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The Problem



Subset Feedback Vertex Set

FEEDBACK VERTEX SET(FVS) Parameter: k
Input: A graph G = (V,E), and an integer k

Question: Does there exist a set S C V of at most k vertices of
G such that the subgraph G[V \ S] contains no cycle?
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Subset Feedback Vertex Set

SUBSET-FVS Parameter: k
Input: A graph G = (V, E), a set of terminal vertices T C V/,
and an integer k

Question: Does there exist a set S C V of at most k vertices of
G such that the subgraph G[V \ S] contains no T-cycle?

T-cycle is a cycle which contains at least one vertex from T.
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Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
—— Generalizes problems like FVS, VC, and MuLTiwAy CUT.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(20(klogk)),

2011 Fomin et al. [4]: No 2°(%) algorithm under the ETH.
2014 Wahlstrém [9] gave algorithm running in time 20(%) . ,O(1),

2015 Lokshtanov et al. [7] presented a different FPT algorithm
which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k®) vertices.
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Subset Feedback Vertex Set in Chordal and Split Graphs

— A graph is chordal if it does not contain induced cycles of
length four or larger.

— A graph is called split graph if its vertex set can be partitioned
into a clique and an independent set.

— Every split graph is chordal.

SUBSET-FVS ON CHORDAL GRAPHS Parameter: k
Input: A chordal graph G = (V/, E), a set of terminal vertices
T C V, and an integer k

Question: Does there exist a set S C V of at most k vertices of
G such that the subgraph G[V \ S] contains no T-cycle?

The problem is NP-Complete even on split graphs [4].




To intersect every T-cycle in a chordal graph it is sufficient and

necessary to intersect all T-triangles in the graph.




To intersect every T-cycle in a chordal graph it is sufficient and

necessary to intersect all T-triangles in the graph.

SUBSET-FVS IN CHORDAL to 3-HITTING SET.

(Parameter Preserving Reduction)



SUBSET-FVS IN CHORDAL to 3-HITTING SET.



SUBSET-FVS IN CHORDAL to 3-HITTING SET.



SUBSET-FVS IN CHORDAL to 3-HITTING SET.

— 3-HITTING SET has a polynomial kernel of size O(k3) [1]

o 3-HITTING SET is FPT (running time 2.076% - n®1) [g])



SUBSET-FVS IN CHORDAL to 3-HITTING SET.

— 3-HITTING SET has a polynomial kernel of size O(k3) [1]

= Polynomial compression of size O(k3)

o 3-HITTING SET is FPT (running time 2.076% - n®1) [g])

= FPT algorithm running in time 2.076% . n©(1)



SUBSET-FVS IN CHORDAL to 3-HITTING SET.

- 3-HITTING SET has a polynomial kernel of size O(k3) [1]
= Polynomial compression of size O(k3)

— We improve it to O(k?) kernel for split graphs.

o 3-HITTING SET is FPT (running time 2.076% - n®(1) [8])
= FPT algorithm running in time 2.076% . n©(1)

o We improve it to 2“ - O(n + m) for chordal graphs.
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Our Results

Theorem

SUBSET-FVS IN SPLIT admits a kernel with O(k?) vertices and
O(k?) edges.
No polynomial kernel of size O(k?>~¢) bits, unless NP C coNP/poly.

Theorem
SUBSET-FVS IN CHORDAL admits an FPT algorithm with
running time O(2%(n + m)).

No 2°(%) algorithm under ETH [4].
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Overview of Kernelization

(K, 1) is a split partition (K— clique and /— independent set)

Step 1: Reduce the input to an instance (G; T; k) where the terminal
set T is exactly the independent set /

Step 2: If v € K has at least k + 1 neighbours in / then either include
v in a solution or delete an edge incident with v;
Each v € K has at most k neighbours in /.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k?) vertices in /.
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Simple Reduction Rules

— Delete isolated vertices.

— Delete a non-terminal vertex which is not adjacent to a
terminal vertex.

— Delete a cut edge.

— If there is a terminal vertex t on the clique side and clique side
is > k + 3 then include t in solution.
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After Simplification

1. Each vertex in G has degree at least two.
2. Every vertex in G is part of some T-triangle.

3. Let (K, /) be the split partition of G. Then T = [/ and every
vertex in K has a neighbour in /.
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After Simplification

1. Each vertex in G has degree at least two.
2. Every vertex in G is part of some T-triangle.

3. Let (K, /) be the split partition of G. Then T = [/ and every
vertex in K has a neighbour in /.

It is enough to bound

— the number of adjacent vertices in independent set for each

vertex in clique-side, and

— the size of clique-side.

11



Kernel : Step 2 (Reducing
neighbours in Ind-Set side)



For a vertex v € K on the clique side define

— First Nbrs: the set of neighbours on the independent side /.
Ni(v) = N(v)nl
— Second Nbrs: the second neighbourhood “going via /"

Na(v) = N(N1(v)) \ {v}.

Ni(v) = {y1,y2,y3, Y4}
No(v) = {v1,v,v3}

12



Bipartite graph (B(v)) corresponding to vertex v € K : Graph
obtained from G[N;(v) U Na(v)] by deleting every edge with both
its endvertices in Na(v).

=
I~

13



Let ¢ be the size of largest matching in B(v)
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Let ¢ be the size of largest matching in B(v)

— if £ > k 4+ 1 then include v in solution and delete it.
— if £ < k then delete a particular edge incident on v

v U1
V2 v2

U3

— Too many vertex disjoint triangles intersecting at v.
— Matching edges are enough to store information regarding
T-cycles using vw.



Maximum Matching is > k +1

Reduction Rule

If there is a vertex v on the clique side K of graph G s.t. the
bipartite graph B(v) has a matching of size at least k + 1 then
include vertex v in solution.
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Maximum Matching is > k +1

Reduction Rule

If there is a vertex v on the clique side K of graph G s.t. the
bipartite graph B(v) has a matching of size at least k + 1 then
include vertex v in solution.

At least k + 1 many T-triangles which intersect only at v

We need Expansion Lemma to handle second case.
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Expansion Lemma and its Matching
version



t-expansion

G(P, Q) — a bipartite graph; t — a positive integer
A set of edges M C E(G) is called a t-expansion of X into Y if
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— every vertex of X is incident with exactly t edges of M, and
— the number of vertices in Y which are incident with at least
one edge in M is exactly t|P|.
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— the number of vertices in Y which are incident with at least
one edge in M is exactly t|P|.
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G(P, Q) — a bipartite graph; t — a positive integer s.t.

- [Q = ¢[P]

— there are no isolated vertices in Q.
Then there exist nonempty sets X C P and Y C @ s.t.

— X has a t-expansion into Y, and

— no vertex in Y has a neighbour outside X.
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— X has a t-expansion into Y, and

— no vertex in Y has a neighbour outside X.

X and Y can be found in poly-time.
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Expansion Lemma (Matching Version)

G(P, Q) — a bipartite graph; t — a positive integer;
¢ — the size of a maximum matching in G s.t.
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Expansion Lemma (Matching Version)

G(P, Q) — a bipartite graph; t — a positive integer;
¢ — the size of a maximum matching in G s.t.

- |Q| >t

— there are no isolated vertices in Q.

Then there exist nonempty sets X C P and Y C @ s.t.

— X has a t-expansion into Y, and

— no vertex in Y has a neighbour outside X.

X and Y can be found in poly-time.
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v € K on the clique side of G s.t.
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v € K on the clique side of G s.t.

— has more than k neighbours in the independent side /

— the size of maximum matching in B(v) is at most k
Then we can find X, Y and w € Y s.t.

— there is a matching M between X and Y saturating X
— M does not saturate w, and

— Ng(Y) = XU {v}.

21
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T-cycles containing edge vw.

22



Matching edges are enough to store information about

T-cycles containing edge vw.

Case (A): Solution picks v.

All T-cycles containing edge vw are killed.

22



Matching edges are enough to store information about

T-cycles containing edge vw.

Case (B): Solution does not pick v and pick all vertices in X.

All T-cycles containing edge vw are killed.

23



Matching edges are enough to store information about

T-cycles containing edge vw.

Case (C): Solution does not pick v and pick vertices in X U Y.

24



Matching edges are enough to store information about

T-cycles containing edge vw.

Case (C): Solution does not pick v and pick vertices in X U Y.

By Expansion Lemma, Y is adjacent with only X U {v}.

24



Matching edges are enough to store information about
T-cycles containing edge vw.

Case (C): Solution does not pick v and pick vertices in X U Y.

By Expansion Lemma, Y is adjacent with only X U {v}.

Modify solution: Remove Y; Add remaining vertices in X.
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Kernel : Step 3 (Bounding the Size
of the Clique Side)



— A simple 3-factor approximation algorithm to compute S
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— A simple 3-factor approximation algorithm to compute S
— If |S| > 3k then return Iyo.

— Kz : set of clique-side vertices included in S.
Ke=KnNS.

— Iz : set of independent-side vertices included in S.
Iz =1NS5.

25
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S
B Q "

— Kp : set of clique-side vertices not in S whose neighbourhoods

in the independent-side / are all contained in /z.
Ko={ue (K\Kz); NuynlC lz};

— Iy : set of independent-side vertices not in S whose
neighbourhoods are all contained in Kz.
lo={vel\l; N(v) C K¢}
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K,y
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S
Kl Q Il

e Ki : Remaining vertices in K.
Ki = K\(KEU Ko)

e /; : Remaining vertices in /.
L = /\(/gu /0).
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Some observations:
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Some observations:

~ |Kz| < 2k and |lg| < k.
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Ky

Some observations:

~ |Kz| < 2k and |lg| < k.
— Each vertex in K1 has (i) no neighbour in Iy and (ii) at least
one neighbour in /.
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K
K,y

Some observations:
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Some observations:

— Each vertex in 1 has exactly one neighbour in Kj.
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K,y

Some observations:

— Each vertex in 1 has exactly one neighbour in Kj.

— The bipartite graph obtained from G[K; U /1] by deleting all
the edges in G[Ki] is a forest where each connected component

is a star.
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We bound

— Ko using 2-expansion on graph across Ky and /.

— Kj using 2-expansion on graph across K; and S
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Bounding |Kj|

K I

2-expansion across [z and Kp.
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Bounding |Kj|

K I

2-expansion across [z and Kp.
Solution intersects T-triangles in X U Y.

Since Ko (and hence Y) interact with only /z (and hence only X), it
is safe to pick all vertices in X to kill T-triangles in X U Y.
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Bounding | K|

Construct auxilary bipartite graphs B across S and Kj.
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U

Ky

Iy

Is

I

Ks

Is

K
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Ko

e

Ks

Ky

2-Expansion

across S and K.

Is

I

Ks

Is

1

Y

Yj

K
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KI.Z/
.

I

2-Expansion across S and K.

Shaded regions in S and K represent sets X, Y, respectively.

Is

K1
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Ky

Each vertex x; € (X N Kg) is a part of T-triangle with an edge in M.

o
T
Yi
U

Kg

Is

1

1
Y

Yi
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Ky

Each vertex x; € (X N Ig) is part of T-triangle with two edges in M.

o
T
Yi
U

Kg

Is

1

1
Y

Yi

85



Ky

K

Is

i

Y

Yj

We get | X| many pairwise vertex-disjoint T-triangles.
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s = .
Ks Is Kg B\\ ,

Ti / y]‘ K

Y
Iy =

y I

K] Yi 1
v Y B
K 1

We get | X| many pairwise vertex-disjoint T-triangles.

Let S be an optimum solution. We modify this to exclude all

vertices in Y.
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Theorem

SUBSET-FVS IN SPLIT admits a kernel with O(k?) vertices and
O(k?) edges.

— Step 1 ensures

e No isolated vertex in G.
e Every vertex in | is adjacent with some vertex in K

— Step 2 ensures that any vertex in K is adjacent with at most
k + 1 vertices in /.

— Step 3 ensures that size of K is at most 10k.
= Size bound.

— We only use expansion lemma which can be applied in

poly-time.
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Conclusion and Open Questions

— A kernel of size O(k?) with O(k) and O(k?) vertices on the
clique and independent set sides respectively.
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Conclusion and Open Questions

A kernel of size O(k?) with O(k) and O(k?) vertices on the
clique and independent set sides respectively.

Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k?>~¢)?

Can we obtain quadratic kernel for chordal graphs?

An algorithm running in O*(2%) to solve SUBSET FVS IN
CHORDAL.

Under ETH, sub-exponential FPT algorithms for this problem
are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by HITTING SET.
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Thank you!
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