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- Modification Problemsℋ

Modification — (1) vertex deletion      (2) edge deletion  
                          (3) edge addition        (4) edge contraction 

Problem -Free Modification

VERTEX COVER Empty Graphs P2 Vertex Deletion

EDGE BIPARTIZATION Bipartite Graphs C3, C5, C6, … Edge Deletion

MINIMUM FILL-IN Chordal Graphs C4, C5, C6, … Edge Addition

CLUSTER EDITING Set of Cliques P3 Edge Add + Del.

-Free -Modification Problems ℱ

ℱℋ

≡



Modification — (1) vertex deletion      (2) edge deletion  
                          (3) edge addition        (4) edge contraction 

Theorem (Cai 1996): If  is bounded and (1), (2), and/or (3) then ℱ
  are FPT.

• VERTEX COVER is FPT 

• CLUSTER VERTEX EDITING is FPT.

-Free -Modification Problems ℱ



Modification — (1) vertex deletion      (2) edge deletion  
                          (3) edge addition        (4) edge contraction 

If  is infinite and (1), (2), and/or (3) then ℱ
  are FPT.

• MINIMUM FILL-IN is FPT (Cai ’96 + Kaplan ’96). 

• EDGE BIPARTIZATION is FPT (S. Wernicke 2003).

-Free -Modification Problems ℱ
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Modification — (1) vertex deletion      (2) edge deletion  
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 when only (4) is allowed?

TREE CONTRACTION 4k No poly kernel Heggernes et al. 
(2011)

CLIQUE CONTRACTION exp( k log (k) ) No poly kernel Cai et al. (2013)

PLANAR 
CONTRACTION FPT — Golavach et al. 

(2013)

BIPARTITE 
CONTRACTION  exp( k2 ) — Guillemot + Mark 

(2013)

-Free -Modification Problems ℱ
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Can we have generic theorem as that of Cai 1996?

Theorem (Lokshtanov et al. 2013 + Cai et al. 2013):  
If  contains only one graph (a path on >=5 or cycle on >= 4 vertices) then ℱ

  are is W[2]-hard.
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Theorem (Lokshtanov et al. 2013 + Cai et al. 2013):  
If  contains only one graph (a path on >=5 or cycle on >= 4 vertices) then ℱ

  are is W[2]-hard.

CHORDAL CONTRACTION is W[2]-hard.

Theorem (Agrawal et al. 2017): SPLIT CONTRACTION is W[1]-hard.
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 are more difficult than  their counterparts.

—  is infinite but contains simple structure like C4ℱ

—  is finite like { C4, C5, 2K2 }ℱ

—  is simply { P3 }ℱ

CHORDAL CONTRACTION  is W[2]-hard. 

SPLIT CONTRACTION  is W[1]-hard. 

CLIQUE CONTRACTION is FPT but no poly kernel.

-Free-Modification Problems ℱ
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CHORDAL CONTRACTION SPLIT CONTRACTION

CLIQUE CONTRACTION

No FPT algorithm for ,

No poly kernel for 

Can we have ⍺-FPT approximation algorithms for these problems?

Can we have ⍺-lossy kernel for this problem? 
⍺ > 1
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⍺-FPT approximation algorithms 

⍺-lossy kernel

⍺ > 1

Runs in FPT time 

If there is a solution X of size at most k  
then returns a solution of size at most ⍺|X|. 

On input (G, k) produces output (G’, k’) in polynomial time. 

Given c-factor solution S’ for (G’, k’) produces  
an (⍺ c)-factor solution S for (G, k) in polynomial time. 

Allowed to fail if S’ is really bad.  
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⍺-FPT approximation algorithms 

⍺-lossy kernel

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

⍺ > 2 there is an ⍺-lossy kernel of poly size for SPLIT CONTRACTION.
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1.25 > ⍺ there is no ⍺-FPT approx algo for SPLIT CONTRACTION under Gap-ETH.

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

Theorem : For any ⍺ > 1, CLIQUE CONTRACTION parameterised by the size of 
solution k admits an ⍺-lossy kernel with O(kd + 1) vertices where d = 1/ ⍺.

Theorem : Assuming Gap-ETH, no FPT algorithm can approximate SPLIT 
CONTRACTION within a factor of ⍺, for any ⍺ < 1.25.



CLIQUE CONTRACTION

( ⍺ -lossy kernel of polynomial size )
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CLIQUE CONTRACTION

Input   :  Graph G, integer k Para : k
Output : Output a set F of edges of minimum cardinality s.t.  
              G/F is a clique.

Every solution of size larger than k is equally bad.



allowed to fail (see board) 

w.l.o.g G is connected and has at least (k + 3) vertices 

any spanning tree is a trivial solution 

Trivial “no” instance : (Path on four vertices, 1)
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it can also be converted into a clique by 2k-vertex deletion.
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Observation : If G can be converted into a clique by k-edge contraction then  
it can also be converted into a clique by 2k-vertex deletion.

Every P3 is affected by contracted edges
Every P3 will be destroyed by deleting end-points of contracted edge. 

2-factor approx algo for vertex cover in compliment graph

Reduction Rule 1 :  Given (G, k)  find minimum sized X such that G-X is a clique. 
If |X| > 4k  then return no instance.



Solution lifting algorithm :  
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Solution lifting algorithm :  
• If un-changed, return same solution.  
• If no instance then return a spanning tree.

Lemma : RR-1 is 1-safe.

Reduction Rule 1 :  Given (G, k)  find minimum sized X such that G-X is a clique. 
If |X| > 4k  then return no instance.

— any solution for reduced instance is large
— algorithm is allowed to fail
— return a large solution (spanning tree)
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Role of vertices in Y

— Provide connectivity to witness sets coming out of X

For every subset X’ of X, mark a vertex which is  
common neighbour.

For every subset X’ of X, mark (2k + 1) vertices which are  
common non-neighbour.

Kernel of size O(2k) for CLIQUE CONTRACTION.

— Dictate witness sets in X



Role of vertices in Y
— Provide connectivity to witness sets coming out of X

For every subset X’ of X, mark a vertex which is  
common neighbour.

For every subset X’ of X, mark (2k + 1) vertices which are  
common non-neighbour.

For every subset X’ of X of size <= d, mark a vertex which is  
common neighbour.

For every subset X’ of X of size <= d, mark (2k + 1) vertices which are  
common non-neighbour.

d + 1
d <= ⍺ 

— Dictate witness sets in X



For every subset X’ of X of size <= d, mark a vertex which is  
common neighbour.

For every subset X’ of X of size <= d, mark (2k + 1) vertices which are  
common non-neighbour.

Reduction Rule 2 :  Mark vertices in Y and delete unmarked vertices.

RR-2 runs in poly-time on large instances.

d + 1
d <= ⍺ 



Solution Lifting Algorithm:  Add a vertex in Y to witness sets completely in X 
which are of size >= d.

Lemma : Size of obtained solution F is  <= ⍺ |F’|.

Y’ — deleted vertices.         (G’ = G\Y’, k) is new instance.
F’ is given solution for (G’, k)

Reduction Rule 2 :  Mark vertices in Y and delete unmarked vertices.



Solution Lifting Algorithm:  Add a vertex in Y to witness sets completely in X 
which are of size >= d.

Y’ — deleted vertices.         (G’ = G\Y’, k) is new instance.
F’ is given solution for (G’, k)

— Adding an extra edge for every d vertices

— Such vertex exists because of first marking

— Every witness set of size <=d in X is adjacent  with everything in Y’ 
     because of second marking

Lemma : Size of obtained solution F is  <= ⍺ |F’|.
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Lemma-1 : Size of obtained solution F is  <= ⍺ |F’|.

Reduction Rule 2 :  Given (G, k), mark vertices in Y and delete unmarked vertices.

Solution Lifting Algorithm:  Add a vertex in Y to witness sets completely in X 
which are of size >= d.

Lemma : RR-2 is ⍺ safe.

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT( G, k).



Lemma-1 : Size of obtained solution F is  <= ⍺ |F’|.

Reduction Rule 2 :  Given (G, k), mark vertices in Y and delete unmarked vertices.

Solution Lifting Algorithm:  Add a vertex in Y to witness sets completely in X 
which are of size >= d.

Lemma : RR-2 is ⍺ safe.

| F’ |

OPT( G’, k )
<=

| F |

OPT( G, k )
⍺ 

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT( G, k).



Theorem : For any ⍺ > 1, CLIQUE CONTRACTION parameterised by the size of 
solution k admits an ⍺-lossy kernel with O(kd + 1) vertices where d = 1/ ⍺.

Theorem : For any ⍺ > 2, SPLIT CONTRACTION parameterised by the size of 
solution k admits an ⍺-lossy kernel with O(kpoly(d)) vertices where d = 1/ ⍺.



SPLIT CONTRACTION

( Connecting ⍺ -FPT approx algo with ⍺-lossy kernel )
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Assume ⍺-lossy kernel of size f(k)

( G, k ) ( G’, k’ )

F’F

Compute optimum solution for ( G’, k’ ) in FPT time. 

s.t. if F’ is c-factor solution then F is (⍺ c)-factor solution.

Compute ⍺-factor solution for ( G, k ) in FPT time.

⍺-factor FPT approximation algorithm for SPLIT CONTRACTION.



Assume ⍺-lossy kernel of size f(k)

If there is a problem which 

— does not admit an ⍺-factor FPT approximation algorithm

— has a gap preserving reduction to SPLIT CONTRACTION

then no ⍺-lossy kernel of any size exists.

⍺-factor FPT approximation algorithm for SPLIT CONTRACTION.
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Guarantee : There is a cliques of size k in G. 
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Theorem (Chalermsook et al. FOCS 2017) : Assuming Gap-ETH, DENSEST k 
SUBGRAPH can not be solved in time f(k, t)poly(n) for any function f.

DENSEST k SUBGRAPH SPLIT CONTRACTION
( G, k, t, ε, β )  ( G’, k’ )

— Runs in FPT time.
— G’ can be contracted to a split graph with k’ edge contractions
     (because of guarantee) 
— For 1.25 > ⍺, given an ⍺ -factor solution for SPLIT CONTRACTION, 

we can obtain a solution for DENSEST k SUBGRAPH in poly-time. 



Theorem : Assuming Gap-ETH, no FPT algorithm can approximate SPLIT 
CONTRACTION within a factor of ⍺, for any ⍺ < 1.25.



To sum up…
Allowing only “edge contraction” makes  
Graph Modification Problems harder.  
 
— FPT algorithm   
— (classical) kernels  
— Exact algorithm. 

Can we obtain FPT approx algorithm and lossy kernels?



Lossy kernels for  
 
— TREE CONTRACTION                   (KMRT, FSTTCS 16) 
— BOUNDED TREE CONTRACTION          (ALST, CIAC 17) 
— (Tree + q edges) CONTRACTION           (AST, IPEC  17) 
— CACTUS CONTRACTION                (KRT, COCOON  18) 

Exact Algorithms 
 
— PATH CONTRACTION                      (ADFST, ICALP 19)  

Other successes 



Open Problems regarding Contraction
(No) kernels + lossy 
kernels 
 
— Planar graphs 
— Bi-partite graphs 
 
— Outer-planar graphs 
— Graphs of tw <= 2

FPT algorithm for 
 
— Interval graphs 
 
— Outer-planar graphs 
— Graph of tw <= 2 

Exact algorithms for 
 
— Tree Contraction 
— Clique Contraction *



Thank you.
( Any Questions? )


