. Now observe that tP is
adjacent to t(y1), t(y2) and tz in T , which implies that T contains two cycles
that have a common edge. However, this is a contradiction to the fact that T is
a cactus. Hence, all of YP lies in the same witness set in W. We can similarly
show that ZP is contained in the a witness set of W.

Now, tP , tY , tZ be vertices in T where and tY , tZ ∈ T are formed by contract-
ing the witness sets in W that contain YP and ZP respectively. Clearly (tY tP )
and (tP tZ) are edges in T , and tP is a vertex of degree 2 in T . Now observe
that v1 is not a cut-vertex in G[P ] as there is exactly one edge incident on it
in this graph. Therefore, G[V (P ) \ {v1}] is connected. Let F ′ = F \ {v1v2} and
P ′ = P − v1. Consider the graph T ′ = G/F ′, and let t′P and t1 be the vertices
in T ′ corresponding to P ′ and v1. If T ′ is not a cactus, then there is a pair of
cycles that have a edge in common. In particular, there is a pair of cycles that
have the edges (tY , t1), (t1, t

′
P ) and t′P , tZ , as t1 and t′P have degree two. But

then T = T/(t1, t
′
P ) cannot be a cactus, which is a contradiction. On the other

hand, if T ′ is a cactus it the minimality of the solution F . Hence, it is indeed
true that E(P ) ∩ F = ∅.

Next, we argue that Y and Z must contain a big witness set in W. Consider
v1 ∈ P , if v1 has at least two neighbors in Y then then the above arguments
imply that all these vertices must be in a single witness set of Y and therefore
Y must contain a big witness set. Otherwise, v1 only has only one neighbor in
Y . If all the vertices in Y form small bags inW, then the corresponding vertices
in T are of degree two. As Y is a connected set in G, this implies that Y is a
simple path in G. Then Y ∪P is also a simple path in G, with endpoints y1 ∈ Y
and v` ∈ P . Let t1 be the vertex of T corresponding to y1. As t1 is of degree two
in T , N(y1) \ Y ⊆W (t′) for some t′ ∈ T that is a neighbor of t1. Further, there
is some Y ′ ∈ X such that W (t′) ⊆ Y ′. Now, observe that (Y ∪ P ), Y ′ and Z
satisfy the premise of this lemma, and this contradicts the maximality of P . We
may similarly conclude that Z must contain a big witness set. This concludes
the proof of the lemma.

Lemma. If a colored component X in X is monochromatic with color from
{1, 2, 3} after exhaustive application of two re-coloring rules then X contains a
big witness set.

Proof. Let TB and TS are set of vertices in T which corresponds to big witness
sets and small witness set respectively.Consider internal-cactus TI obtained from
T by removing any vertex which does not lie on a path between two distinct
vertices in TB . By Observation 1 and 2, all vertices in V (T ) \ V (TI) have
maximum degree two in T . Hence T − V (TI) is a collection of isolated vertices
and induced paths.

Let Q be a connected component of T −V (TI) which is adjacent to vertex t.
We argue that vertices in G which are contained in witness set corresponding to
vertices in Q are either isolated vertex in G−W (t) or simple path P in G whose
neighborhood is contained in W (t). By the definition of TI , every component
of T − V (TI) has edges to exactly one vertex in TB . Hence, for the component
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Q there is some t in TB such that Q is either a leaf incident on t, or Q ∪ t is
a pendant cycle in T . Since every witness set correspond to vertices in Q is a
singleton set, vertices in this witness set induces a path P in G. Note that P is a
connected component of G−W (t). All such vertices are re-colored to 4 by first
rule of recoloring.

Let Q = (ti, x1, x2, . . . , xq, tj) be a path in TI , where ti, tj ∈ TB and W (xi)
is a small bag for each xi. As each W (xi) is a small bag and xi have degree 2 in
T , vertices in G which are contained in witness set corresponding to vertices in
V (Q) \ {ti, tj} induces a simple path P in G whose neighborhood is contained
in W (ti) and W (tj) which are big witness set. All such vertices are re-colored to
5 by second rule of recoloring.

This implies exhaustive application of two re-coloring rules identify almost
all the vertices in G that form small bags in T . The only exceptions being those
vertices that are contained in some component X of φ which also contains a big
witness set. After re-coloring if there is a colored component which have a color
from {1, 2, 3} then it have witness sets which corresponds to vertices in TB and
hence it must contain a big witness set.

6.4 Missing Proofs from Section 5

Lemma. For a colored component X in X , if W (t) is the big witness set con-
tained in X then W (t) is a connected core of G[X̂].

Proof. Since W (t) is a witness set, by definition G[W (t)] is connected. For the
sake of contradiction assume that W (t) is not a core of G[X̂]. This implies that
at least one connected component C of G[X̂] \W (t) is neither a simple path nor
a isolated vertex. Hence, C contains at least 3 vertices and there exists a vertex
x ∈ C such that dG[X̂](x) ≥ 3 and it is adjacent to at least two vertices in C. If

x ∈ X̂ \X, then by Lemma 3, it is contained in a small bag. Otherwise, x ∈ X \
W (t) and it is again contained in a small bag. This implies that W (tx) = {x} and
dT (tx) ≥ 3. So by Observation 1, x is a cut-vertex in T . However, this contradicts
Observation 2 which states that that every cut-vertex in T corresponds to big
witness set.

Lemma. If there exists v in NG(X) such that v is colored 5 then NG(v)∩X is
contained in a big witness set of X.

Proof. If v is colored 5, by Lemma 4, v is contained in a simple path P in G
between two components X,X ′ ∈ X , such that all the vertices of P are in small
bags in W. Furthermore, both X and X ′ must contain big witness sets in W.
Let W (t′) be the big witness set contained in X ′. Let P ′ be a path from W (t′)
to an endpoint of P , whose internal vertices are in X ′. Assume that there exists
x ∈W (t) \N(v). Consider a path Q from W (t) to x which is contained entirely
in G[X]. Since xv ∈ E(G), we have that Q along with edge xv and paths P , P ′

form a path from W (t) to W (t′) in G. This path in G gives a path between t
and t′ in T , such that all the internal vertices of this path correspond to small
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bags in W. Notice that every vertex on the path from W (t) to x, has same color
as that of W (t). All these vertices are in small bags. This is a contradiction to
the fact that φ is compatible coloring with W. Hence our assumption is wrong
and the claim follows.

Lemma. Let X,Y ∈ X be two components which contain big witness sets, say,
WX and WY , respectively. Then, N(X) ∩ Y ⊆WY and N(Y ) ∩X ⊆WX .

Proof. If E(X,Y ) = ∅ then the statement is vacuously true. Assume that x ∈
(N(Y ) \ WX) ∩ X, and let t, t′ be the vertices of T corresponding to the big
witness sets WX ,WY respectively. Since X is connected, there exists a path
between WX and x which is entirely contained in X. As X may contain only
one big witness set, x lies in a small bag in W. This implies that there is path
between t and t′ in T (via x) such that the neighbor of t has the same color as
vertices in WX . This is a contradiction to the fact that φ is compatible coloring
with W.

Lemma. For a colored component X in X let W (t) be the big witness set con-
tained in X. If t1 is a neighbor of t in the internal cactus TI of T then all the
vertices in NG(W (t1)) ∩X has been marked by Marking Scheme 1.

Proof. If W (t1) is a small bag then by Lemma 5 it is recolored to 5. By Obser-
vation 1, t1 is not a cut-vertex in T . As t1 is part of the internal cactus of T ,
it must lie on some simple path in T between vertices t and t2, where W (t2)
is a big witness set in W. By Lemma 4 and 5, W (t1) gets color 5. Therefore,
NG(W (t1)) ∩X has been marked. If W (t1) is a big witness set, then it is con-
tained in a component X ′ ∈ X as φ is a compatible coloring. Therefore, it has
also been marked.

Lemma. Let set X ′ be obtained from X by exhaustive application of Pruning
Operations. If F ∗ be a union of spanning trees of graph induced on colored com-
ponents in X ∗ then G/F ∗ is a cactus and |F ′| = |F |.

Before moving to proof of the Lemma, we mention following two observations.

Observation 4. Let X,Y are colored component in X . If these colored compo-
nents contain big witness sets in W then X̂ ∩ Ŷ = ∅.

Proof. As X and Y contain big witness sets and are components of φ, by defi-
nition they are disjoint. Now observe that X forms a separator between X̂ and
V (G)− X̂, and similarly for Y . Hence, X̂ ∩ Ŷ = ∅.

For Y ⊆ V (G), let WY be the collection of witness sets in W that intersect
Y .

Observation 5. Let X ∈ X and X̂ be as defined above. Then for all witness
sets W ∈ WX̂ , we have W ⊆ X̂.
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Proof. Suppose not. Then there is a vertex y ∈W \ X̂, and a vertex x ∈W ∩ X̂.
Hence, W is a big witness set, and there is Y ∈ X such that W ⊆ Y . As W is a
connected set, there is a path P in G[W ] between y and x. And observe that X
is a separator between X̂ and V (G) \ X̂ and it intersects the path P at a vertex
x′. Hence W ∩X 6= ∅. Now, as φ is a compatible coloring we have Y ∈ X such
that W ⊆ Y and it is distinct from X. However, we have that x′ ∈ X ∩Y , which
contradicts the fact that any two components of φ are disjoint.

Proof (of Lemma 10). First consider the case when we do the operation for
only one colored component X in X . In other words, we fix a X ∈ X and let
W ′ = (W \WX̂)∪W ′

X̂
where W ′

X̂
= {Z}∪ {{v}| v ∈ X̂ \Z} and Z is connected

core of G[X̂] which contains all marked vertices. Let T ′ be the graph obtained
by contracting F ′ in G. We claim that T is a cactus and |F ′| ≤ |F |. Let tz
be the vertex in T ′ obtained from Z, and W (t) be the big witness set in W
that is a subset of X. Let TX be the induced subgraph of T that contains all
the vertices obtained from WX̂ , and by Observation 5 they form a partition

of X̂. Let T ′X be the induced subgraph of T ′ obtained from W ′
X̂

. Now observe

that W \ WX̂ = W ′ \ W ′
X̂

, which implies that T − V (TX) is isomorphic to

T ′ − V (T ′X). By Lemma 9, Z contains every vertex in X that has a neighbor in

V (G) \ X̂, and therefore NT ′(tZ) \ V (T ′X) = NT (t) \ V (TX). Hence the induced
subgraphs (T − V (TX)) ∪ t and (T ′ − V (T ′X)) ∪ tz are isomorphic as well. Now

Z is a connected-core of G[X̂], hence T ′X is a cactus. And observe that tz is
the only vertex in T ′X that may have a neighbor in T ′ − V (T ′X), i.e. it is a cut-
vertex in T ′ that separates T ′X from T ′ − V (T ′X). Therefore we conclude that
(V (T ) \V (TX))∪V (T ′X) induces a cactus T ′, which means F ′ is also a solution.

And by Lemma 6, W (t) is a connected-core of X̂, and F is a spanning forest of
W. As Z is a minimum connected core of X̂ and F ′ forms a spanning forest of
W ′, we have that |F ′| ≤ |F |.

Next, we consider all the sets X ∈ X and fix an arbitrary order among them.
By Observation 4, for any two sets X,Y in X , X̂, Ŷ are disjoint. Now, starting
with a given solution F , we apply the above arguments for each X in X one by
one. Here, we update the set F to F ′ each time, before proceeding to the next
X. Observe that F ′ obtained at the end of the process, say F ∗, is a solution, i.e.
G/F ∗ is a cactus, and |F ∗| ≤ |F |. Since F was optimum solution it follows that
|F | ≤ |F ∗| which concludes the proof.

Theorem. There is an algorithm that given a connected graph G and a subset
X of its vertices, computes a minimum connected core of G which has at most
k vertices and contains X in O∗(6k) time if one such exists in the graph.

Proof. Consider a connected core Z∗ of G, and recall that G/Z∗ is a cactus.
Therefore, if (u, v, w) is a path in G−Z∗ then v must be a vertex of degree 2 in
G. Furthermore, if (x, y) is an edge in G−Z∗, then it follows that x and y have
degree 2 or more in G. Our algorithm is based on these observations. We first
construct a core of G via a branching algorithm. Then at each leaf of the search
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tree, we extend the core constructed by the branching algorithm to a connected
set by applying an algorithm for the Steiner Tree problem.

Let us delve into the details of our algorithm. Let Z denote a solution to the
instance. Initially we set Z to X and decrease k by |X|. The following branching
rule derived from the first observation.

Branching Rule 1. If there is a path (u, v, w) in G−Z such that |NG(v)| ≥ 3,
then branch into three cases where each of u or v or w is added to Z. Decrease
k by 1 in each of the branches.

Observe that when this rule is no longer applicable, all vertices of G − Z
have degree at most 2. Hence the components of G − Z are simple paths in G,
or isolated vertices. Next, we have the following reduction rule that follows from
the second observation.

Reduction Rule 1. If there is an edge uv in G−Z with |NG(v)| = 1, then add
u into Z and reduce k by 1.

Since the only neighbor of v is u, the edge uv cannot be part of a simple path
in G whose both endpoints have neighbours in Z. Now, if there exists an optimal
solution Z∗ that does not contain u, then v ∈ Z∗ and Z ′ = (Z∗ \ {v}) ∪ {u} is
also a connected core of G. This justifies the correctness of the rule.

We apply the above rules exhaustively, and consider the search tree con-
structed. Note that each node of the search tree is labeled with either a triple
(u, v, w) indicating that the Branching rule 1 was applied, or an edge (x, y) in-
dicating that Reduction rule 1 was applied at this node. If at any node in the
search tree, k is 0 and the set Z is not a connected core of G, we abort that
node. If all the leaves of the current search tree are aborted, then we output NO
as a solution to this instance.

Next, we claim that if none of the rules are applicable at a leaf of the search
tree, then the corresponding Z is a core of G. Assume to the contrary that Z is
not a core of G. Then there is a component C of G−Z that is neither an isolated
vertex, nor it is a simple path in G whose both endpoints have neighbours in Z.
Hence such a C has at least two vertices. Furthermore recall that the branching-
rule is not applicable at this node of the search tree, and therefore all vertices in
G− Z have maximum degree 2. Consider the case when C is a cycle in G− Z.
As G is connected, C has a vertex v that has a neighbour in Z. Let u and w be
the neighbours of v in C. Then, it follows that (u, v, w) is a path in G−Z with
|NG(v)| ≥ 3. However, this leads to a contradiction as Branching rule 1 is not
applicable. Now, consider the case when C is a path in G − Z with end-points
u and v. If there is an internal vertex on this path that has a neighbor in Z,
then as before, we obtain a contradiction. Hence, C is a simple path in G, with
end-points u and v. As Z is not a core of the connected graph G, one of u or v
has no neighbour in Z, i.e. it is a vertex of degree 1 in G. But then, Reduction
rule 1 is applicable, which is a contradiction. Hence Z must be a core of the
graph G.

However, as Z may not be connected in G, we may have to add additional
vertices to ensure connectivity. Observe that this can be achieved by comput-
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ing a minimum Steiner Tree for Z in G. Given a graph G and a set S of
vertices of G, the Steiner Tree problem is the task of computing a minimum
cardinality connected subgraph that contains S. This problem is known to admit
an algorithm with O∗(2|S|) running time [17]. The above algorithm computes a
minimum cardinality connected set of vertices, Z ′ ⊇ Z, in time O(2k). Observe
that Z ′ is a connected-core of G, as G−Z is a collection of isolated vertices and
simple paths in G. Let Z̄ be the minimum cardinality connected-core over all
the leaves of the search-tree. If |Z̄| ≤ k, we output Z̄ and otherwise we output
NO as the solution to the instance.

Let us now argue the correctness of this algorithm. Assume Z∗ is an optimal
solution of size at most k. We claim that above algorithm finds a connected core
Z̄ such that |Z̄| ≤ |Z∗|. To argue this, we associate a path on the search tree of
branching algorithm to the set Z∗.

Now consider an internal node in search tree that is labeled with (a, b, c).
Since Branching rule 1 is applied at this node, we have that (a, b, c) is a path in
G−Z and |NG(b)| ≥ 3. As Z∗ is a core of G, at least one of a, b, c must be present
in it. Similarly, for any node labeled with an edge (x, y), one of these vertices,
say y, is of degree 1 in G, and hence Z∗ must contain one of them. Recall that,
by previous arguments, we may assume x ∈ Z∗. Hence, we start from the root
of the search tree and navigate to a leaf along the choices consistent with Z∗.
If more than one choices are consistent with Z∗, we arbitrarily pick one of the
them and proceed. Consider the set Z̃ obtained at the leaf via this navigation
consistent with Z∗ from the root-node of the search tree. Clearly Z̃ ⊆ Z∗ and Z̃
is a core (not necessarily connected) of G. Let T be an optimal solution for an
instance of (H, Z̃) of Steiner Tree as defined above. Since Z∗ is a connected
core of G and Z̃ ⊆ Z∗ we know that Z∗ \ Z̃ is a solution to this Steiner Tree
instance. By the optimality of T , |T | ≤ Z∗ \ Z̃ and hence Z̄ = Z̃ ∪T is a desired
solution.

Let us now consider the running time of this algorithm. We measure the
progress of the algorithm measure is the solution size k. At each application of
the Branching rule 1, we have a three-way branch and the measure drops by 1
branching vector is (1, 1, 1). This leads to the recurrence T (k) ≤ 3T (k−1) which
solution is O∗(3k). Next, at each leaf of the search tree, we run the algorithm
for finding a minimum Steiner tree, which runs in time O∗(2k). Therefore, the
overall running time is O∗(6k).

6.5 Missing Proofs from Section 6

Theorem. There is an one-sided error Monte Carlo algorithm with false neg-
atives which solves Cactus Contraction in time cknO(1) on 2-connected
graphs. It returns correct answer with constant probability.

Proof. Consider an algorithm which uses Algorithm 6.1 as subroutine and runs
it 34k many times. If any of these runs return a solution F , then the algorithm
returns F otherwise after all iterations are over, it returns NO. This finishes the
description of the algorithm.
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Let us argue the correctness of this algorithm. Consider a graph G which
is k-contractible to a cactus T and W is T -witness structure of G. Let φ is a
3-coloring of G which is compatible with W. To argue the correctness, we first
claim that given graph G and a compatible coloring φ, Algorithm 6.1 returns a
correct answer. But this immediately follows from Lemma 10.

Since Algorithm 6.1 returns a solution only if it has found a witness struc-
ture with desired properties, it never returns false positives. We argue that our
algorithm returns a solution, if there is any, with constant probability.

Let φ : V (G) → {1, 2, 3} be a coloring where colors are chosen uniformly at
random for each vertex. The total number of vertices contained in big witness
sets of W is at most 2k. Also, cactus T can have at most k big witness sets
and hence at most k cut-vertices. (Note that, we consider all the vertices of
T which correspond to big witness set as a cut-vertex, even if they are not
actually a cut-vertex in T , as this doesn’t affect our arguments in any way.) By
Observation 3, there are at most 4k vertices which lie on a path between two
cut-vertices and are adjacent to big witness sets. Therefore, by the definition of
a compatible coloring, the probability that a random 3-coloring compatible with
W is at least 1

36k
. Since the algorithm runs 36k many iterations of Algorithm 6.1,

probability that none of these colorings which is generated uniformly at random

is compatible withW is at most (1− 1
36k

)3
6k

< 1/e. Hence Algorithm 6.1 returns
a solution on positive instances with probability at least 1− 1/e. Each iteration
of Algorithm 6.1 takes 6k · nO(1) time and hence the total running time of the
algorithm is ck · nO(1) for a fixed constant c.

Theorem. There is an one-sided error Monte Carlo algorithm with false neg-
atives which solves Cactus Contraction in time cknO(1). It returns correct
answer with constant probability.

Proof. If input graph G is not 2-connected, we find its block decomposition [8] is
nO(1) time. If any any of 2-connected component of G is a cactus then we delete it
and work in remaining graph. Let G1, G2, . . . , Gq are two connected components
of G such that Gi is not a cactus for all i ∈ [q]. If q ≥ k + 1 then we return
NO as at least one edge needs to be contracted in each of these 2-connected
components. We now consider the case when q ≤ k.

For each Gi and each possible values kj between 1 and k, we run algorithm
presented in Theorem 2 3 log k times on instance (Gi, kj). Since there are at
most k2 such pairs, algorithm in Theorem 2 has been run at most 3k2 log k
time. If algorithm returns NO for all the values of kj for some Gi then we
return NO. Otherwise let k′i be the smallest value for which algorithm returns
a solution for Gi. Since algorithm in Theorem 2 returns no false positive, Gi is
k-contractible to a cactus. On the other hand if (Gi, ki) is an YES instance of
Cactus Contraction then probability that no run will output right answer is
at most ( 1

e )3 log k = 1
k3 . Since there are at most k2 pairs (Gi, kj), and by the union

bound on probabilities, the probability that there is a pair (Gi, kj) for which the
algorithm returns false negative is upper bounded by k2 · 1

k3 ≥ 1
k . If such a

failure does not occur, then for every i we have that k′i is exactly the smallest
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value of kj such that Gi is ki-contractible to a cactus. Finally, the algorithm
answers YES only if

∑q
i=1 k

′
i ≤ k, and answers NO otherwise. The correctness of

this algorithm follows from Proposition 1. Consequently, the algorithm cannot
give false positives, and it may give false negatives with probability at most
1/k ≤ 1/q ≤ 1/2, where the two inequalities follows from the assumption that
2 ≤ q ≤ k.

6.6 Derandomization

We can derandomize our algorithms by constructing a family of coloring function,
that is derived from a perfect hash family.

Definition 5 ([16]). A (n, k)-universal set is a family H of subsets of [n] such
that for any S ⊆ [n] of size at most k, {S ∩H | H ∈ H} contains all subsets of
S.

Lemma 12 ([16]). For any n, k ≥ 1, we can construct a (n, k)-universal set of
size 2kkO(log k) log n in time 2kkO(log k)n log n.

Now suppose that G is contractible to a cactus T and a coloring φ, that is
compatible with T . Recall that, the total number of vertices contained in all
big bags is at most 2k. Further more, by Observation 3, the number of vertices
that are adjacent to a big bag and are mapped to internal cactus of T is at
most 4k. Let S denote the set of all these vertices in G, and note that we can
ensure |S| = 6k by arbitrarily adding some extra vertices to it. Observe that,
φ gives a partition of the set S into 3 parts, say S1, S2, S3. For the remainder
of this section, let us fix the cactus T and the compatible coloring φ. From the
definition of compatible coloring, any coloring function ψ which partitions of S
into S1, S2, S3 is a compatible coloring. We say that the coloring function φ and
ψ agree on S.

Lemma 13. Let φ be a compatible coloring of G. Then there is a family of
coloring functions, F = {f : V (G) → [3]}, such that there ψ ∈ F that agrees
with φ on S. This family has size 46kkO(log k) log2 n and it can be constructed in
time 46kkO(log k)n log n.

Proof. Let H be a (n, 6k)-universal set, that is constructed by Lemma 12. We
define a family of partitions of V (G) as follows.

F ′ = {(A,B,C) | A ∈ H, B = Y \A where Y ∈ H, C = V (G) \ Y }

Observe that F ′ can be constructed by considering each pair of sets in H. We
claim that there is a triple (A,B,C) ∈ F ′ such that S ∩A = S1, S ∩B = S2 and
S ∩ C = S3. Indeed, since H is a (n, 6k)-universal-set, there is some set Y ∈ H
such that S ∩ Y = S1 ∪ S2, and there is some A ∈ H such that A ∩ S = S1.
Hence, S ∩ (Y −A) = (S ∩ Y ) \ (S ∩A) = S2. We can easily convert the family
F ′ into a family of coloring functions, where for each (A,B,C) ∈ F ′ maps all

24



vertices in A,B,C to 1, 2, 3 respectively. Now it is clear that if φ partitions S into
S1, S2, S3, then there is a function ψ ∈ F , which also partitions S into S1, S2, S3.
Observe that the family F has size 46kkO(log k) log2 n, since the family H has size
26kkO(log k) log n.

Using the above coloring family (instead of a random coloring) in our algo-
rithm for Cactus Contraction establishes Theorem 3.
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