
An FPT Algorithm for Contraction to Cactus

R. Krithika1 Pranabendu Misra 2 and Prafullkumar Tale1

3rd July, 2018
1 The Institute of Mathematical Sciences, HBNI, Chennai, India
2 University Of Bergen, Bergen, Norway

1

2

3

Graph Modification Problems

F-Modification
Input: A graph G
Question: Can we obtain a graph in F by some modifications in
the graph G?

Modification allowed

Vertex Deletion
Edge Deletion
Edge Addition
Edge Contraction

4

Graph Modification Problems

F-Modification
Input: A graph G
Question: Can we obtain a graph in F by some modifications in
the graph G?

Modification allowed

Vertex Deletion
Edge Deletion
Edge Addition
Edge Contraction

4

F-Modification : Generalization of many NP-hard problems

Graph Problem F Modification
Vertex Cover Empty graphs Vertex Deletion
Feedback vertex set Forests Vertex Deletion
Odd cycle transversal Bipartite Graphs Vertex Deletion
Minimum Fill-In Chordal Graphs Edge Addition
Edge Bipartization Bipartite Graphs Edge Deletion
Cluster Editing Cluster Graphs Edge Addition

& Deletion
Tree Contraction Trees Edge Contraction

5

F-Modification : Generalization of many NP-hard problems

Graph Problem F Modification
Vertex Cover Empty graphs Vertex Deletion
Feedback vertex set Forests Vertex Deletion
Odd cycle transversal Bipartite Graphs Vertex Deletion
Minimum Fill-In Chordal Graphs Edge Addition
Edge Bipartization Bipartite Graphs Edge Deletion
Cluster Editing Cluster Graphs Edge Addition

& Deletion
Tree Contraction Trees Edge Contraction

5

Outline

Parameterized Complexity & Contraction Problems

Graph Contraction Problems

Problem Definition

FPT Algorithm

6

Parameterized Complexity &
Contraction Problems

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Parameterized Complexity : Quick Overview

• Goal : Find better ways to solve NP-hard problems.
• Associate (small) parameter k to each instance I.
• Restrict the combinatorial explosion to the parameter k.
• Parameterized problem (I, k) is fixed-parameter tractable (FPT)

if there is an algorithm that solves it in time O(f (k) · |I|O(1)).
• Not all problems (for given parameter) admit such an algorithm

Hierarchy of classes : FPT ⊆W[1] ⊆W[2] . . .

7

Graph Contraction Problems

Graph Contraction Problems

F is a graph class and G/F is graph obtained from G by
contracting edges in F

F-Contraction Parameter: k
Input: A graph G and an integer k
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is in F?

F is polynomial time recongnizable graph class.

8

F-Contraction: Parameterized Complexity

[HvtHL+12] Tree Contraction 4k

Path Contraction 2k+o(k)

[GvtHP13] Planar Contraction FPT
[CG13] Clique Contraction 2O(k log k)

[HvtHLP13] Bipartite Contraction FPT
[GM13] 2O(k2)

[GKPT13] Fmindeg≥dContraction FPT (k, d)

9

F-Contraction: Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [LMS13] [CG13] F can be characterized as P`+1-free graphs or
C`-free graphs for ` ≥ 4.
P` and C` are path and cycle on ` vertices, respectively.

• [ALSZ17] F is Split Graphs

10

F-Contraction: Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [LMS13] [CG13] F can be characterized as P`+1-free graphs or
C`-free graphs for ` ≥ 4.

P` and C` are path and cycle on ` vertices, respectively.

• [ALSZ17] F is Split Graphs

10

F-Contraction: Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [LMS13] [CG13] F can be characterized as P`+1-free graphs or
C`-free graphs for ` ≥ 4.
P` and C` are path and cycle on ` vertices, respectively.

• [ALSZ17] F is Split Graphs

10

F-Contraction: Parameterized Complexity

Theorem
F-Edge Contraction is W [2]-hard if

• [LMS13] [CG13] F can be characterized as P`+1-free graphs or
C`-free graphs for ` ≥ 4.
P` and C` are path and cycle on ` vertices, respectively.

• [ALSZ17] F is Split Graphs

10

Starting Point

F-Contraction is FPT when F is Trees (which are C3-free)
but W [2]-hard when F is family of C`-free graphs (` ≥ 4).

What are the superclasses of Tree which admits an FPT
algorithm?

11

Starting Point

F-Contraction is FPT when F is Trees (which are C3-free)
but W [2]-hard when F is family of C`-free graphs (` ≥ 4).

What are the superclasses of Tree which admits an FPT
algorithm?

11

Problem Definition

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

Cactus Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a cactus graph?

Result:

• FPT algorithm running in time O(ck · nO(1)) for a 2-connected
graph which can be generalized for general graph by working
on each of its 2-connected components.
Every graph mentioned here is 2-connected.

12

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

Cactus Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a cactus graph?

Result:

• FPT algorithm running in time O(ck · nO(1)) for a 2-connected
graph which can be generalized for general graph by working
on each of its 2-connected components.
Every graph mentioned here is 2-connected.

12

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

Cactus Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a cactus graph?

Result:

• FPT algorithm running in time O(ck · nO(1)) for a 2-connected
graph which can be generalized for general graph by working
on each of its 2-connected components.
Every graph mentioned here is 2-connected.

12

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

Cactus Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a cactus graph?

Result:

• FPT algorithm running in time O(ck · nO(1)) for a 2-connected
graph which can be generalized for general graph by working
on each of its 2-connected components.

Every graph mentioned here is 2-connected.

12

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

Cactus Contraction Parameter: k
Input: A graph G and an integer k.
Question: Does there exist F ⊆ E(G) of size at most k such
that G/F is a cactus graph?

Result:

• FPT algorithm running in time O(ck · nO(1)) for a 2-connected
graph which can be generalized for general graph by working
on each of its 2-connected components.
Every graph mentioned here is 2-connected.

12

Contraction as a Partition Problem

F-Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

13

F-Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

14

F-Contraction as a Partition Problem

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

G is contractible to T if there exists a partition of V (G) into
W (t1),W (t2), . . .W (t|V (T)|) s.t.

• ∀ t ∈ V (T), G [W (t)] is connected
• ti tj ∈ E (T) iff W (ti) and W (tj) are adjacent in G

15

Witness Structure : Definition

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G

Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)
k =

∑
t∈V (T)(|W (t)| − 1)

We say G is k-contractible to graph T

16

Witness Structure : Definition

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)

k =
∑

t∈V (T)(|W (t)| − 1)
We say G is k-contractible to graph T

16

Witness Structure : Definition

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

W = {W (t) | t ∈ V (T)} is called the T -witness structure of G
Big-witness set if |W (t)| > 1 e.g. W (t1),W (t6),W (t4)
k =

∑
t∈V (T)(|W (t)| − 1)

We say G is k-contractible to graph T

16

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

17

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;

• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

17

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;

• Union of big witness sets in W contains at most 2k vertices.

17

Witness Structure : Observations

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

If G is k-contractible to T and W be its T -witness structure then,

• No witness set in W contains more than k + 1 vertices;
• W has at most k big witness sets;
• Union of big witness sets in W contains at most 2k vertices.

17

FPT Algorithm

Properties of a cactus T

1. The vertices of T can be properly colored using 3 colors.
2. Every vertex of degree at least 3 is a cut-vertex.
3. The graph obtained from T by subdividing any edge is a

cactus.
4. The graph obtained from T by short-circuiting any degree 2

vertex is a cactus.

18

Few Definitions

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Important Nodes in T

• Nodes corresponding to big-witness set ({t1, t4, t6})
• Nodes on path between two big-witness sets and adjacent with

one of them ({t3}, on path between t1, t4)

19

Few Definitions

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Important Nodes in T

• Nodes corresponding to big-witness set ({t1, t4, t6})

• Nodes on path between two big-witness sets and adjacent with
one of them ({t3}, on path between t1, t4)

19

Few Definitions

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Important Nodes in T

• Nodes corresponding to big-witness set ({t1, t4, t6})
• Nodes on path between two big-witness sets and adjacent with

one of them ({t3}, on path between t1, t4)

19

Few Definitions

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Important vertices in G are the vertices contained in bags
corresponding to important nodes.
Lemma
There are at most 6k important vertices.

20

Few Definitions

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Important vertices in G are the vertices contained in bags
corresponding to important nodes.

Lemma
There are at most 6k important vertices.

20

Few Definitions

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Important vertices in G are the vertices contained in bags
corresponding to important nodes.
Lemma
There are at most 6k important vertices.

20

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Lemma
There are at most 6k important vertices.

At most 2k important vertices contained in big bags (Ex {v1, v2})

Remove all pendent vertices({t2, t8}) and vertices only in pendent
cycles ({t5, t9}).

21

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Lemma
There are at most 6k important vertices.

At most 2k important vertices contained in big bags (Ex {v1, v2})

Remove all pendent vertices({t2, t8}) and vertices only in pendent
cycles ({t5, t9}).

21

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Lemma
There are at most 6k important vertices.

Short-circuit all non important terminals.

Cactus with at most k vertices ⇒ at most 2k edges (treewidth at
most 2).

Every edge can have at most 2 important terminals. ⇒ At most 4k
important vertices

22

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Lemma
There are at most 6k important vertices.

Short-circuit all non important terminals.

Cactus with at most k vertices ⇒ at most 2k edges (treewidth at
most 2).

Every edge can have at most 2 important terminals. ⇒ At most 4k
important vertices

22

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

t4

t5
t9

t3

t1
t2

t6

t7

t8

Lemma
There are at most 6k important vertices.

Short-circuit all non important terminals.

Cactus with at most k vertices ⇒ at most 2k edges (treewidth at
most 2).

Every edge can have at most 2 important terminals. ⇒ At most 4k
important vertices

22

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Compatible Coloring φ : V (G)→ [3] is compatible (wrt W) if

1. Each witness set is monochromatic (Ex. {v5, v6, v7, v8})
2. It separates two big witness sets which share edges among

them. (Ex. {v5, v6, v7, v8} and {v10, v12})
3. If two big witness sets are connected by a path in G than the

coloring gives different color to end points to this path. (Ex.
Different color of v4)

23

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Compatible Coloring φ : V (G)→ [3] is compatible (wrt W) if

1. Each witness set is monochromatic (Ex. {v5, v6, v7, v8})
2. It separates two big witness sets which share edges among

them. (Ex. {v5, v6, v7, v8} and {v10, v12})
3. If two big witness sets are connected by a path in G than the

coloring gives different color to end points to this path. (Ex.
Different color of v4)

23

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Compatible Coloring φ : V (G)→ [3] is compatible (wrt W) if

1. Each witness set is monochromatic (Ex. {v5, v6, v7, v8})

2. It separates two big witness sets which share edges among
them. (Ex. {v5, v6, v7, v8} and {v10, v12})

3. If two big witness sets are connected by a path in G than the
coloring gives different color to end points to this path. (Ex.
Different color of v4)

23

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Compatible Coloring φ : V (G)→ [3] is compatible (wrt W) if

1. Each witness set is monochromatic (Ex. {v5, v6, v7, v8})
2. It separates two big witness sets which share edges among

them. (Ex. {v5, v6, v7, v8} and {v10, v12})

3. If two big witness sets are connected by a path in G than the
coloring gives different color to end points to this path. (Ex.
Different color of v4)

23

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Compatible Coloring φ : V (G)→ [3] is compatible (wrt W) if

1. Each witness set is monochromatic (Ex. {v5, v6, v7, v8})
2. It separates two big witness sets which share edges among

them. (Ex. {v5, v6, v7, v8} and {v10, v12})
3. If two big witness sets are connected by a path in G than the

coloring gives different color to end points to this path. (Ex.
Different color of v4)

23

Randomized FPT Algorithm (Big Picture)

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Ex. Extract {v1, v2} out of {v1, v2, v3, v14}

24

Randomized FPT Algorithm (Big Picture)

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Step 1: Color vertices of input graph uniformly at random with 3
colors.

Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Ex. Extract {v1, v2} out of {v1, v2, v3, v14}

24

Randomized FPT Algorithm (Big Picture)

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Step 2: Extract witness sets out of each colored components of a
compatible coloring.

Ex. Extract {v1, v2} out of {v1, v2, v3, v14}

24

Randomized FPT Algorithm (Big Picture)

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Ex. Extract {v1, v2} out of {v1, v2, v3, v14}

24

Properties of Compatible Coloring

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

X ⊆ V (G) a colored component of φ

X be the set of all components of φ.

X is the witness structure of some cactus (contracting an edge in a
cactus graph results in another cactus graph).

25

Properties of Compatible Coloring

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

X ⊆ V (G) a colored component of φ

X be the set of all components of φ.

X is the witness structure of some cactus (contracting an edge in a
cactus graph results in another cactus graph).

25

Properties of Compatible Coloring

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

X ⊆ V (G) a colored component of φ

X be the set of all components of φ.

X is the witness structure of some cactus (contracting an edge in a
cactus graph results in another cactus graph).

25

Properties of Compatible Coloring

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

X ⊆ V (G) a colored component of φ

X be the set of all components of φ.

X is the witness structure of some cactus (contracting an edge in a
cactus graph results in another cactus graph).

25

Properties of Compatible Coloring

For every color component X in X :

• all vertices of X are in small bags in W, OR
• X contains exactly one big witness set and the remaining

vertices X \W (t) are in small bags.

Given a coloring φ, we are only interested in finding an optimum
solution which is compatible with this coloring.

Hence, for any two components X ,Y of φ, no edge uv in E (X ,Y)
is in optimum solution.

26

Properties of Compatible Coloring

For every color component X in X :

• all vertices of X are in small bags in W, OR
• X contains exactly one big witness set and the remaining

vertices X \W (t) are in small bags.

Given a coloring φ, we are only interested in finding an optimum
solution which is compatible with this coloring.

Hence, for any two components X ,Y of φ, no edge uv in E (X ,Y)
is in optimum solution.

26

Properties of Compatible Coloring

For every color component X in X :

• all vertices of X are in small bags in W, OR
• X contains exactly one big witness set and the remaining

vertices X \W (t) are in small bags.

Given a coloring φ, we are only interested in finding an optimum
solution which is compatible with this coloring.

Hence, for any two components X ,Y of φ, no edge uv in E (X ,Y)
is in optimum solution.

26

Identifying Vertices in Pendant Cycles and Leaves

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Re-coloring I: For any colored component X in X , if G − X
contains a vertex or a simple path as its connected component then
recolor vertices in that connected component with color 4.

Ex. X = {v5, v6, v7, v8}

27

Identifying Vertices in Pendant Cycles and Leaves

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Re-coloring I: For any colored component X in X , if G − X
contains a vertex or a simple path as its connected component then
recolor vertices in that connected component with color 4.

Ex. X = {v5, v6, v7, v8}

27

Identifying Vertices in Pendant Cycles and Leaves

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Lemma
For a colored component X in X , let P be a connected
component of G − X. If P is a simple path in G whose
neighborhood is contained in X then P is either a part of a
pendant cycle or it is a leaf in T .

28

Identifying Vertices in Between Two Big bags

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Re-coloring II: For any two colored component Y ,Z in X , if
G − (Y ∪ Z) contains a vertex or a maximal simple path as its
connected component then recolor vertices in that connected
component with color 5.

Ex. Y = {v1, v2, v3, v14}; Z = {v5, v6, v7, v8};

29

Identifying Vertices in Between Two Big bags

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Re-coloring II: For any two colored component Y ,Z in X , if
G − (Y ∪ Z) contains a vertex or a maximal simple path as its
connected component then recolor vertices in that connected
component with color 5.

Ex. Y = {v1, v2, v3, v14}; Z = {v5, v6, v7, v8};

29

Identifying Vertices in Between Two Big bags

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

v1
v2

v3

v4
v5

v6

v7

v8

v9

v10

v11 v12

v13

v14

Lemma
For two colored components Y ,Z in X , let P be a connected
component of G − (Y ∪ Z). If P is a maximal simple path in G
then no optimum solution contains a solution edge incident on
vertices in P. Furthermore, both Y and Z contain big witness sets.

30

Step 2: Extract witness sets out of each colored components of a
compatible coloring.

At this stage, every colored component X contains exactly one big
witness set W (t) but we don’t know it explicitly.

31

Step 2: Extract witness sets out of each colored components of a
compatible coloring.

At this stage, every colored component X contains exactly one big
witness set W (t)

but we don’t know it explicitly.

31

Step 2: Extract witness sets out of each colored components of a
compatible coloring.

At this stage, every colored component X contains exactly one big
witness set W (t) but we don’t know it explicitly.

31

Extract witness sets

Instead of contracting X to tX , we contract subset Z of X to tZ .

We argue that contracting Z is as good as contracting W (t).

32

Extract witness sets

Instead of contracting X to tX , we contract subset Z of X to tZ .

We argue that contracting Z is as good as contracting W (t).

32

Extract witness sets

Instead of contracting X to tX , we contract subset Z of X to tZ .

We argue that contracting Z is as good as contracting W (t).

32

Extract witness sets

To argue that contracting Z is as good as contracting W (t), we
need to prove:

1. |Z | ≤ |W (t)|
2. Characterize W (t) in graph G [X] and ensure that set Z has

that property.

Once we identify such Z in X , we replace X by Z and singleton set
for every vertex in X \ Z in X .

33

Characterize W (t) in graph G [X]

A core of a graph G is a set Z ⊆ V (G) such that every connected
component of G − Z is either an isolated vertex or a simple path
whose neighborhood is contained in Z .

If a core Z is a connected set in G , then we call it a connected core
of G .
Lemma
For a colored component X in X , if W (t) is the big witness set
contained in X then W (t) is a connected core of G [X̂].

X̂ is superset of X which contains vertices in the connected
components of G − X that are either isolated vertices or a simple
path in G .

34

Characterize W (t) in graph G [X]

A core of a graph G is a set Z ⊆ V (G) such that every connected
component of G − Z is either an isolated vertex or a simple path
whose neighborhood is contained in Z .

If a core Z is a connected set in G , then we call it a connected core
of G .

Lemma
For a colored component X in X , if W (t) is the big witness set
contained in X then W (t) is a connected core of G [X̂].

X̂ is superset of X which contains vertices in the connected
components of G − X that are either isolated vertices or a simple
path in G .

34

Characterize W (t) in graph G [X]

A core of a graph G is a set Z ⊆ V (G) such that every connected
component of G − Z is either an isolated vertex or a simple path
whose neighborhood is contained in Z .

If a core Z is a connected set in G , then we call it a connected core
of G .
Lemma
For a colored component X in X , if W (t) is the big witness set
contained in X then W (t) is a connected core of G [X̂].

X̂ is superset of X which contains vertices in the connected
components of G − X that are either isolated vertices or a simple
path in G .

34

Characterize W (t) in graph G [X]

There may be a proper superset of W (t) which is a connected core
of G [X̂].

Every vertex in W (t) has at least one of the two responsibility:

• part of connected core of G [X̂]
• it is in W (t) because of external constraints.

We introduce Marking Scheme to mark vertices which are in W (t)
because of external constraints.

35

Characterize W (t) in graph G [X]

There may be a proper superset of W (t) which is a connected core
of G [X̂].

Every vertex in W (t) has at least one of the two responsibility:

• part of connected core of G [X̂]
• it is in W (t) because of external constraints.

We introduce Marking Scheme to mark vertices which are in W (t)
because of external constraints.

35

Characterize W (t) in graph G [X]

There may be a proper superset of W (t) which is a connected core
of G [X̂].

Every vertex in W (t) has at least one of the two responsibility:

• part of connected core of G [X̂]
• it is in W (t) because of external constraints.

We introduce Marking Scheme to mark vertices which are in W (t)
because of external constraints.

35

Characterize W (t) in graph G [X]

There may be a proper superset of W (t) which is a connected core
of G [X̂].

Every vertex in W (t) has at least one of the two responsibility:

• part of connected core of G [X̂]
• it is in W (t) because of external constraints.

We introduce Marking Scheme to mark vertices which are in W (t)
because of external constraints.

35

Characterize W (t) in graph G [X]

Marking-Scheme For a colored component X in X ,

1. If there exists y in N(X) such that φ(y) = 5 then mark all the
vertices in N(y) ∩ X .

2. For a colored component X ′ in X which contains a big witness
set, mark all vertices in N(X ′) ∩ X

Lemma
Every marked vertex in X is in big witness set W (t).

36

Characterize W (t) in graph G [X]

Marking-Scheme For a colored component X in X ,

1. If there exists y in N(X) such that φ(y) = 5 then mark all the
vertices in N(y) ∩ X .

2. For a colored component X ′ in X which contains a big witness
set, mark all vertices in N(X ′) ∩ X

Lemma
Every marked vertex in X is in big witness set W (t).

36

Finding Connected Core

Lemma
Given a connected graph G and a subset Q of its vertices, one can
compute a minimum connected core of G which has at most k
vertices and contains Q in O∗(6k) time if it exists.

37

FPT Algorithm

Input: A 2-connected graph G and an integer k
Output: A set F of k edges in G such that G/F is a cactus

1 Generate random coloring φ : V (G)→ {1, 2, 3} and construct
X .

2 Recoloring I, II.
3 for each X ∈ X do
4 Apply Marking Scheme to obtain marked vertices YX ⊆ X
5 ZX ← minimum connected core of (G [X̂],YX)
6 In X , replace X by ZX and small witness set for every vertex

in X \ ZX .
7 if a spanning forest F of X has ≤ k edges then
8 return F

38

Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with 3
colors.

Lemma
Pr[A random coloring is a compatible coloring] is at least 1

(6k)3 .

Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Lemma
Extracting a witness set from a color class is equivalent of finding
its connected core containing some marked vertices which can be
done in O(6k).

Theorem
Cactus Contraction is FPT with running time O∗(ck).

39

Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Lemma
Pr[A random coloring is a compatible coloring] is at least 1

(6k)3 .

Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Lemma
Extracting a witness set from a color class is equivalent of finding
its connected core containing some marked vertices which can be
done in O(6k).

Theorem
Cactus Contraction is FPT with running time O∗(ck).

39

Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Lemma
Pr[A random coloring is a compatible coloring] is at least 1

(6k)3 .

Step 2: Extract witness sets out of each colored components of a
compatible coloring.

Lemma
Extracting a witness set from a color class is equivalent of finding
its connected core containing some marked vertices which can be
done in O(6k).

Theorem
Cactus Contraction is FPT with running time O∗(ck).

39

Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Lemma
Pr[A random coloring is a compatible coloring] is at least 1

(6k)3 .

Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Lemma
Extracting a witness set from a color class is equivalent of finding
its connected core containing some marked vertices which can be
done in O(6k).

Theorem
Cactus Contraction is FPT with running time O∗(ck).

39

Randomized FPT Algorithm

Step 1: Color vertices of input graph uniformly at random with 3
colors.
Lemma
Pr[A random coloring is a compatible coloring] is at least 1

(6k)3 .

Step 2: Extract witness sets out of each colored components of a
compatible coloring.
Lemma
Extracting a witness set from a color class is equivalent of finding
its connected core containing some marked vertices which can be
done in O(6k).

Theorem
Cactus Contraction is FPT with running time O∗(ck).

39

Thank you!

40

References i

A. Agrawal, D. Lokshtanov, S. Saurabh, and M. Zehavi.
Split contraction: The untold story.
In 34th Symposium on Theoretical Aspects of Computer
Science, STACS 2017, Hannover, Germany, pages 5:1–5:14,
2017.
Leizhen Cai and Chengwei Guo.
Contracting few edges to remove forbidden induced
subgraphs.
In IPEC, pages 97–109, 2013.

41

References ii

P. A. Golovach, M. Kamiński, D. Paulusma, and D. M. Thilikos.

Increasing the minimum degree of a graph by
contractions.
Theoretical Computer Science, 481:74 – 84, 2013.

Sylvain Guillemot and Dániel Marx.
A faster FPT algorithm for bipartite contraction.
Inf. Process. Lett., 113(22–24):906–912, 2013.

Petr A. Golovach, Pim van ’t Hof, and Daniel Paulusma.
Obtaining planarity by contracting few edges.
Theoretical Computer Science, 476:38–46, 2013.

42

References iii

Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel
Lokshtanov, and Christophe Paul.
Contracting graphs to paths and trees.
In Proceedings of the 6th International Conference on
Parameterized and Exact Computation, IPEC’11, pages 55–66,
Berlin, Heidelberg, 2012. Springer-Verlag.

Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and
Christophe Paul.
Obtaining a bipartite graph by contracting few edges.
SIAM Journal on Discrete Mathematics, 27(4):2143–2156,
2013.

43

References iv

Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
On the hardness of eliminating small induced subgraphs
by contracting edges.
In IPEC, pages 243–254, 2013.

44

	Parameterized Complexity & Contraction Problems
	Graph Contraction Problems
	Problem Definition
	Contraction as a Partition Problem
	FPT Algorithm

