
Subset Feedback Vertex Set in Chordal and
Split Graphs

Geevarghese Philip 1, Varun Rajan 1, Saket Saurabh 2,3,
and Prafullkumar Tale 3

May 27, 2019
1 Chennai Mathematical Institute, Chennai, India,
2 University of Bergen, Bergen, Norway
3 The Institute of Mathematical Sciences, HBNI, Chennai, India

1

The Problem

Subset Feedback Vertex Set

Feedback Vertex Set(FVS) Parameter: k
Input: A graph G = (V , E), and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no cycle?

2

Subset Feedback Vertex Set

Subset-FVS Parameter: k
Input: A graph G = (V , E), a set of terminal vertices T ⊆ V ,
and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

T -cycle is a cycle which contains at least one vertex from T .

3

Subset Feedback Vertex Set

Subset-FVS Parameter: k
Input: A graph G = (V , E), a set of terminal vertices T ⊆ V ,
and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

T -cycle is a cycle which contains at least one vertex from T .

3

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.

−− Generalizes problems like FVS, VC, and Multiway Cut.
2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]

independently proved that the problem is FPT(2O(k log k)).
2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).
2015 Lokshtanov et al. [7] presented a different FPT algorithm

which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
−− Generalizes problems like FVS, VC, and Multiway Cut.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(2O(k log k)).

2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).
2015 Lokshtanov et al. [7] presented a different FPT algorithm

which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
−− Generalizes problems like FVS, VC, and Multiway Cut.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(2O(k log k)).

2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).
2015 Lokshtanov et al. [7] presented a different FPT algorithm

which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
−− Generalizes problems like FVS, VC, and Multiway Cut.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(2O(k log k)).

2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.

2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).
2015 Lokshtanov et al. [7] presented a different FPT algorithm

which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
−− Generalizes problems like FVS, VC, and Multiway Cut.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(2O(k log k)).

2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).

2015 Lokshtanov et al. [7] presented a different FPT algorithm
which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
−− Generalizes problems like FVS, VC, and Multiway Cut.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(2O(k log k)).

2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).
2015 Lokshtanov et al. [7] presented a different FPT algorithm

which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in General Graphs

2000 Even et al. [3] introduced the problem.
−− Generalizes problems like FVS, VC, and Multiway Cut.

2011 Cygan et al. [2] and Kawarabayashi and Kobayashi [6]
independently proved that the problem is FPT(2O(k log k)).

2011 Fomin et al. [4]: No 2o(k) algorithm under the ETH.
2014 Wahlström [9] gave algorithm running in time 2O(k) · nO(1).
2015 Lokshtanov et al. [7] presented a different FPT algorithm

which has linear dependence on the input size.

2016 Hols and Kratsch [5] obtained a randomized polynomial kernel
with O(k9) vertices.

4

Subset Feedback Vertex Set in Chordal and Split Graphs

– A graph is chordal if it does not contain induced cycles of
length four or larger.

– A graph is called split graph if its vertex set can be partitioned
into a clique and an independent set.

– Every split graph is chordal.

Subset-FVS on Chordal Graphs Parameter: k
Input: A chordal graph G = (V , E), a set of terminal vertices
T ⊆ V , and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

The problem is NP-Complete even on split graphs [4].

5

Subset Feedback Vertex Set in Chordal and Split Graphs

– A graph is chordal if it does not contain induced cycles of
length four or larger.

– A graph is called split graph if its vertex set can be partitioned
into a clique and an independent set.

– Every split graph is chordal.

Subset-FVS on Chordal Graphs Parameter: k
Input: A chordal graph G = (V , E), a set of terminal vertices
T ⊆ V , and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

The problem is NP-Complete even on split graphs [4].

5

Subset Feedback Vertex Set in Chordal and Split Graphs

– A graph is chordal if it does not contain induced cycles of
length four or larger.

– A graph is called split graph if its vertex set can be partitioned
into a clique and an independent set.

– Every split graph is chordal.

Subset-FVS on Chordal Graphs Parameter: k
Input: A chordal graph G = (V , E), a set of terminal vertices
T ⊆ V , and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

The problem is NP-Complete even on split graphs [4].

5

Subset Feedback Vertex Set in Chordal and Split Graphs

– A graph is chordal if it does not contain induced cycles of
length four or larger.

– A graph is called split graph if its vertex set can be partitioned
into a clique and an independent set.

– Every split graph is chordal.

Subset-FVS on Chordal Graphs Parameter: k
Input: A chordal graph G = (V , E), a set of terminal vertices
T ⊆ V , and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

The problem is NP-Complete even on split graphs [4].

5

Subset Feedback Vertex Set in Chordal and Split Graphs

– A graph is chordal if it does not contain induced cycles of
length four or larger.

– A graph is called split graph if its vertex set can be partitioned
into a clique and an independent set.

– Every split graph is chordal.

Subset-FVS on Chordal Graphs Parameter: k
Input: A chordal graph G = (V , E), a set of terminal vertices
T ⊆ V , and an integer k
Question: Does there exist a set S ⊆ V of at most k vertices of
G such that the subgraph G [V \ S] contains no T -cycle?

The problem is NP-Complete even on split graphs [4].

5

To intersect every T -cycle in a chordal graph it is sufficient and
necessary to intersect all T -triangles in the graph.

Subset-FVS in Chordal to 3-Hitting Set.

(Parameter Preserving Reduction)

6

To intersect every T -cycle in a chordal graph it is sufficient and
necessary to intersect all T -triangles in the graph.

Subset-FVS in Chordal to 3-Hitting Set.

(Parameter Preserving Reduction)

6

Subset-FVS in Chordal to 3-Hitting Set.

– 3-Hitting Set has a polynomial kernel of size O(k3) [1]
⇒ Polynomial compression of size O(k3)

– We improve it to O(k2) kernel for split graphs.

◦ 3-Hitting Set is FPT (running time 2.076k · nO(1) [8])
⇒ FPT algorithm running in time 2.076k · nO(1)

◦ We improve it to 2k · O(n + m) for chordal graphs.

7

Subset-FVS in Chordal to 3-Hitting Set.

– 3-Hitting Set has a polynomial kernel of size O(k3) [1]
⇒ Polynomial compression of size O(k3)

– We improve it to O(k2) kernel for split graphs.

◦ 3-Hitting Set is FPT (running time 2.076k · nO(1) [8])
⇒ FPT algorithm running in time 2.076k · nO(1)

◦ We improve it to 2k · O(n + m) for chordal graphs.

7

Subset-FVS in Chordal to 3-Hitting Set.

– 3-Hitting Set has a polynomial kernel of size O(k3) [1]
⇒ Polynomial compression of size O(k3)

– We improve it to O(k2) kernel for split graphs.

◦ 3-Hitting Set is FPT (running time 2.076k · nO(1) [8])
⇒ FPT algorithm running in time 2.076k · nO(1)

◦ We improve it to 2k · O(n + m) for chordal graphs.

7

Subset-FVS in Chordal to 3-Hitting Set.

– 3-Hitting Set has a polynomial kernel of size O(k3) [1]
⇒ Polynomial compression of size O(k3)

– We improve it to O(k2) kernel for split graphs.

◦ 3-Hitting Set is FPT (running time 2.076k · nO(1) [8])
⇒ FPT algorithm running in time 2.076k · nO(1)

◦ We improve it to 2k · O(n + m) for chordal graphs.

7

Subset-FVS in Chordal to 3-Hitting Set.

– 3-Hitting Set has a polynomial kernel of size O(k3) [1]
⇒ Polynomial compression of size O(k3)

– We improve it to O(k2) kernel for split graphs.

◦ 3-Hitting Set is FPT (running time 2.076k · nO(1) [8])
⇒ FPT algorithm running in time 2.076k · nO(1)

◦ We improve it to 2k · O(n + m) for chordal graphs.

7

Our Results

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

No polynomial kernel of size O(k2−ε) bits, unless NP ⊆ coNP/poly .

Theorem
Subset-FVS in Chordal admits an FPT algorithm with
running time O(2k(n + m)).

No 2o(k) algorithm under ETH [4].

8

Our Results

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

No polynomial kernel of size O(k2−ε) bits, unless NP ⊆ coNP/poly .

Theorem
Subset-FVS in Chordal admits an FPT algorithm with
running time O(2k(n + m)).

No 2o(k) algorithm under ETH [4].

8

Kernel : Overview

Overview of Kernelization

(K , I) is a split partition (K− clique and I− independent set)

Step 1: Reduce the input to an instance (G ; T ; k) where the terminal
set T is exactly the independent set I

Step 2: If v ∈ K has at least k + 1 neighbours in I then either include
v in a solution or delete an edge incident with v ;
Each v ∈ K has at most k neighbours in I.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k2) vertices in I.

9

Overview of Kernelization

(K , I) is a split partition (K− clique and I− independent set)

Step 1: Reduce the input to an instance (G ; T ; k) where the terminal
set T is exactly the independent set I

Step 2: If v ∈ K has at least k + 1 neighbours in I then either include
v in a solution or delete an edge incident with v ;
Each v ∈ K has at most k neighbours in I.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k2) vertices in I.

9

Overview of Kernelization

(K , I) is a split partition (K− clique and I− independent set)

Step 1: Reduce the input to an instance (G ; T ; k) where the terminal
set T is exactly the independent set I

Step 2: If v ∈ K has at least k + 1 neighbours in I then either include
v in a solution or delete an edge incident with v ;
Each v ∈ K has at most k neighbours in I.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k2) vertices in I.

9

Overview of Kernelization

(K , I) is a split partition (K− clique and I− independent set)

Step 1: Reduce the input to an instance (G ; T ; k) where the terminal
set T is exactly the independent set I

Step 2: If v ∈ K has at least k + 1 neighbours in I then either include
v in a solution or delete an edge incident with v ;
Each v ∈ K has at most k neighbours in I.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k2) vertices in I.

9

Overview of Kernelization

(K , I) is a split partition (K− clique and I− independent set)

Step 1: Reduce the input to an instance (G ; T ; k) where the terminal
set T is exactly the independent set I

Step 2: If v ∈ K has at least k + 1 neighbours in I then either include
v in a solution or delete an edge incident with v ;
Each v ∈ K has at most k neighbours in I.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k2) vertices in I.

9

Overview of Kernelization

(K , I) is a split partition (K− clique and I− independent set)

Step 1: Reduce the input to an instance (G ; T ; k) where the terminal
set T is exactly the independent set I

Step 2: If v ∈ K has at least k + 1 neighbours in I then either include
v in a solution or delete an edge incident with v ;
Each v ∈ K has at most k neighbours in I.

Step 3: Bound the number of vertices in K by 10k;
An instance with O(k2) vertices in I.

9

Kernel : Step 1

Simple Reduction Rules

– Delete isolated vertices.
– Delete a non-terminal vertex which is not adjacent to a

terminal vertex.
– Delete a cut edge.
– If there is a terminal vertex t on the clique side and clique side

is ≥ k + 3 then include t in solution.

10

Simple Reduction Rules

– Delete isolated vertices.

– Delete a non-terminal vertex which is not adjacent to a
terminal vertex.

– Delete a cut edge.
– If there is a terminal vertex t on the clique side and clique side

is ≥ k + 3 then include t in solution.

10

Simple Reduction Rules

– Delete isolated vertices.
– Delete a non-terminal vertex which is not adjacent to a

terminal vertex.

– Delete a cut edge.
– If there is a terminal vertex t on the clique side and clique side

is ≥ k + 3 then include t in solution.

10

Simple Reduction Rules

– Delete isolated vertices.
– Delete a non-terminal vertex which is not adjacent to a

terminal vertex.
– Delete a cut edge.

– If there is a terminal vertex t on the clique side and clique side
is ≥ k + 3 then include t in solution.

10

Simple Reduction Rules

– Delete isolated vertices.
– Delete a non-terminal vertex which is not adjacent to a

terminal vertex.
– Delete a cut edge.
– If there is a terminal vertex t on the clique side and clique side

is ≥ k + 3 then include t in solution.

10

After Simplification

1. Each vertex in G has degree at least two.
2. Every vertex in G is part of some T -triangle.
3. Let (K , I) be the split partition of G . Then T = I and every

vertex in K has a neighbour in I.

It is enough to bound

– the number of adjacent vertices in independent set for each
vertex in clique-side, and

– the size of clique-side.

11

After Simplification

1. Each vertex in G has degree at least two.
2. Every vertex in G is part of some T -triangle.
3. Let (K , I) be the split partition of G . Then T = I and every

vertex in K has a neighbour in I.

It is enough to bound

– the number of adjacent vertices in independent set for each
vertex in clique-side, and

– the size of clique-side.

11

Kernel : Step 2 (Reducing
neighbours in Ind-Set side)

For a vertex v ∈ K on the clique side define

– First Nbrs: the set of neighbours on the independent side I.
N1(v) = N(v) ∩ I

– Second Nbrs: the second neighbourhood “going via I”.
N2(v) = N(N1(v)) \ {v}.

12

Bipartite graph (B(v)) corresponding to vertex v ∈ K : Graph
obtained from G [N1(v) ∪ N2(v)] by deleting every edge with both
its endvertices in N2(v).

13

Let ` be the size of largest matching in B(v)

– if ` ≥ k + 1 then include v in solution and delete it.
– if ` ≤ k then delete a particular edge incident on v

– Too many vertex disjoint triangles intersecting at v .
– Matching edges are enough to store information regarding

T -cycles using vw .

14

Let ` be the size of largest matching in B(v)

– if ` ≥ k + 1 then include v in solution and delete it.

– if ` ≤ k then delete a particular edge incident on v

– Too many vertex disjoint triangles intersecting at v .
– Matching edges are enough to store information regarding

T -cycles using vw .

14

Let ` be the size of largest matching in B(v)

– if ` ≥ k + 1 then include v in solution and delete it.
– if ` ≤ k then delete a particular edge incident on v

– Too many vertex disjoint triangles intersecting at v .
– Matching edges are enough to store information regarding

T -cycles using vw .

14

Let ` be the size of largest matching in B(v)

– if ` ≥ k + 1 then include v in solution and delete it.
– if ` ≤ k then delete a particular edge incident on v

– Too many vertex disjoint triangles intersecting at v .
– Matching edges are enough to store information regarding

T -cycles using vw . 14

Maximum Matching is ≥ k + 1

Reduction Rule

If there is a vertex v on the clique side K of graph G s.t. the
bipartite graph B(v) has a matching of size at least k + 1 then
include vertex v in solution.

At least k + 1 many T -triangles which intersect only at v

We need Expansion Lemma to handle second case.

15

Maximum Matching is ≥ k + 1

Reduction Rule

If there is a vertex v on the clique side K of graph G s.t. the
bipartite graph B(v) has a matching of size at least k + 1 then
include vertex v in solution.

At least k + 1 many T -triangles which intersect only at v

We need Expansion Lemma to handle second case.

15

Maximum Matching is ≥ k + 1

Reduction Rule

If there is a vertex v on the clique side K of graph G s.t. the
bipartite graph B(v) has a matching of size at least k + 1 then
include vertex v in solution.

At least k + 1 many T -triangles which intersect only at v

We need Expansion Lemma to handle second case.

15

Expansion Lemma and its Matching
version

t-expansion

G(P, Q) – a bipartite graph; t – a positive integer

A set of edges M ⊆ E (G) is called a t-expansion of X into Y if

– every vertex of X is incident with exactly t edges of M, and
– the number of vertices in Y which are incident with at least

one edge in M is exactly t|P|.

16

t-expansion

G(P, Q) – a bipartite graph; t – a positive integer

A set of edges M ⊆ E (G) is called a t-expansion of X into Y if

– every vertex of X is incident with exactly t edges of M, and
– the number of vertices in Y which are incident with at least

one edge in M is exactly t|P|.

16

t-expansion

G(P, Q) – a bipartite graph; t – a positive integer

A set of edges M ⊆ E (G) is called a t-expansion of X into Y if

– every vertex of X is incident with exactly t edges of M, and
– the number of vertices in Y which are incident with at least

one edge in M is exactly t|P|.

16

Expansion Lemma

G(P, Q) – a bipartite graph; t – a positive integer s.t.

– |Q| ≥ t|P|
– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

17

Expansion Lemma

G(P, Q) – a bipartite graph; t – a positive integer s.t.

– |Q| ≥ t|P|
– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

17

Expansion Lemma

G(P, Q) – a bipartite graph; t – a positive integer s.t.

– |Q| ≥ t|P|
– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

17

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

X and Y can be found in poly-time.

18

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

X and Y can be found in poly-time.

18

Expansion Lemma (Matching Version)

G(P, Q) – a bipartite graph; t – a positive integer;
` – the size of a maximum matching in G s.t.

– |Q| ≥ t`

– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

X and Y can be found in poly-time.

19

Expansion Lemma (Matching Version)

G(P, Q) – a bipartite graph; t – a positive integer;
` – the size of a maximum matching in G s.t.

– |Q| ≥ t`

– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

X and Y can be found in poly-time.

19

Expansion Lemma (Matching Version)

G(P, Q) – a bipartite graph; t – a positive integer;
` – the size of a maximum matching in G s.t.

– |Q| ≥ t`

– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

X and Y can be found in poly-time.

19

Expansion Lemma (Matching Version)

G(P, Q) – a bipartite graph; t – a positive integer;
` – the size of a maximum matching in G s.t.

– |Q| ≥ t`

– there are no isolated vertices in Q.

Then there exist nonempty sets X ⊆ P and Y ⊆ Q s.t.

– X has a t-expansion into Y , and
– no vertex in Y has a neighbour outside X .

X and Y can be found in poly-time.

19

Additional Property of X , Y

If there exists X , Y then we can find sets X ′, Y ′ s.t.

– X ′ has a t-expansion into Y ′,
– no vertex in Y ′ has a neighbour outside X ′, and
– ∃ a vertex w ∈ Y ′ s.t. edges in t-expansion do not saturate w .

20

Additional Property of X , Y

If there exists X , Y then we can find sets X ′, Y ′ s.t.

– X ′ has a t-expansion into Y ′,
– no vertex in Y ′ has a neighbour outside X ′, and
– ∃ a vertex w ∈ Y ′ s.t. edges in t-expansion do not saturate w .

20

Additional Property of X , Y

If there exists X , Y then we can find sets X ′, Y ′ s.t.

– X ′ has a t-expansion into Y ′,
– no vertex in Y ′ has a neighbour outside X ′, and
– ∃ a vertex w ∈ Y ′ s.t. edges in t-expansion do not saturate w .

20

v ∈ K on the clique side of G s.t.

– has more than k neighbours in the independent side I
– the size of maximum matching in B(v) is at most k

Then we can find X , Y and w ∈ Y s.t.

– there is a matching M between X and Y saturating X
– M does not saturate w , and
– NG(Y) = X ∪ {v}.

21

v ∈ K on the clique side of G s.t.

– has more than k neighbours in the independent side I
– the size of maximum matching in B(v) is at most k

Then we can find X , Y and w ∈ Y s.t.

– there is a matching M between X and Y saturating X
– M does not saturate w , and
– NG(Y) = X ∪ {v}.

21

v ∈ K on the clique side of G s.t.

– has more than k neighbours in the independent side I
– the size of maximum matching in B(v) is at most k

Then we can find X , Y and w ∈ Y s.t.

– there is a matching M between X and Y saturating X
– M does not saturate w , and
– NG(Y) = X ∪ {v}.

21

v ∈ K on the clique side of G s.t.

– has more than k neighbours in the independent side I
– the size of maximum matching in B(v) is at most k

Then we can find X , Y and w ∈ Y s.t.

– there is a matching M between X and Y saturating X
– M does not saturate w , and
– NG(Y) = X ∪ {v}.

21

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (A): Solution picks v .

All T -cycles containing edge vw are killed.

22

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (A): Solution picks v .

All T -cycles containing edge vw are killed.

22

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (A): Solution picks v .

All T -cycles containing edge vw are killed.

22

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (B): Solution does not pick v and pick all vertices in X .

All T -cycles containing edge vw are killed.

23

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (C): Solution does not pick v and pick vertices in X ∪ Y .

By Expansion Lemma, Y is adjacent with only X ∪ {v}.

Modify solution: Remove Y ; Add remaining vertices in X .

24

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (C): Solution does not pick v and pick vertices in X ∪ Y .

By Expansion Lemma, Y is adjacent with only X ∪ {v}.

Modify solution: Remove Y ; Add remaining vertices in X .

24

Matching edges are enough to store information about
T -cycles containing edge vw .

Case (C): Solution does not pick v and pick vertices in X ∪ Y .

By Expansion Lemma, Y is adjacent with only X ∪ {v}.

Modify solution: Remove Y ; Add remaining vertices in X . 24

Kernel : Step 3 (Bounding the Size
of the Clique Side)

– A simple 3-factor approximation algorithm to compute S̃

– If |S̃| > 3k then return INO.

– KS̃ : set of clique-side vertices included in S̃.
KS̃ = K ∩ S̃.

– IS̃ : set of independent-side vertices included in S̃.
IS̃ = I ∩ S̃.

25

– A simple 3-factor approximation algorithm to compute S̃
– If |S̃| > 3k then return INO.

– KS̃ : set of clique-side vertices included in S̃.
KS̃ = K ∩ S̃.

– IS̃ : set of independent-side vertices included in S̃.
IS̃ = I ∩ S̃.

25

– A simple 3-factor approximation algorithm to compute S̃
– If |S̃| > 3k then return INO.

– KS̃ : set of clique-side vertices included in S̃.
KS̃ = K ∩ S̃.

– IS̃ : set of independent-side vertices included in S̃.
IS̃ = I ∩ S̃.

25

– A simple 3-factor approximation algorithm to compute S̃
– If |S̃| > 3k then return INO.

– KS̃ : set of clique-side vertices included in S̃.
KS̃ = K ∩ S̃.

– IS̃ : set of independent-side vertices included in S̃.
IS̃ = I ∩ S̃.

25

– A simple 3-factor approximation algorithm to compute S̃
– If |S̃| > 3k then return INO.

– KS̃ : set of clique-side vertices included in S̃.
KS̃ = K ∩ S̃.

– IS̃ : set of independent-side vertices included in S̃.
IS̃ = I ∩ S̃.

25

– K0 : set of clique-side vertices not in S̃ whose neighbourhoods
in the independent-side I are all contained in IS̃ .
K0 = {u ∈ (K \ KS̃) ; N(u) ∩ I ⊆ IS̃};

– I0 : set of independent-side vertices not in S̃ whose
neighbourhoods are all contained in KS̃ .
I0 = {v ∈ I \ IS̃ ; N(v) ⊆ KS̃}

26

– K0 : set of clique-side vertices not in S̃ whose neighbourhoods
in the independent-side I are all contained in IS̃ .
K0 = {u ∈ (K \ KS̃) ; N(u) ∩ I ⊆ IS̃};

– I0 : set of independent-side vertices not in S̃ whose
neighbourhoods are all contained in KS̃ .
I0 = {v ∈ I \ IS̃ ; N(v) ⊆ KS̃}

26

• K1 : Remaining vertices in K .
K1 = K \ (KS̃ ∪ K0).

• I1 : Remaining vertices in I.
I1 = I \ (IS̃ ∪ I0).

27

• K1 : Remaining vertices in K .
K1 = K \ (KS̃ ∪ K0).

• I1 : Remaining vertices in I.
I1 = I \ (IS̃ ∪ I0).

27

Some observations:

– |KS̃ | ≤ 2k and |IS̃ | ≤ k.
– Each vertex in K1 has (i) no neighbour in I0 and (ii) at least

one neighbour in I1.

28

Some observations:

– |KS̃ | ≤ 2k and |IS̃ | ≤ k.

– Each vertex in K1 has (i) no neighbour in I0 and (ii) at least
one neighbour in I1.

28

Some observations:

– |KS̃ | ≤ 2k and |IS̃ | ≤ k.
– Each vertex in K1 has (i) no neighbour in I0 and (ii) at least

one neighbour in I1.

28

Some observations:

– Each vertex in I1 has exactly one neighbour in K1.
– The bipartite graph obtained from G [K1 ∪ I1] by deleting all

the edges in G [K1] is a forest where each connected component
is a star.

29

Some observations:

– Each vertex in I1 has exactly one neighbour in K1.

– The bipartite graph obtained from G [K1 ∪ I1] by deleting all
the edges in G [K1] is a forest where each connected component
is a star.

29

Some observations:

– Each vertex in I1 has exactly one neighbour in K1.
– The bipartite graph obtained from G [K1 ∪ I1] by deleting all

the edges in G [K1] is a forest where each connected component
is a star.

29

We bound

– K0 using 2-expansion on graph across K0 and IS̃ .
– K1 using 2-expansion on graph across K1 and S̃

30

Bounding |K0|

2-expansion across IS̃ and K0.

Solution intersects T -triangles in X ∪ Y .

Since K0 (and hence Y) interact with only IS̃ (and hence only X), it
is safe to pick all vertices in X to kill T -triangles in X ∪ Y .

31

Bounding |K0|

2-expansion across IS̃ and K0.

Solution intersects T -triangles in X ∪ Y .

Since K0 (and hence Y) interact with only IS̃ (and hence only X), it
is safe to pick all vertices in X to kill T -triangles in X ∪ Y .

31

Bounding |K0|

2-expansion across IS̃ and K0.

Solution intersects T -triangles in X ∪ Y .

Since K0 (and hence Y) interact with only IS̃ (and hence only X), it
is safe to pick all vertices in X to kill T -triangles in X ∪ Y .

31

Bounding |K1|

Construct auxilary bipartite graphs B across S̃ and K1.

32

2-Expansion across S̃ and K .

Shaded regions in S̃ and K1 represent sets X , Y , respectively.

33

2-Expansion across S̃ and K .

Shaded regions in S̃ and K1 represent sets X , Y , respectively.

33

2-Expansion across S̃ and K .

Shaded regions in S̃ and K1 represent sets X , Y , respectively.

33

Each vertex xi ∈ (X ∩KS̃) is a part of T -triangle with an edge in M.

34

Each vertex xj ∈ (X ∩ IS̃) is part of T -triangle with two edges in M.

35

We get |X | many pairwise vertex-disjoint T -triangles.

Let S be an optimum solution. We modify this to exclude all
vertices in Y .

36

We get |X | many pairwise vertex-disjoint T -triangles.

Let S be an optimum solution. We modify this to exclude all
vertices in Y .

36

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

– Step 1 ensures
• No isolated vertex in G .
• Every vertex in I is adjacent with some vertex in K

– Step 2 ensures that any vertex in K is adjacent with at most
k + 1 vertices in I.

– Step 3 ensures that size of K is at most 10k.
⇒ Size bound.

– We only use expansion lemma which can be applied in
poly-time.

37

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

– Step 1 ensures
• No isolated vertex in G .
• Every vertex in I is adjacent with some vertex in K

– Step 2 ensures that any vertex in K is adjacent with at most
k + 1 vertices in I.

– Step 3 ensures that size of K is at most 10k.
⇒ Size bound.

– We only use expansion lemma which can be applied in
poly-time.

37

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

– Step 1 ensures
• No isolated vertex in G .
• Every vertex in I is adjacent with some vertex in K

– Step 2 ensures that any vertex in K is adjacent with at most
k + 1 vertices in I.

– Step 3 ensures that size of K is at most 10k.
⇒ Size bound.

– We only use expansion lemma which can be applied in
poly-time.

37

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

– Step 1 ensures
• No isolated vertex in G .
• Every vertex in I is adjacent with some vertex in K

– Step 2 ensures that any vertex in K is adjacent with at most
k + 1 vertices in I.

– Step 3 ensures that size of K is at most 10k.
⇒ Size bound.

– We only use expansion lemma which can be applied in
poly-time.

37

Theorem
Subset-FVS in Split admits a kernel with O(k2) vertices and
O(k2) edges.

– Step 1 ensures
• No isolated vertex in G .
• Every vertex in I is adjacent with some vertex in K

– Step 2 ensures that any vertex in K is adjacent with at most
k + 1 vertices in I.

– Step 3 ensures that size of K is at most 10k.
⇒ Size bound.

– We only use expansion lemma which can be applied in
poly-time.

37

Conclusion and Open Questions

– A kernel of size O(k2) with O(k) and O(k2) vertices on the
clique and independent set sides respectively.

– Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k2−ε)?

– Can we obtain quadratic kernel for chordal graphs?
– An algorithm running in O∗(2k) to solve Subset FVS in

Chordal.
– Under ETH, sub-exponential FPT algorithms for this problem

are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

– Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by Hitting Set.

38

Conclusion and Open Questions

– A kernel of size O(k2) with O(k) and O(k2) vertices on the
clique and independent set sides respectively.

– Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k2−ε)?

– Can we obtain quadratic kernel for chordal graphs?
– An algorithm running in O∗(2k) to solve Subset FVS in

Chordal.
– Under ETH, sub-exponential FPT algorithms for this problem

are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

– Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by Hitting Set.

38

Conclusion and Open Questions

– A kernel of size O(k2) with O(k) and O(k2) vertices on the
clique and independent set sides respectively.

– Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k2−ε)?

– Can we obtain quadratic kernel for chordal graphs?

– An algorithm running in O∗(2k) to solve Subset FVS in
Chordal.

– Under ETH, sub-exponential FPT algorithms for this problem
are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

– Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by Hitting Set.

38

Conclusion and Open Questions

– A kernel of size O(k2) with O(k) and O(k2) vertices on the
clique and independent set sides respectively.

– Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k2−ε)?

– Can we obtain quadratic kernel for chordal graphs?
– An algorithm running in O∗(2k) to solve Subset FVS in

Chordal.

– Under ETH, sub-exponential FPT algorithms for this problem
are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

– Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by Hitting Set.

38

Conclusion and Open Questions

– A kernel of size O(k2) with O(k) and O(k2) vertices on the
clique and independent set sides respectively.

– Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k2−ε)?

– Can we obtain quadratic kernel for chordal graphs?
– An algorithm running in O∗(2k) to solve Subset FVS in

Chordal.
– Under ETH, sub-exponential FPT algorithms for this problem

are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

– Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by Hitting Set.

38

Conclusion and Open Questions

– A kernel of size O(k2) with O(k) and O(k2) vertices on the
clique and independent set sides respectively.

– Though size of kernel is optimum, can we bound the number of
vertices on the independent side by O(k2−ε)?

– Can we obtain quadratic kernel for chordal graphs?
– An algorithm running in O∗(2k) to solve Subset FVS in

Chordal.
– Under ETH, sub-exponential FPT algorithms for this problem

are ruled out. Is it possible to obtain an algorithm with a
smaller base in the running time?

– Interesting to investigate other implicit hitting set problems
from graph theory and obtain better kernel and FPT results
than the ones guaranteed by Hitting Set.

38

Thank you!

39

References i

Faisal N. Abu-Khzam.
A kernelization algorithm for d-hitting set.
J. Comput. Syst. Sci., 76(7):524–531, 2010.

Marek Cygan, Marcin Pilipczuk, Micha l Pilipczuk, and
Jakub Onufry Wojtaszczyk.
Subset feedback vertex set is fixed-parameter tractable.
SIAM Journal on Discrete Mathematics, 27(1):290–309, 2013.

Guy Even, Joseph Naor, and Leonid Zosin.
An 8-approximation algorithm for the subset feedback
vertex set problem.
SIAM Journal on Computing, 30(4):1231–1252, 2000.

40

References ii

Fedor V Fomin, Pinar Heggernes, Dieter Kratsch, Charis
Papadopoulos, and Yngve Villanger.
Enumerating minimal subset feedback vertex sets.
Algorithmica, 69(1):216–231, 2014.

Eva-Maria C Hols and Stefan Kratsch.
A randomized polynomial kernel for subset feedback
vertex set.
Theory of Computing Systems, 62(1):63–92, 2018.

41

References iii

Ken-ichi Kawarabayashi and Yusuke Kobayashi.
Fixed-parameter tractability for the subset feedback set
problem and the s-cycle packing problem.
Journal of Combinatorial Theory, Series B, 102(4):1020–1034,
2012.
Daniel Lokshtanov, MS Ramanujan, and Saket Saurabh.
Linear time parameterized algorithms for subset feedback
vertex set.
ACM Transactions on Algorithms (TALG), 14(1):7, 2018.

42

References iv

Magnus Wahlström.
Algorithms, measures and upper bounds for satisfiability
and related problems.
PhD thesis, Department of Computer and Information Science,
Linköpings universitet, 2007.

Magnus Wahlström.
Half-integrality, LP-branching and FPT algorithms.
In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 1762–1781. SIAM,
2014.

43

	The Problem
	Kernel : Overview
	Kernel : Step 1
	Kernel : Step 2 (Reducing neighbours in Ind-Set side)
	Expansion Lemma and its Matching version
	Kernel : Step 3 (Bounding the Size of the Clique Side)

