## Subset Feedback Vertex Set in Chordal and Split Graphs

Geevarghese Philip ${ }^{1}$, Varun Rajan ${ }^{1}$, Saket Saurabh ${ }^{2,3}$, and Prafullkumar Tale ${ }^{3}$

May 27, 2019
${ }^{1}$ Chennai Mathematical Institute, Chennai, India,
2 University of Bergen, Bergen, Norway
3 The Institute of Mathematical Sciences, HBNI, Chennai, India

## The Problem

## Subset Feedback Vertex Set

Feedback Vertex Set(FVS)
Parameter: $k$
Input: A graph $G=(V, E)$, and an integer $k$
Question: Does there exist a set $S \subseteq V$ of at most $k$ vertices of $G$ such that the subgraph $G[V \backslash S]$ contains no cycle?

## Subset Feedback Vertex Set

SUBSET-FVS
Parameter: $k$
Input: A graph $G=(V, E)$, a set of terminal vertices $T \subseteq V$,
and an integer $k$
Question: Does there exist a set $S \subseteq V$ of at most $k$ vertices of $G$ such that the subgraph $G[V \backslash S]$ contains no $T$-cycle?

## Subset Feedback Vertex Set

$$
\begin{aligned}
& \text { Pubset-FVS } \\
& \text { Input: A graph } G=(V, E) \text {, a set of terminal vertices } T \subseteq V \text {, } \\
& \text { and an integer } k \\
& \text { Question: Does there exist a set } S \subseteq V \text { of at most } k \text { vertices of } \\
& G \text { such that the subgraph } G[V \backslash S] \text { contains no } T \text {-cycle? }
\end{aligned}
$$

$T$-cycle is a cycle which contains at least one vertex from $T$.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
-- Generalizes problems like FVS, VC, and Multiway Cut.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
-- Generalizes problems like FVS, VC, and Multiway Cut.
2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6] independently proved that the problem is FPT $\left(2^{\mathcal{O}(k \log k)}\right)$.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
-- Generalizes problems like FVS, VC, and Multiway Cut.
2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6] independently proved that the problem is FPT $\left(2^{\mathcal{O}(k \log k)}\right)$.
2011 Fomin et al. [4]: No $2^{o(k)}$ algorithm under the ETH.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
-- Generalizes problems like FVS, VC, and Multiway Cut.
2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6] independently proved that the problem is FPT $\left(2^{\mathcal{O}(k \log k)}\right)$.
2011 Fomin et al. [4]: No $2^{o(k)}$ algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time $2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
-- Generalizes problems like FVS, VC, and Multiway Cut.
2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6] independently proved that the problem is FPT $\left(2^{\mathcal{O}(k \log k)}\right)$.
2011 Fomin et al. [4]: No $2^{o(k)}$ algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time $2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$.
2015 Lokshtanov et al. [7] presented a different FPT algorithm which has linear dependence on the input size.

## Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
-- Generalizes problems like FVS, VC, and Multiway Cut.
2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6] independently proved that the problem is FPT $\left(2^{\mathcal{O}(k \log k)}\right)$.
2011 Fomin et al. [4]: No $2^{o(k)}$ algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time $2^{\mathcal{O}(k)} \cdot n^{\mathcal{O}(1)}$.
2015 Lokshtanov et al. [7] presented a different FPT algorithm which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel with $\mathcal{O}\left(k^{9}\right)$ vertices.

## Subset Feedback Vertex Set in Chordal and Split Graphs

- A graph is chordal if it does not contain induced cycles of length four or larger.


## Subset Feedback Vertex Set in Chordal and Split Graphs

- A graph is chordal if it does not contain induced cycles of length four or larger.
- A graph is called split graph if its vertex set can be partitioned into a clique and an independent set.


## Subset Feedback Vertex Set in Chordal and Split Graphs

- A graph is chordal if it does not contain induced cycles of length four or larger.
- A graph is called split graph if its vertex set can be partitioned into a clique and an independent set.
- Every split graph is chordal.


## Subset Feedback Vertex Set in Chordal and Split Graphs

- A graph is chordal if it does not contain induced cycles of length four or larger.
- A graph is called split graph if its vertex set can be partitioned into a clique and an independent set.
- Every split graph is chordal.

```
Subset-FVS on Chordal Graphs
Parameter: \(k\)
```

Input: A chordal graph $G=(V, E)$, a set of terminal vertices $T \subseteq V$, and an integer $k$
Question: Does there exist a set $S \subseteq V$ of at most $k$ vertices of $G$ such that the subgraph $G[V \backslash S]$ contains no $T$-cycle?

## Subset Feedback Vertex Set in Chordal and Split Graphs

- A graph is chordal if it does not contain induced cycles of length four or larger.
- A graph is called split graph if its vertex set can be partitioned into a clique and an independent set.
- Every split graph is chordal.

$$
\text { Subset-FVS on Chordal Graphs Parameter: } k
$$

$$
\text { Input: A chordal graph } G=(V, E) \text {, a set of terminal vertices }
$$

$$
T \subseteq V, \text { and an integer } k
$$

Question: Does there exist a set $S \subseteq V$ of at most $k$ vertices of $G$ such that the subgraph $G[V \backslash S]$ contains no $T$-cycle?

The problem is NP-Complete even on split graphs [4].

To intersect every $T$-cycle in a chordal graph it is sufficient and necessary to intersect all $T$-triangles in the graph.

> To intersect every $T$-cycle in a chordal graph it is sufficient and necessary to intersect all $T$-triangles in the graph.

## Subset-FVS in Chordal to 3-Hitting Set. <br> (Parameter Preserving Reduction)

Subset-FVS in Chordal to 3-Hitting Set.

Subset-FVS in Chordal to 3-Hitting Set.

- 3-Hitting Set has a polynomial kernel of size $\mathcal{O}\left(k^{3}\right)[1]$
$\Rightarrow$ Polvnomial comoression of size $\mathcal{O}\left(k^{3}\right)$
- We improve it to $\mathcal{O}\left(k^{2}\right)$ kernel for split graphs.
- 3-Hitting Set is FPT (running time $2.076^{k} \cdot n^{\mathcal{O}(1)}$ [8])
$\Rightarrow$ FPT aleorithm running in time $2.076^{k} \cdot n^{\mathcal{O}(1)}$
- We improve it to $2^{k} \cdot \mathcal{O}(n+m)$ for chordal graphs.

Subset-FVS in Chordal to 3-Hitting Set.

- 3-Hitting Set has a polynomial kernel of size $\mathcal{O}\left(k^{3}\right)[1]$
$\Rightarrow$ Polynomial compression of size $\mathcal{O}\left(k^{3}\right)$
- We improve it to $\mathcal{O}\left(k^{2}\right)$ kernel for split graphs.
- 3-Hitting SET is FPT (running time $2.076^{k} \cdot n^{\mathcal{O}(1)}$ [8])
$\Rightarrow$ FPT algorithm running in time $2.076^{k} \cdot n^{\mathcal{O}(1)}$
- We improve it to $2^{k} \cdot \mathcal{O}(n+m)$ for chordal graphs.

Subset-FVS in Chordal to 3-Hitting Set.

- 3-Hitting Set has a polynomial kernel of size $\mathcal{O}\left(k^{3}\right)[1]$
$\Rightarrow$ Polynomial compression of size $\mathcal{O}\left(k^{3}\right)$
- We improve it to $\mathcal{O}\left(k^{2}\right)$ kernel for split graphs.
- 3-Hitting SET is FPT (running time $2.076^{k} \cdot n^{\mathcal{O}(1)}$ [8])
$\Rightarrow$ FPT algorithm running in time $2.076^{k} \cdot n^{\mathcal{O}(1)}$
- We improve it to $2^{k} \cdot \mathcal{O}(n+m)$ for chordal graphs.

Subset-FVS in Chordal to 3-Hitting Set.

- 3-Hitting Set has a polynomial kernel of size $\mathcal{O}\left(k^{3}\right)[1]$
$\Rightarrow$ Polynomial compression of size $\mathcal{O}\left(k^{3}\right)$
- We improve it to $\mathcal{O}\left(k^{2}\right)$ kernel for split graphs.
- 3-Hitting SET is FPT (running time $2.076^{k} \cdot n^{\mathcal{O}(1)}$ [8])
$\Rightarrow$ FPT algorithm running in time $2.076^{k} \cdot n^{\mathcal{O}(1)}$
- We improve it to $2^{k} \cdot \mathcal{O}(n+m)$ for chordal graphs.


## Our Results

## Theorem

Subset-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

## Theorem

Subset-FVS in Chordal admits an FPT algorithm with running time $\mathcal{O}\left(2^{k}(n+m)\right)$.

## Our Results

## Theorem

SUBSET-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

No polynomial kernel of size $\mathcal{O}\left(k^{2-\epsilon}\right)$ bits, unless NP $\subseteq$ coNP / poly.

## Theorem

Subset-FVS in Chordal admits an FPT algorithm with running time $\mathcal{O}\left(2^{k}(n+m)\right)$.

No $2^{o(k)}$ algorithm under ETH [4].

Kernel : Overview

## Overview of Kernelization

$(K, I)$ is a split partition ( $K$ - clique and $I$ - independent set)
Step 1: Reduce the input to an instance ( $G ; T ; k$ ) where the terminal set $T$ is exactly the independent set $/$

Step 2: If $v \in K$ has at least $k+1$ neighbours in I then either include $v$ in a solution or delete an edge incident with $v$;

Step 3: Bound the number of vertices in $K$ by $10 k$;

## Overview of Kernelization

$(K, I)$ is a split partition ( $K$ - clique and $I$ - independent set)
Step 1: Reduce the input to an instance ( $G ; T ; k$ ) where the terminal set $T$ is exactly the independent set $I$

Step 2: If $v \in K$ has at least $k+1$ neighbours in I then either include $v$ in a solution or delete an edge incident with $v$;

Step 3: Bound the number of vertices in $K$ by $10 k$;

## Overview of Kernelization

$(K, I)$ is a split partition ( $K$ - clique and $I$ - independent set)
Step 1: Reduce the input to an instance ( $G ; T ; k$ ) where the terminal set $T$ is exactly the independent set $I$

Step 2: If $v \in K$ has at least $k+1$ neighbours in I then either include $v$ in a solution or delete an edge incident with $v$;

Step 3: Bound the number of vertices in $K$ by $10 k$

## Overview of Kernelization

$(K, I)$ is a split partition ( $K$ - clique and $I$ - independent set)
Step 1: Reduce the input to an instance ( $G ; T ; k$ ) where the terminal set $T$ is exactly the independent set $I$

Step 2: If $v \in K$ has at least $k+1$ neighbours in I then either include $v$ in a solution or delete an edge incident with $v$; Each $v \in K$ has at most $k$ neighbours in $I$.

Step 3: Bound the number of vertices in K by $10 k$;

## Overview of Kernelization

$(K, I)$ is a split partition ( $K$ - clique and $I$ - independent set)
Step 1: Reduce the input to an instance ( $G ; T ; k$ ) where the terminal set $T$ is exactly the independent set $I$

Step 2: If $v \in K$ has at least $k+1$ neighbours in I then either include $v$ in a solution or delete an edge incident with $v$; Each $v \in K$ has at most $k$ neighbours in $I$.
Step 3: Bound the number of vertices in $K$ by $10 k$; An instance with $\mathcal{O}\left(k^{2}\right)$ vertices in $I$

## Overview of Kernelization

$(K, I)$ is a split partition ( $K$ - clique and $I$ - independent set)
Step 1: Reduce the input to an instance ( $G ; T ; k$ ) where the terminal set $T$ is exactly the independent set $I$

Step 2: If $v \in K$ has at least $k+1$ neighbours in I then either include $v$ in a solution or delete an edge incident with $v$; Each $v \in K$ has at most $k$ neighbours in $I$.
Step 3: Bound the number of vertices in $K$ by $10 k$; An instance with $\mathcal{O}\left(k^{2}\right)$ vertices in $I$.

Kernel : Step 1

## Simple Reduction Rules

## Simple Reduction Rules

- Delete isolated vertices.


## Simple Reduction Rules

- Delete isolated vertices.
- Delete a non-terminal vertex which is not adjacent to a terminal vertex.


## Simple Reduction Rules

- Delete isolated vertices.
- Delete a non-terminal vertex which is not adjacent to a terminal vertex.
- Delete a cut edge.


## Simple Reduction Rules

- Delete isolated vertices.
- Delete a non-terminal vertex which is not adjacent to a terminal vertex.
- Delete a cut edge.
- If there is a terminal vertex $t$ on the clique side and clique side is $\geq k+3$ then include $t$ in solution.


## After Simplification

1. Each vertex in $G$ has degree at least two.
2. Every vertex in $G$ is part of some $T$-triangle.
3. Let $(K, I)$ be the split partition of $G$. Then $T=I$ and every vertex in $K$ has a neighbour in $I$.

## After Simplification

1. Each vertex in $G$ has degree at least two.
2. Every vertex in $G$ is part of some $T$-triangle.
3. Let $(K, I)$ be the split partition of $G$. Then $T=I$ and every vertex in $K$ has a neighbour in $I$.

It is enough to bound

- the number of adjacent vertices in independent set for each vertex in clique-side, and
- the size of clique-side.


# Kernel : Step 2 (Reducing neighbours in Ind-Set side) 

For a vertex $v \in K$ on the clique side define

- First Nbrs: the set of neighbours on the independent side $I$. $N_{1}(v)=N(v) \cap I$
- Second Nbrs: the second neighbourhood "going via $I$ ". $N_{2}(v)=N\left(N_{1}(v)\right) \backslash\{v\}$.


Bipartite graph $(B(v))$ corresponding to vertex $v \in K$ : Graph obtained from $G\left[N_{1}(v) \cup N_{2}(v)\right]$ by deleting every edge with both its endvertices in $N_{2}(v)$.


Let $\ell$ be the size of largest matching in $B(v)$

Let $\ell$ be the size of largest matching in $B(v)$

- if $\ell \geq k+1$ then include $v$ in solution and delete it.

Let $\ell$ be the size of largest matching in $B(v)$

- if $\ell \geq k+1$ then include $v$ in solution and delete it.
- if $\ell \leq k$ then delete a particular edge incident on $v$

Let $\ell$ be the size of largest matching in $B(v)$

- if $\ell \geq k+1$ then include $v$ in solution and delete it.
- if $\ell \leq k$ then delete a particular edge incident on $v$

- Too many vertex disjoint triangles intersecting at $v$.
- Matching edges are enough to store information regarding $T$-cycles using vw.


## Maximum Matching is $\geq k+1$

## Reduction Rule

If there is a vertex $v$ on the clique side $K$ of graph $G$ s.t. the bipartite graph $B(v)$ has a matching of size at least $k+1$ then include vertex $v$ in solution.

## Maximum Matching is $\geq k+1$

## Reduction Rule

If there is a vertex $v$ on the clique side $K$ of graph $G$ s.t. the bipartite graph $B(v)$ has a matching of size at least $k+1$ then include vertex $v$ in solution.

At least $k+1$ many $T$-triangles which intersect only at $v$

## Maximum Matching is $\geq k+1$

## Reduction Rule

If there is a vertex $v$ on the clique side $K$ of graph $G$ s.t. the bipartite graph $B(v)$ has a matching of size at least $k+1$ then include vertex $v$ in solution.

At least $k+1$ many $T$-triangles which intersect only at $v$

We need Expansion Lemma to handle second case.

## Expansion Lemma and its Matching version

## $t$-expansion

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer
A set of edges $M \subseteq E(G)$ is called a $t$-expansion of $X$ into $Y$ if

## $t$-expansion

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer
A set of edges $M \subseteq E(G)$ is called a $t$-expansion of $X$ into $Y$ if

- every vertex of $X$ is incident with exactly $t$ edges of $M$, and
- the number of vertices in $Y$ which are incident with at least one edge in $M$ is exactly $t|P|$.


## $t$-expansion

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer
A set of edges $M \subseteq E(G)$ is called a $t$-expansion of $X$ into $Y$ if

- every vertex of $X$ is incident with exactly $t$ edges of $M$, and
- the number of vertices in $Y$ which are incident with at least one edge in $M$ is exactly $t|P|$.



## Expansion Lemma

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer s.t.

## Expansion Lemma

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer s.t.
$-|Q| \geq t|P|$

- there are no isolated vertices in $Q$.


## Expansion Lemma

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer s.t.
$-|Q| \geq t|P|$

- there are no isolated vertices in $Q$.

Then there exist nonempty sets $X \subseteq P$ and $Y \subseteq Q$ s.t.

- $X$ has a $t$-expansion into $Y$, and
- no vertex in $Y$ has a neighbour outside $X$.

- $X$ has a $t$-expansion into $Y$, and
- no vertex in $Y$ has a neighbour outside $X$.

- $X$ has a $t$-expansion into $Y$, and
- no vertex in $Y$ has a neighbour outside $X$.
$X$ and $Y$ can be found in poly-time.


## Expansion Lemma (Matching Version)

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer; $\ell$ - the size of a maximum matching in $G$ s.t.

## Expansion Lemma (Matching Version)

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer; $\ell$ - the size of a maximum matching in $G$ s.t.
$-|Q| \geq t \ell$

- there are no isolated vertices in $Q$.


## Expansion Lemma (Matching Version)

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer;
$\ell$ - the size of a maximum matching in $G$ s.t.
$-|Q| \geq t \ell$

- there are no isolated vertices in $Q$.

Then there exist nonempty sets $X \subseteq P$ and $Y \subseteq Q$ s.t.

- $X$ has a $t$-expansion into $Y$, and
- no vertex in $Y$ has a neighbour outside $X$.


## Expansion Lemma (Matching Version)

$G(P, Q)$ - a bipartite graph; $t$ - a positive integer;
$\ell$ - the size of a maximum matching in $G$ s.t.
$-|Q| \geq t \ell$

- there are no isolated vertices in $Q$.

Then there exist nonempty sets $X \subseteq P$ and $Y \subseteq Q$ s.t.

- $X$ has a $t$-expansion into $Y$, and
- no vertex in $Y$ has a neighbour outside $X$.
$X$ and $Y$ can be found in poly-time.


## Additional Property of $X, Y$

If there exists $X, Y$ then we can find sets $X^{\prime}, Y^{\prime}$ s.t.

## Additional Property of $X, Y$

If there exists $X, Y$ then we can find sets $X^{\prime}, Y^{\prime}$ s.t.

- $X^{\prime}$ has a $t$-expansion into $Y^{\prime}$,
- no vertex in $Y^{\prime}$ has a neighbour outside $X^{\prime}$, and
- $\exists$ a vertex $w \in Y^{\prime}$ s.t. edges in $t$-expansion do not saturate $w$.


## Additional Property of $X, Y$

If there exists $X, Y$ then we can find sets $X^{\prime}, Y^{\prime}$ s.t.

- $X^{\prime}$ has a $t$-expansion into $Y^{\prime}$,
- no vertex in $Y^{\prime}$ has a neighbour outside $X^{\prime}$, and
$-\exists$ a vertex $w \in Y^{\prime}$ s.t. edges in $t$-expansion do not saturate $w$.

$v \in K$ on the clique side of $G$ s.t.
$v \in K$ on the clique side of $G$ s.t.
- has more than $k$ neighbours in the independent side $I$
- the size of maximum matching in $B(v)$ is at most $k$
$v \in K$ on the clique side of $G$ s.t.
- has more than $k$ neighbours in the independent side $/$
- the size of maximum matching in $B(v)$ is at most $k$

Then we can find $X, Y$ and $w \in Y$ s.t.
$v \in K$ on the clique side of $G$ s.t.

- has more than $k$ neighbours in the independent side $/$
- the size of maximum matching in $B(v)$ is at most $k$

Then we can find $X, Y$ and $w \in Y$ s.t.

- there is a matching $M$ between $X$ and $Y$ saturating $X$
- $M$ does not saturate $w$, and
$-N_{G}(Y)=X \cup\{v\}$.



Matching edges are enough to store information about $T$-cycles containing edge $v w$.


Matching edges are enough to store information about $T$-cycles containing edge vw.

Case (A): Solution picks $v$.
All $T$-cycles containing edge $v w$ are killed.


Matching edges are enough to store information about $T$-cycles containing edge vw.

Case (B): Solution does not pick $v$ and pick all vertices in $X$. All $T$-cycles containing edge $v w$ are killed.


Matching edges are enough to store information about $T$-cycles containing edge $v w$.

Case (C): Solution does not pick $v$ and pick vertices in $X \cup Y$.


Matching edges are enough to store information about $T$-cycles containing edge $v w$.

Case (C): Solution does not pick $v$ and pick vertices in $X \cup Y$.
By Expansion Lemma, $Y$ is adjacent with only $X \cup\{v\}$.


Matching edges are enough to store information about $T$-cycles containing edge $v w$.

Case (C): Solution does not pick $v$ and pick vertices in $X \cup Y$.
By Expansion Lemma, $Y$ is adjacent with only $X \cup\{v\}$.
Modify solution: Remove $Y$; Add remaining vertices in $X$.

## Kernel : Step 3 (Bounding the Size of the Clique Side)

- A simple 3-factor approximation algorithm to compute $\tilde{S}$
- A simple 3-factor approximation algorithm to compute $\tilde{S}$
- If $|\tilde{S}|>3 k$ then return $I_{\text {NO }}$.
- A simple 3-factor approximation algorithm to compute $\tilde{S}$
- If $|\tilde{S}|>3 k$ then return $I_{\text {NO }}$.


K


- A simple 3-factor approximation algorithm to compute $\tilde{S}$
- If $|\tilde{S}|>3 k$ then return $I_{\text {NO }}$.

- $K_{\tilde{S}}$ : set of clique-side vertices included in $\tilde{S}$. $K_{\tilde{S}}=K \cap \tilde{S}$.
- A simple 3-factor approximation algorithm to compute $\tilde{S}$
- If $|\tilde{S}|>3 k$ then return $I_{\text {NO }}$.

- $K_{\tilde{S}}$ : set of clique-side vertices included in $\tilde{S}$.
$K_{\tilde{S}}=K \cap \tilde{S}$.
- $I_{\tilde{S}}$ : set of independent-side vertices included in $\tilde{S}$.
$I_{\tilde{S}}=I \cap \tilde{S}$.


- $K_{0}$ : set of clique-side vertices not in $\tilde{S}$ whose neighbourhoods in the independent-side $I$ are all contained in $I_{\tilde{S}}$. $K_{0}=\left\{u \in\left(K \backslash K_{\tilde{S}}\right) ; N(u) \cap I \subseteq I_{\tilde{S}}\right\} ;$
- $I_{0}$ : set of independent-side vertices not in $\tilde{S}$ whose neighbourhoods are all contained in $K_{\tilde{S}}$. $I_{0}=\left\{v \in I \backslash I_{\tilde{S}} ; N(v) \subseteq K_{\tilde{s}}\right\}$


- $K_{1}$ : Remaining vertices in $K$.
$K_{1}=K \backslash\left(K_{\tilde{S}} \cup K_{0}\right)$.
- $I_{1}$ : Remaining vertices in $I$.
$I_{1}=I \backslash\left(I_{\tilde{S}} \cup I_{0}\right)$.


Some observations:


Some observations:
$-\left|K_{\tilde{S}}\right| \leq 2 k$ and $\left|I_{\tilde{S}}\right| \leq k$.


Some observations:
$-\left|K_{\tilde{S}}\right| \leq 2 k$ and $\left|I_{\tilde{S}}\right| \leq k$.

- Each vertex in $K_{1}$ has (i) no neighbour in $I_{0}$ and (ii) at least one neighbour in $I_{1}$.


Some observations:


Some observations:

- Each vertex in $I_{1}$ has exactly one neighbour in $K_{1}$.


Some observations:

- Each vertex in $I_{1}$ has exactly one neighbour in $K_{1}$.
- The bipartite graph obtained from $G\left[K_{1} \cup I_{1}\right]$ by deleting all the edges in $G\left[K_{1}\right]$ is a forest where each connected component is a star.


We bound

- $K_{0}$ using 2-expansion on graph across $K_{0}$ and $I_{\tilde{S}}$.
- $K_{1}$ using 2-expansion on graph across $K_{1}$ and $\tilde{S}$


## Bounding $\left|K_{0}\right|$



2-expansion across $I_{\tilde{S}}$ and $K_{0}$.

## Bounding $\left|K_{0}\right|$



2-expansion across $I_{\tilde{S}}$ and $K_{0}$.
Solution intersects $T$-triangles in $X \cup Y$.

## Bounding $\left|K_{0}\right|$



2-expansion across $I_{\tilde{S}}$ and $K_{0}$.
Solution intersects $T$-triangles in $X \cup Y$.
Since $K_{0}$ (and hence $Y$ ) interact with only $I_{\tilde{S}}$ (and hence only $X$ ), it is safe to pick all vertices in $X$ to kill $T$-triangles in $X \cup Y$.

## Bounding $\left|K_{1}\right|$



Construct auxilary bipartite graphs $B$ across $\tilde{S}$ and $K_{1}$.



2-Expansion across $\tilde{S}$ and $K$.


2-Expansion across $\tilde{S}$ and $K$.
Shaded regions in $\tilde{S}$ and $K_{1}$ represent sets $X, Y$, respectively.


Each vertex $x_{i} \in\left(X \cap K_{\tilde{S}}\right)$ is a part of $T$-triangle with an edge in $M$.


Each vertex $x_{j} \in\left(X \cap I_{\tilde{S}}\right)$ is part of $T$-triangle with two edges in $M$.


We get $|X|$ many pairwise vertex-disjoint $T$-triangles.


We get $|X|$ many pairwise vertex-disjoint $T$-triangles.
Let $S$ be an optimum solution. We modify this to exclude all vertices in $Y$.

## Theorem

Subset-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

## Theorem

Subset-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

- Step 1 ensures
- No isolated vertex in $G$.
- Every vertex in I is adjacent with some vertex in K


## Theorem

Subset-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

- Step 1 ensures
- No isolated vertex in $G$.
- Every vertex in I is adjacent with some vertex in K
- Step 2 ensures that any vertex in $K$ is adjacent with at most $k+1$ vertices in $l$.


## Theorem

Subset-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

- Step 1 ensures
- No isolated vertex in $G$.
- Every vertex in I is adjacent with some vertex in K
- Step 2 ensures that any vertex in $K$ is adjacent with at most $k+1$ vertices in $l$.
- Step 3 ensures that size of $K$ is at most $10 k$.
$\Rightarrow$ Size bound.


## Theorem

Subset-FVS in Split admits a kernel with $\mathcal{O}\left(k^{2}\right)$ vertices and $\mathcal{O}\left(k^{2}\right)$ edges.

- Step 1 ensures
- No isolated vertex in $G$.
- Every vertex in I is adjacent with some vertex in K
- Step 2 ensures that any vertex in $K$ is adjacent with at most $k+1$ vertices in $l$.
- Step 3 ensures that size of $K$ is at most $10 k$.
$\Rightarrow$ Size bound.
- We only use expansion lemma which can be applied in poly-time.


## Conclusion and Open Questions

- A kernel of size $\mathcal{O}\left(k^{2}\right)$ with $\mathcal{O}(k)$ and $\mathcal{O}\left(k^{2}\right)$ vertices on the clique and independent set sides respectively.


## Conclusion and Open Questions

- A kernel of size $\mathcal{O}\left(k^{2}\right)$ with $\mathcal{O}(k)$ and $\mathcal{O}\left(k^{2}\right)$ vertices on the clique and independent set sides respectively.
- Though size of kernel is optimum, can we bound the number of vertices on the independent side by $\mathcal{O}\left(k^{2-\epsilon}\right)$ ?


## Conclusion and Open Questions

- A kernel of size $\mathcal{O}\left(k^{2}\right)$ with $\mathcal{O}(k)$ and $\mathcal{O}\left(k^{2}\right)$ vertices on the clique and independent set sides respectively.
- Though size of kernel is optimum, can we bound the number of vertices on the independent side by $\mathcal{O}\left(k^{2-\epsilon}\right)$ ?
- Can we obtain quadratic kernel for chordal graphs?


## Conclusion and Open Questions

- A kernel of size $\mathcal{O}\left(k^{2}\right)$ with $\mathcal{O}(k)$ and $\mathcal{O}\left(k^{2}\right)$ vertices on the clique and independent set sides respectively.
- Though size of kernel is optimum, can we bound the number of vertices on the independent side by $\mathcal{O}\left(k^{2-\epsilon}\right)$ ?
- Can we obtain quadratic kernel for chordal graphs?
- An algorithm running in $\mathcal{O}^{*}\left(2^{k}\right)$ to solve Subset FVS in Chordal.


## Conclusion and Open Questions

- A kernel of size $\mathcal{O}\left(k^{2}\right)$ with $\mathcal{O}(k)$ and $\mathcal{O}\left(k^{2}\right)$ vertices on the clique and independent set sides respectively.
- Though size of kernel is optimum, can we bound the number of vertices on the independent side by $\mathcal{O}\left(k^{2-\epsilon}\right)$ ?
- Can we obtain quadratic kernel for chordal graphs?
- An algorithm running in $\mathcal{O}^{*}\left(2^{k}\right)$ to solve Subset FVS in Chordal.
- Under ETH, sub-exponential FPT algorithms for this problem are ruled out. Is it possible to obtain an algorithm with a smaller base in the running time?


## Conclusion and Open Questions

- A kernel of size $\mathcal{O}\left(k^{2}\right)$ with $\mathcal{O}(k)$ and $\mathcal{O}\left(k^{2}\right)$ vertices on the clique and independent set sides respectively.
- Though size of kernel is optimum, can we bound the number of vertices on the independent side by $\mathcal{O}\left(k^{2-\epsilon}\right)$ ?
- Can we obtain quadratic kernel for chordal graphs?
- An algorithm running in $\mathcal{O}^{*}\left(2^{k}\right)$ to solve Subset FVS in Chordal.
- Under ETH, sub-exponential FPT algorithms for this problem are ruled out. Is it possible to obtain an algorithm with a smaller base in the running time?
- Interesting to investigate other implicit hitting set problems from graph theory and obtain better kernel and FPT results than the ones guaranteed by Hitting Set.

Thank you!

## References i

固 Faisal N. Abu-Khzam.
A kernelization algorithm for d-hitting set.
J. Comput. Syst. Sci., 76(7):524-531, 2010.

R- Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk.
Subset feedback vertex set is fixed-parameter tractable.
SIAM Journal on Discrete Mathematics, 27(1):290-309, 2013.
目 Guy Even, Joseph Naor, and Leonid Zosin.
An 8-approximation algorithm for the subset feedback vertex set problem.
SIAM Journal on Computing, 30(4):1231-1252, 2000.

## References ii

Fedor V Fomin, Pinar Heggernes, Dieter Kratsch, Charis Papadopoulos, and Yngve Villanger.
Enumerating minimal subset feedback vertex sets. Algorithmica, 69(1):216-231, 2014.
Eva-Maria C Hols and Stefan Kratsch.
A randomized polynomial kernel for subset feedback vertex set.
Theory of Computing Systems, 62(1):63-92, 2018.

## References iii

围 Ken-ichi Kawarabayashi and Yusuke Kobayashi.
Fixed-parameter tractability for the subset feedback set problem and the s-cycle packing problem. Journal of Combinatorial Theory, Series B, 102(4):1020-1034, 2012.

固
Daniel Lokshtanov, MS Ramanujan, and Saket Saurabh. Linear time parameterized algorithms for subset feedback vertex set.
ACM Transactions on Algorithms (TALG), 14(1):7, 2018.

## References iv

图 Magnus Wahlström.
Algorithms, measures and upper bounds for satisfiability and related problems.
PhD thesis, Department of Computer and Information Science, Linköpings universitet, 2007.
圊 Magnus Wahlström.
Half-integrality, LP-branching and FPT algorithms.
In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 1762-1781. SIAM, 2014.

