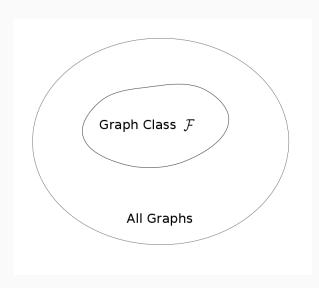
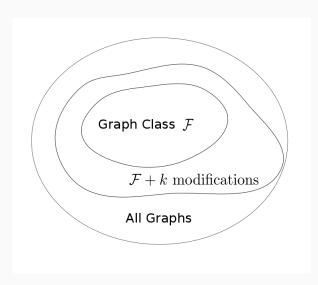
An FPT Algorithm for Contraction to Cactus

R. Krithika¹ Pranabendu Misra ² and Prafullkumar Tale¹ 3rd July, 2018

¹ The Institute of Mathematical Sciences, HBNI, Chennai, India
 ² University Of Bergen, Bergen, Norway





 \mathcal{F} -MODIFICATION **Input:** A graph *G* **Question:** Can we obtain a graph in \mathcal{F} by *some* modifications in the graph *G*?

Modification allowed

- Vertex Deletion
- Edge Deletion
- Edge Addition
- Edge Contraction

 \mathcal{F} -MODIFICATION **Input:** A graph *G* **Question:** Can we obtain a graph in \mathcal{F} by *some* modifications in the graph *G*?

Modification allowed

- Vertex Deletion
- Edge Deletion
- Edge Addition
- Edge Contraction

$\mathcal{F}\text{-}\mathrm{MODIFICATION}$: Generalization of many NP-hard problems

$\mathcal{F}\text{-}\mathrm{MODIFICATION}$: Generalization of many NP-hard problems

Graph Problem	\mathcal{F}	Modification
Vertex Cover	Empty graphs	Vertex Deletion
Feedback vertex set	Forests	Vertex Deletion
ODD CYCLE TRANSVERSAL	Bipartite Graphs	Vertex Deletion
Minimum Fill-In	Chordal Graphs	Edge Addition
Edge Bipartization	Bipartite Graphs	Edge Deletion
Cluster Editing	Cluster Graphs	Edge Addition
		& Deletion
TREE CONTRACTION	Trees	Edge Contraction

Parameterized Complexity & Contraction Problems

Graph Contraction Problems

Problem Definition

FPT Algorithm

Parameterized Complexity & Contraction Problems

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find **better** ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is *fixed-parameter tractable* (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT ⊆ W[1] ⊆ W[2]...

- Goal : Find better ways to solve NP-hard problems.
- Associate (*small*) parameter k to each instance I.
- Restrict the combinatorial explosion to the parameter k.
- Parameterized problem (I, k) is *fixed-parameter tractable* (FPT) if there is an algorithm that solves it in time $\mathcal{O}(f(k) \cdot |I|^{\mathcal{O}(1)})$.
- Not all problems (for given parameter) admit such an algorithm Hierarchy of classes : FPT \subseteq W[1] \subseteq W[2]...

Graph Contraction Problems

 ${\mathcal F}$ is a graph class and G/F is graph obtained from G by contracting edges in F

 \mathcal{F} -CONTRACTIONParameter: kInput: A graph G and an integer kQuestion: Does there exist $F \subseteq E(G)$ of size at most k suchthat G/F is in \mathcal{F} ?

 ${\mathcal F}$ is polynomial time recongnizable graph class.

$\mathcal{F}\text{-}\textbf{Contraction:}$ Parameterized Complexity

[HvtHL ⁺ 12]	TREE CONTRACTION	4 ^{<i>k</i>}
	PATH CONTRACTION	$2^{k+o(k)}$
[GvtHP13]	PLANAR CONTRACTION	FPT
[CG13]	CLIQUE CONTRACTION	$2^{\mathcal{O}(k \log k)}$
[HvtHLP13]	BIPARTITE CONTRACTION	FPT
[GM13]		$2^{O(k^2)}$
[GKPT13]	$\mathcal{F}_{mindeg \geq d}$ CONTRACTION	FPT (k, d)

$\mathcal{F}\text{-}\textbf{Contraction:}$ Parameterized Complexity

Theorem

 $\mathcal{F} ext{-}\mathrm{EDGE}$ Contraction is $W[2] ext{-}hard$ if

$\mathcal{F}\text{-}\textbf{Contraction:}$ Parameterized Complexity

Theorem

 $\mathcal{F}\text{-}\mathrm{EDGE}$ Contraction is W[2]-hard if

 [LMS13] [CG13] F can be characterized as P_{ℓ+1}-free graphs or C_ℓ-free graphs for ℓ ≥ 4.

Theorem

 $\mathcal{F}\text{-}\mathrm{EDGE}$ Contraction is W[2]-hard if

 [LMS13] [CG13] F can be characterized as P_{ℓ+1}-free graphs or C_ℓ-free graphs for ℓ ≥ 4.

 P_ℓ and C_ℓ are path and cycle on ℓ vertices, respectively.

Theorem

 $\mathcal{F}\text{-}\mathrm{EDGE}$ Contraction is W[2]-hard if

 [LMS13] [CG13] F can be characterized as P_{ℓ+1}-free graphs or C_ℓ-free graphs for ℓ ≥ 4.

 P_ℓ and C_ℓ are path and cycle on ℓ vertices, respectively.

• [ALSZ17] *F* is Split Graphs

 \mathcal{F} -CONTRACTION is FPT when \mathcal{F} is TREES (which are C_3 -free) but W[2]-hard when \mathcal{F} is family of C_{ℓ} -free graphs ($\ell \geq 4$).

 \mathcal{F} -CONTRACTION is FPT when \mathcal{F} is TREES (which are C_3 -free) but W[2]-hard when \mathcal{F} is family of C_{ℓ} -free graphs ($\ell \geq 4$).

What are the superclasses of TREE which admits an FPT algorithm?

Problem Definition

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

CACTUS CONTRACTION Parameter: kInput: A graph G and an integer k. Question: Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a cactus graph?

Cactus Contraction

Cactus : if every edge is a part of at most one simple cycle.

CACTUS CONTRACTION Parameter: kInput: A graph G and an integer k. Question: Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a cactus graph?

Result:

Cactus : if every edge is a part of at most one simple cycle.

CACTUS CONTRACTION Parameter: kInput: A graph G and an integer k. Question: Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a cactus graph?

Result:

FPT algorithm running in time O(c^k · n^{O(1)}) for a 2-connected graph which can be generalized for general graph by working on each of its 2-connected components.

Cactus : if every edge is a part of at most one simple cycle.

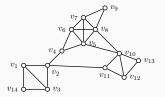
CACTUS CONTRACTION Parameter: kInput: A graph G and an integer k. Question: Does there exist $F \subseteq E(G)$ of size at most k such that G/F is a cactus graph?

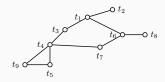
Result:

FPT algorithm running in time O(c^k · n^{O(1)}) for a 2-connected graph which can be generalized for general graph by working on each of its 2-connected components.
 Every graph mentioned here is 2-connected.

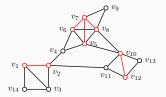
Contraction as a Partition Problem

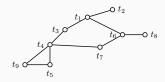
$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem



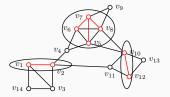


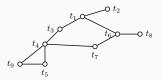
$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem





$\mathcal{F}\text{-}\textbf{Contraction}$ as a Partition Problem

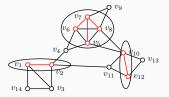


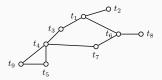


G is contractible to T if there exists a partition of V(G) into

15

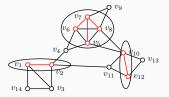
Witness Structure : Definition

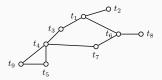




• $\mathcal{W} = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*¹⁶

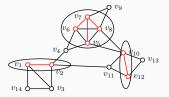
Witness Structure : Definition

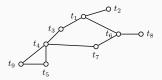




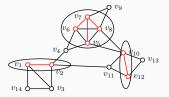
• $\mathcal{W} = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*¹⁶

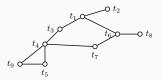
Witness Structure : Definition

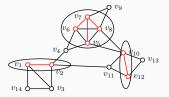


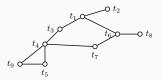


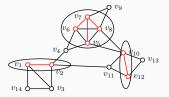
• $\mathcal{W} = \{W(t) \mid t \in V(T)\}$ is called the *T*-witness structure of *G*¹⁶

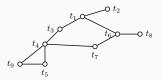


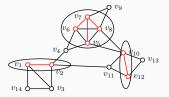


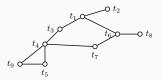






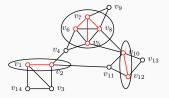


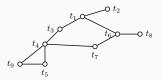




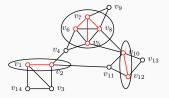
FPT Algorithm

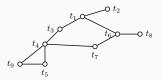
- 1. The vertices of T can be properly colored using 3 colors.
- 2. Every vertex of degree at least 3 is a cut-vertex.
- The graph obtained from T by subdividing any edge is a cactus.
- The graph obtained from T by short-circuiting any degree 2 vertex is a cactus.



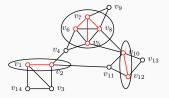


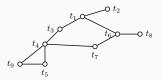
Important Nodes in T



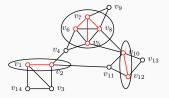


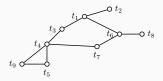
Important Nodes in T

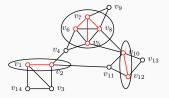


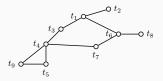


Important Nodes in T

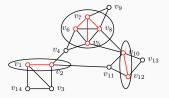


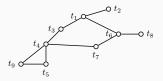




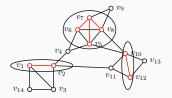


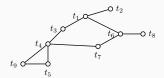
Important vertices in G are the vertices contained in bags





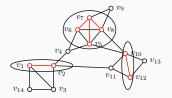
Important vertices in G are the vertices contained in bags

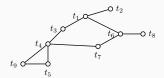




There are at most 6k important vertices.

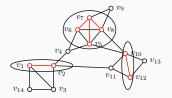
At most 2k important vertices contained in hig hags (Ex { v_1 v_2 })

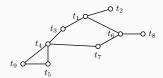




There are at most 6k important vertices.

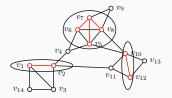
At most 2k important vertices contained in hig hags (Ex { v_1 v_2 })

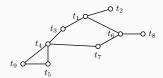




There are at most 6k important vertices.

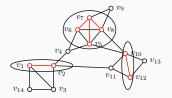
Short-circuit all non important terminals

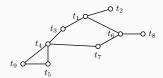




There are at most 6k important vertices.

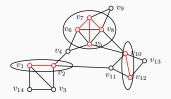
Short-circuit all non important terminals

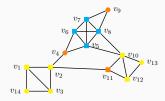


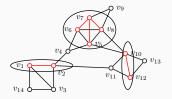


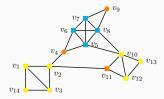
There are at most 6k important vertices.

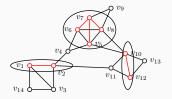
Short-circuit all non important terminals

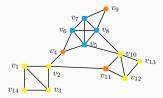




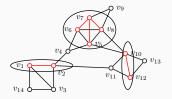


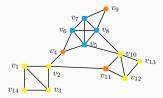




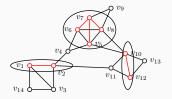


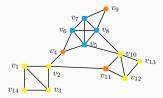
1. Each witness set is monochromatic (Ex. $\{v_5, v_6, v_7, v_8\}$) ²³



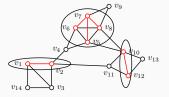


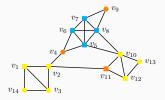
1. Each witness set is monochromatic (Ex. $\{v_5, v_6, v_7, v_8\}$) ²³

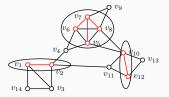


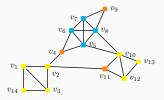


1. Each witness set is monochromatic (Ex. $\{v_5, v_6, v_7, v_8\}$) ²³

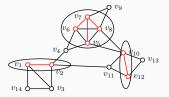


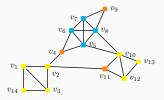




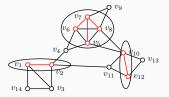


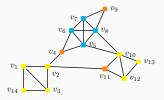
Chan 1. Colon continue of inner much with some based on with 2



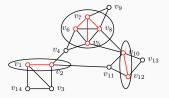


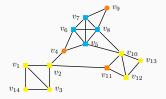
Chan 1. Colon continue of inner much with some based on with 2

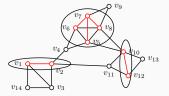


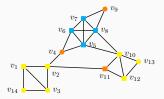


Chan 1. Colon continue of inner much with some based on with 2



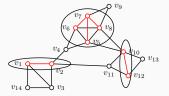


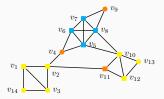




 $V \subset V(C)$ a calculation of the

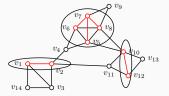
25

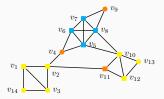




 $V \subset V(C)$ a calculation of the

25





 $V \subset V(C)$ a calculation of the

25

For every color component X in \mathcal{X} :

- all vertices of X are in small bags in \mathcal{W} , OR
- X contains exactly one big witness set and the remaining vertices X \ W(t) are in small bags.

For every color component X in \mathcal{X} :

- all vertices of X are in small bags in \mathcal{W} , OR
- X contains exactly one big witness set and the remaining vertices X \ W(t) are in small bags.

Given a coloring ϕ , we are only interested in finding an optimum solution which is compatible with this coloring.

For every color component X in \mathcal{X} :

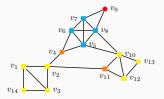
- all vertices of X are in small bags in \mathcal{W} , OR
- X contains exactly one big witness set and the remaining vertices X \ W(t) are in small bags.

Given a coloring ϕ , we are only interested in finding an optimum solution which is compatible with this coloring.

Hence, for any two components X, Y of ϕ , no edge uv in E(X, Y) is in optimum solution.

Identifying Vertices in Pendant Cycles and Leaves

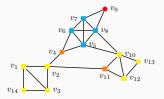




Decelering I. For any colourd community in V if C V

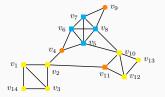
Identifying Vertices in Pendant Cycles and Leaves

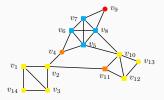




Decelering I. For any colourd community in V if C V

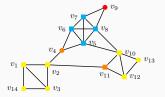
Identifying Vertices in Pendant Cycles and Leaves

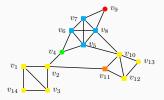




Lemma

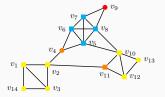
Identifying Vertices in Between Two Big bags

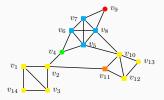




De selection II. For any two selected seminary of V 7 in V if

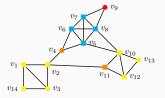
Identifying Vertices in Between Two Big bags

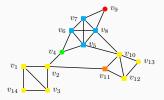




De selection II. For any two selected seminary of V 7 in V if

Identifying Vertices in Between Two Big bags





Lemma

Step 2: Extract witness sets out of each colored components of a *compatible* coloring.

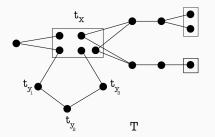
Step 2: Extract witness sets out of each colored components of a *compatible* coloring.

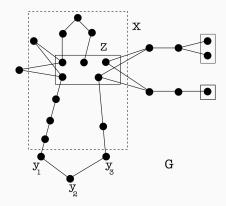
At this stage, every colored component X contains exactly one big witness set W(t)

Step 2: Extract witness sets out of each colored components of a *compatible* coloring.

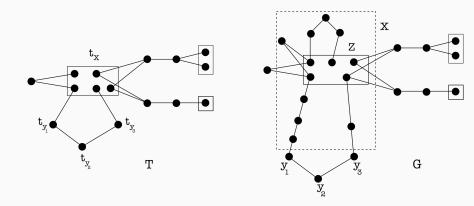
At this stage, every colored component X contains exactly one big witness set W(t) but we don't know it explicitly.

Extract witness sets



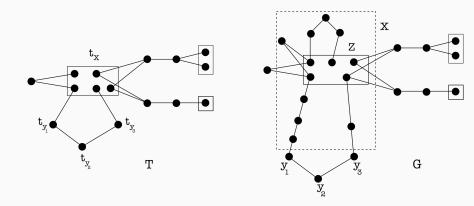


Extract witness sets



Instead of contracting X to t_X , we contract subset Z of X to t_Z .

Extract witness sets



Instead of contracting X to t_X , we contract subset Z of X to t_Z . We argue that contracting Z is as good as contracting W(t). To argue that contracting Z is as good as contracting W(t), we need to prove:

1. $|Z| \le |W(t)|$

2. Characterize W(t) in graph G[X] and ensure that set Z has that property.

Once we identify such Z in X, we replace X by Z and singleton set for every vertex in $X \setminus Z$ in \mathcal{X} .

Characterize W(t) in graph G[X]

A **core** of a graph G is a set $Z \subseteq V(G)$ such that every connected component of G - Z is either an isolated vertex or a simple path whose neighborhood is contained in Z.

A **core** of a graph G is a set $Z \subseteq V(G)$ such that every connected component of G - Z is either an isolated vertex or a simple path whose neighborhood is contained in Z.

If a core Z is a connected set in G, then we call it a *connected core* of G.

A **core** of a graph G is a set $Z \subseteq V(G)$ such that every connected component of G - Z is either an isolated vertex or a simple path whose neighborhood is contained in Z.

If a core Z is a connected set in G, then we call it a *connected core* of G.

Lemma

For a colored component X in \mathcal{X} , if W(t) is the big witness set contained in X then W(t) is a connected core of $G[\hat{X}]$.

 \hat{X} is superset of X which contains vertices in the connected components of G - X that are either isolated vertices or a simple path in G.

There may be a proper superset of W(t) which is a connected core of $G[\hat{X}]$.

- There may be a proper superset of W(t) which is a connected core of $G[\hat{X}]$.
- Every vertex in W(t) has at least one of the two responsibility:

There may be a proper superset of W(t) which is a connected core of $G[\hat{X}]$.

Every vertex in W(t) has at least one of the two responsibility:

- part of connected core of $G[\hat{X}]$
- it is in W(t) because of external constraints.

There may be a proper superset of W(t) which is a connected core of $G[\hat{X}]$.

Every vertex in W(t) has at least one of the two responsibility:

- part of connected core of $G[\hat{X}]$
- it is in W(t) because of external constraints.

We introduce **Marking Scheme** to mark vertices which are in W(t) because of external constraints.

Marking-Scheme For a colored component X in \mathcal{X} ,

- 1. If there exists y in N(X) such that $\phi(y) = 5$ then mark all the vertices in $N(y) \cap X$.
- 2. For a colored component X' in \mathcal{X} which contains a big witness set, mark all vertices in $N(X') \cap X$

Marking-Scheme For a colored component X in \mathcal{X} ,

- 1. If there exists y in N(X) such that $\phi(y) = 5$ then mark all the vertices in $N(y) \cap X$.
- 2. For a colored component X' in \mathcal{X} which contains a big witness set, mark all vertices in $N(X') \cap X$

Lemma

Every marked vertex in X is in big witness set W(t).

Lemma

Given a connected graph G and a subset Q of its vertices, one can compute a minimum connected core of G which has at most k vertices and contains Q in $\mathcal{O}^*(6^k)$ time if it exists.

FPT Algorithm

Input: A 2-connected graph G and an integer k **Output:** A set F of k edges in G such that G/F is a cactus

- 1 Generate random coloring $\phi: V(G) \rightarrow \{1, 2, 3\}$ and construct \mathcal{X} .
- 2 Recoloring I, II.
- 3 for each $X \in \mathcal{X}$ do
- 4 Apply Marking Scheme to obtain marked vertices $Y_X \subseteq X$
- 5 $Z_X \leftarrow$ minimum connected core of $(G[\hat{X}], Y_X)$
- 6 In \mathcal{X} , replace X by Z_X and small witness set for every vertex in $X \setminus Z_X$.
- 7 if a spanning forest F of X has $\leq k$ edges then
- 8 return F

Step 1: Color vertices of input graph uniformly at random with 3 colors.

Step 1: Color vertices of input graph uniformly at random with 3 colors.

Lemma

Pr[A random coloring is a compatible coloring] is at least $\frac{1}{(6k)^3}$.

Step 1: Color vertices of input graph uniformly at random with 3 colors.

Lemma

Pr[A random coloring is a compatible coloring] is at least $\frac{1}{(6k)^3}$.

Step 2: Extract witness sets out of each colored components of a *compatible* coloring.

Step 1: Color vertices of input graph uniformly at random with 3 colors.

Lemma

Pr[A random coloring is a compatible coloring] is at least $\frac{1}{(6k)^3}$.

Step 2: Extract witness sets out of each colored components of a *compatible* coloring.

Lemma

Extracting a witness set from a color class is equivalent of finding its connected core containing some marked vertices which can be done in $\mathcal{O}(6^k)$.

Step 1: Color vertices of input graph uniformly at random with 3 colors.

Lemma

Pr[A random coloring is a compatible coloring] is at least $\frac{1}{(6k)^3}$.

Step 2: Extract witness sets out of each colored components of a *compatible* coloring.

Lemma

Extracting a witness set from a color class is equivalent of finding its connected core containing some marked vertices which can be done in $\mathcal{O}(6^k)$.

Theorem

CACTUS CONTRACTION is FPT with running time $\mathcal{O}^*(c^k)$.

Thank you!

References i

A. Agrawal, D. Lokshtanov, S. Saurabh, and M. Zehavi. **Split contraction: The untold story.**

In 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, pages 5:1–5:14, 2017.

🔋 Leizhen Cai and Chengwei Guo.

Contracting few edges to remove forbidden induced subgraphs.

In IPEC, pages 97-109, 2013.

References ii

P. A. Golovach, M. Kamiński, D. Paulusma, and D. M. Thilikos.

Increasing the minimum degree of a graph by contractions.

Theoretical Computer Science, 481:74 – 84, 2013.

- Sylvain Guillemot and Dániel Marx.
 A faster FPT algorithm for bipartite contraction.
 Inf. Process. Lett., 113(22–24):906–912, 2013.

Petr A. Golovach, Pim van 't Hof, and Daniel Paulusma. **Obtaining planarity by contracting few edges.** *Theoretical Computer Science*, 476:38–46, 2013.

References iii

Pinar Heggernes, Pim van 't Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe Paul.

Contracting graphs to paths and trees.

In Proceedings of the 6th International Conference on Parameterized and Exact Computation, IPEC'11, pages 55–66, Berlin, Heidelberg, 2012. Springer-Verlag.

Pinar Heggernes, Pim van 't Hof, Daniel Lokshtanov, and Christophe Paul.

Obtaining a bipartite graph by contracting few edges. *SIAM Journal on Discrete Mathematics*, 27(4):2143–2156, 2013.

References iv

 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
 On the hardness of eliminating small induced subgraphs by contracting edges.
 In *IPEC*, pages 243–254, 2013.