
Lossy Kernels
for Graph Contraction Problems

Prafullkumar Tale
The Institute Of Mathematical Sciences, Chennai, India

Graph Modification Problems

Input : Graph G, integer k Para : k
Output : Can we make at most k modifications in G so that
 resulting graph is in ?ℋ

- Modification Problemsℋ

Graph Modification Problems

Input : Graph G, integer k Para : k
Output : Can we make at most k modifications in G so that
 resulting graph is in ?ℋ

- Modification Problemsℋ

 — Polynomial time recognisable graph classℋ

Graph Modification Problems

Input : Graph G, integer k Para : k
Output : Can we make at most k modifications in G so that
 resulting graph is in ?ℋ

- Modification Problemsℋ

 — Polynomial time recognisable graph classℋ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

- Modification Problemsℋ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

-Free -Modification Problems ℱ≡

- Modification Problemsℋ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

Problem -Free Modification

VERTEX COVER Empty Graphs P2 Vertex Deletion

EDGE BIPARTIZATION Bipartite Graphs C3, C5, C6, … Edge Deletion

MINIMUM FILL-IN Chordal Graphs C4, C5, C6, … Edge Addition

CLUSTER EDITING Set of Cliques P3 Edge Add + Del.

-Free -Modification Problems ℱ

ℱℋ

≡

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

Theorem (Cai 1996): If is bounded and (1), (2), and/or (3) then ℱ
 are FPT.

• VERTEX COVER is FPT

• CLUSTER VERTEX EDITING is FPT.

-Free -Modification Problems ℱ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

If is infinite and (1), (2), and/or (3) then ℱ
 are FPT.

• MINIMUM FILL-IN is FPT (Cai ’96 + Kaplan ’96).

• EDGE BIPARTIZATION is FPT (S. Wernicke 2003).

-Free -Modification Problems ℱ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

 when only (4) is allowed?-Free -Modification Problems ℱ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

 when only (4) is allowed?

TREE CONTRACTION 4k No poly kernel Heggernes et al.
(2011)

CLIQUE CONTRACTION exp(k log (k)) No poly kernel Cai et al. (2013)

PLANAR
CONTRACTION FPT — Golavach et al.

(2013)

BIPARTITE
CONTRACTION exp(k2) — Guillemot + Mark

(2013)

-Free -Modification Problems ℱ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

Can we have generic theorem as that of Cai 1996?

 when only (4) is allowed?-Free -Modification Problems ℱ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

Can we have generic theorem as that of Cai 1996? NO

 when only (4) is allowed?-Free -Modification Problems ℱ

Modification — (1) vertex deletion (2) edge deletion
 (3) edge addition (4) edge contraction

Can we have generic theorem as that of Cai 1996?

Theorem (Lokshtanov et al. 2013 + Cai et al. 2013):
If contains only one graph (a path on >=5 or cycle on >= 4 vertices) then ℱ

 are is W[2]-hard.

NO

-Free-Modification Problems ℱ

 when only (4) is allowed?-Free -Modification Problems ℱ

Theorem (Lokshtanov et al. 2013 + Cai et al. 2013):
If contains only one graph (a path on >=5 or cycle on >= 4 vertices) then ℱ

 are is W[2]-hard.

CHORDAL CONTRACTION is W[2]-hard.

-Free-Modification Problems ℱ

Theorem (Lokshtanov et al. 2013 + Cai et al. 2013):
If contains only one graph (a path on >=5 or cycle on >= 4 vertices) then ℱ

 are is W[2]-hard.

CHORDAL CONTRACTION is W[2]-hard.

Theorem (Agrawal et al. 2017): SPLIT CONTRACTION is W[1]-hard.

-Free-Modification Problems ℱ

 are more difficult than their counterparts.-Free-Modification Problems ℱ

 are more difficult than their counterparts.

— is infinite but contains simple structure like C4ℱ

-Free-Modification Problems ℱ

 are more difficult than their counterparts.

— is infinite but contains simple structure like C4ℱ

CHORDAL CONTRACTION is W[2]-hard.

-Free-Modification Problems ℱ

 are more difficult than their counterparts.

— is infinite but contains simple structure like C4ℱ

— is finite like { C4, C5, 2K2 }ℱ

CHORDAL CONTRACTION is W[2]-hard.

-Free-Modification Problems ℱ

 are more difficult than their counterparts.

— is infinite but contains simple structure like C4ℱ

— is finite like { C4, C5, 2K2 }ℱ

CHORDAL CONTRACTION is W[2]-hard.

SPLIT CONTRACTION is W[1]-hard.

-Free-Modification Problems ℱ

 are more difficult than their counterparts.

— is infinite but contains simple structure like C4ℱ

— is finite like { C4, C5, 2K2 }ℱ

— is simply { P3 }ℱ

CHORDAL CONTRACTION is W[2]-hard.

SPLIT CONTRACTION is W[1]-hard.

-Free-Modification Problems ℱ

 are more difficult than their counterparts.

— is infinite but contains simple structure like C4ℱ

— is finite like { C4, C5, 2K2 }ℱ

— is simply { P3 }ℱ

CHORDAL CONTRACTION is W[2]-hard.

SPLIT CONTRACTION is W[1]-hard.

CLIQUE CONTRACTION is FPT but no poly kernel.

-Free-Modification Problems ℱ

CHORDAL CONTRACTION SPLIT CONTRACTION

CLIQUE CONTRACTION

No FPT algorithm for ,

No poly kernel for

 are more difficult than their counterparts.-Free-Modification Problems ℱ

CHORDAL CONTRACTION SPLIT CONTRACTION

CLIQUE CONTRACTION

No FPT algorithm for ,

No poly kernel for

Can we have ⍺-FPT approximation algorithms for these problems?

 are more difficult than their counterparts.-Free-Modification Problems ℱ

CHORDAL CONTRACTION SPLIT CONTRACTION

CLIQUE CONTRACTION

No FPT algorithm for ,

No poly kernel for

Can we have ⍺-FPT approximation algorithms for these problems?

Can we have ⍺-lossy kernel for this problem?

 are more difficult than their counterparts.-Free-Modification Problems ℱ

CHORDAL CONTRACTION SPLIT CONTRACTION

CLIQUE CONTRACTION

No FPT algorithm for ,

No poly kernel for

Can we have ⍺-FPT approximation algorithms for these problems?

Can we have ⍺-lossy kernel for this problem?
⍺ > 1

 are more difficult than their counterparts.-Free-Modification Problems ℱ

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1

Runs in FPT time

If there is a solution X of size at most k
then returns a solution of size at most ⍺|X|.

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1

Runs in FPT time

If there is a solution X of size at most k
then returns a solution of size at most ⍺|X|.

On input (G, k) produces output (G’, k’) in polynomial time.

Given c-factor solution S’ for (G’, k’) produces
an (⍺ c)-factor solution S for (G, k) in polynomial time.

Allowed to fail if S’ is really bad.

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is no ⍺-FPT approx algo for CHORDAL CONTRACTION unless FPT W[1].≠

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is no ⍺-FPT approx algo for CHORDAL CONTRACTION unless FPT W[1].≠

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

⍺ > 1 there is no ⍺-FPT approx algo for CHORDAL CONTRACTION unless FPT W[1].≠

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

(Poly size — exponent depends on ⍺)

⍺ > 1 there is no ⍺-FPT approx algo for CHORDAL CONTRACTION unless FPT W[1].≠

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

⍺ > 2 there is an ⍺-lossy kernel of poly size for SPLIT CONTRACTION.

(Poly size — exponent depends on ⍺)

⍺ > 1 there is no ⍺-FPT approx algo for CHORDAL CONTRACTION unless FPT W[1].≠

⍺ > 2 there is an ⍺-FPT approx algo for SPLIT CONTRACTION.

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

⍺ > 2 there is an ⍺-lossy kernel of poly size for SPLIT CONTRACTION.

(Poly size — exponent depends on ⍺)

⍺ > 1 there is no ⍺-FPT approx algo for CHORDAL CONTRACTION unless FPT W[1].≠

⍺ > 2 there is an ⍺-FPT approx algo for SPLIT CONTRACTION.

1.25 > ⍺ there is no ⍺-FPT approx algo for SPLIT CONTRACTION under Gap-ETH.

⍺-FPT approximation algorithms

⍺-lossy kernel

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

⍺ > 2 there is an ⍺-lossy kernel of poly size for SPLIT CONTRACTION.

(Poly size — exponent depends on ⍺)

1.25 > ⍺ there is no ⍺-FPT approx algo for SPLIT CONTRACTION under Gap-ETH.

⍺ > 1 there is an ⍺-lossy kernel of poly size for CLIQUE CONTRACTION.

Theorem : For any ⍺ > 1, CLIQUE CONTRACTION parameterised by the size of
solution k admits an ⍺-lossy kernel with O(kd + 1) vertices where d = 1/ ⍺.

Theorem : Assuming Gap-ETH, no FPT algorithm can approximate SPLIT
CONTRACTION within a factor of ⍺, for any ⍺ < 1.25.

CLIQUE CONTRACTION

(⍺ -lossy kernel of polynomial size)

CLIQUE CONTRACTION

Input : Graph G, integer k Para : k
Output : Output a set F of edges of minimum cardinality s.t.
 G/F is a clique.

CLIQUE CONTRACTION

Input : Graph G, integer k Para : k
Output : Output a set F of edges of minimum cardinality s.t.
 G/F is a clique.

Every solution of size larger than k is equally bad.

allowed to fail (see board)

w.l.o.g G is connected and has at least (k + 3) vertices

any spanning tree is a trivial solution

Trivial “no” instance : (Path on four vertices, 1)

Observation : If G can be converted into a clique by k-edge contraction then
it can also be converted into a clique by 2k-vertex deletion.

Observation : If G can be converted into a clique by k-edge contraction then
it can also be converted into a clique by 2k-vertex deletion.

Every P3 is affected by contracted edges

Observation : If G can be converted into a clique by k-edge contraction then
it can also be converted into a clique by 2k-vertex deletion.

Every P3 is affected by contracted edges
Every P3 will be destroyed by deleting end-points of contracted edge.

Observation : If G can be converted into a clique by k-edge contraction then
it can also be converted into a clique by 2k-vertex deletion.

Every P3 is affected by contracted edges
Every P3 will be destroyed by deleting end-points of contracted edge.

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

Observation : If G can be converted into a clique by k-edge contraction then
it can also be converted into a clique by 2k-vertex deletion.

Every P3 is affected by contracted edges
Every P3 will be destroyed by deleting end-points of contracted edge.

2-factor approx algo for vertex cover in compliment graph

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

Solution lifting algorithm :
• If un-changed, return same solution.
• If no instance then return a spanning tree.

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

Solution lifting algorithm :
• If un-changed, return same solution.
• If no instance then return a spanning tree.

Lemma : RR-1 is 1-safe.

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

Solution lifting algorithm :
• If un-changed, return same solution.
• If no instance then return a spanning tree.

Lemma : RR-1 is 1-safe.

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

— any solution for reduced instance is large

Solution lifting algorithm :
• If un-changed, return same solution.
• If no instance then return a spanning tree.

Lemma : RR-1 is 1-safe.

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

— any solution for reduced instance is large
— algorithm is allowed to fail

Solution lifting algorithm :
• If un-changed, return same solution.
• If no instance then return a spanning tree.

Lemma : RR-1 is 1-safe.

Reduction Rule 1 : Given (G, k) find minimum sized X such that G-X is a clique.
If |X| > 4k then return no instance.

— any solution for reduced instance is large
— algorithm is allowed to fail
— return a large solution (spanning tree)

CLIQUE CONTRACTION :: Partition of V(G) s. t.

1. Each part (called witness set) is connected

2. Any two witness sets are adjacent with each other.

Partition (X, Y) of V(G)

• X is small
• Y induces a clique

CLIQUE CONTRACTION :: Partition of V(G) s. t.

1. Each part (called witness set) is connected

2. Any two witness sets are adjacent with each other.

Partition (X, Y) of V(G)

• X is small
• Y induces a clique

CLIQUE CONTRACTION :: Partition of V(G) s. t.

1. Each part (called witness set) is connected

2. Any two witness sets are adjacent with each other.

Role of vertices in Y

Partition (X, Y) of V(G)

• X is small
• Y induces a clique

CLIQUE CONTRACTION :: Partition of V(G) s. t.

1. Each part (called witness set) is connected

2. Any two witness sets are adjacent with each other.

Role of vertices in Y
— Provide connectivity to witness sets coming out of X

Partition (X, Y) of V(G)

• X is small
• Y induces a clique

CLIQUE CONTRACTION :: Partition of V(G) s. t.

1. Each part (called witness set) is connected

2. Any two witness sets are adjacent with each other.

Role of vertices in Y
— Provide connectivity to witness sets coming out of X
— Dictate witness sets in X

Role of vertices in Y

— Provide connectivity to witness sets coming out of X

— Dictate witness sets in X

Role of vertices in Y

— Provide connectivity to witness sets coming out of X

For every subset X’ of X, mark a vertex which is
common neighbour.

— Dictate witness sets in X

Role of vertices in Y

— Provide connectivity to witness sets coming out of X

For every subset X’ of X, mark a vertex which is
common neighbour.

For every subset X’ of X, mark (2k + 1) vertices which are
common non-neighbour.

— Dictate witness sets in X

Role of vertices in Y

— Provide connectivity to witness sets coming out of X

For every subset X’ of X, mark a vertex which is
common neighbour.

For every subset X’ of X, mark (2k + 1) vertices which are
common non-neighbour.

Kernel of size O(2k) for CLIQUE CONTRACTION.

— Dictate witness sets in X

Role of vertices in Y
— Provide connectivity to witness sets coming out of X

For every subset X’ of X, mark a vertex which is
common neighbour.

For every subset X’ of X, mark (2k + 1) vertices which are
common non-neighbour.

For every subset X’ of X of size <= d, mark a vertex which is
common neighbour.

For every subset X’ of X of size <= d, mark (2k + 1) vertices which are
common non-neighbour.

d + 1
d <= ⍺

— Dictate witness sets in X

For every subset X’ of X of size <= d, mark a vertex which is
common neighbour.

For every subset X’ of X of size <= d, mark (2k + 1) vertices which are
common non-neighbour.

Reduction Rule 2 : Mark vertices in Y and delete unmarked vertices.

RR-2 runs in poly-time on large instances.

d + 1
d <= ⍺

Solution Lifting Algorithm: Add a vertex in Y to witness sets completely in X
which are of size >= d.

Lemma : Size of obtained solution F is <= ⍺ |F’|.

Y’ — deleted vertices. (G’ = G\Y’, k) is new instance.
F’ is given solution for (G’, k)

Reduction Rule 2 : Mark vertices in Y and delete unmarked vertices.

Solution Lifting Algorithm: Add a vertex in Y to witness sets completely in X
which are of size >= d.

Y’ — deleted vertices. (G’ = G\Y’, k) is new instance.
F’ is given solution for (G’, k)

— Adding an extra edge for every d vertices

— Such vertex exists because of first marking

— Every witness set of size <=d in X is adjacent with everything in Y’
 because of second marking

Lemma : Size of obtained solution F is <= ⍺ |F’|.

Lemma-1 : Size of obtained solution F is <= ⍺ |F’|.

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT(G, k).

(G, k) (G’, k)

Lemma-1 : Size of obtained solution F is <= ⍺ |F’|.

— Witness sets completely in Y\Y’

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT(G, k).

(G, k) (G’, k)

Lemma-1 : Size of obtained solution F is <= ⍺ |F’|.

— Witness sets intersecting Y and Y\Y’

— Witness sets completely in Y\Y’

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT(G, k).

(G, k) (G’, k)

Lemma-1 : Size of obtained solution F is <= ⍺ |F’|.

— Witness sets intersecting Y and Y\Y’

— Witness sets completely in Y\Y’

— Witness sets intersecting X and Y\Y’

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT(G, k).

(G, k) (G’, k)

Lemma-1 : Size of obtained solution F is <= ⍺ |F’|.

Reduction Rule 2 : Given (G, k), mark vertices in Y and delete unmarked vertices.

Solution Lifting Algorithm: Add a vertex in Y to witness sets completely in X
which are of size >= d.

Lemma : RR-2 is ⍺ safe.

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT(G, k).

Lemma-1 : Size of obtained solution F is <= ⍺ |F’|.

Reduction Rule 2 : Given (G, k), mark vertices in Y and delete unmarked vertices.

Solution Lifting Algorithm: Add a vertex in Y to witness sets completely in X
which are of size >= d.

Lemma : RR-2 is ⍺ safe.

| F’ |

OPT(G’, k)
<=

| F |

OPT(G, k)
⍺

Lemma-2 : Optimum does not increase. i.e. OPT(G’, k) <= OPT(G, k).

Theorem : For any ⍺ > 1, CLIQUE CONTRACTION parameterised by the size of
solution k admits an ⍺-lossy kernel with O(kd + 1) vertices where d = 1/ ⍺.

Theorem : For any ⍺ > 2, SPLIT CONTRACTION parameterised by the size of
solution k admits an ⍺-lossy kernel with O(kpoly(d)) vertices where d = 1/ ⍺.

SPLIT CONTRACTION

(Connecting ⍺ -FPT approx algo with ⍺-lossy kernel)

Assume ⍺-lossy kernel of size f(k)

(G, k) (G’, k’)

F’F

s.t. if F’ is c-factor solution then F is (⍺ c)-factor solution.

Assume ⍺-lossy kernel of size f(k)

(G, k) (G’, k’)

F’F

Compute optimum solution for (G’, k’) in FPT time.

s.t. if F’ is c-factor solution then F is (⍺ c)-factor solution.

Assume ⍺-lossy kernel of size f(k)

(G, k) (G’, k’)

F’F

Compute optimum solution for (G’, k’) in FPT time.

s.t. if F’ is c-factor solution then F is (⍺ c)-factor solution.

Compute ⍺-factor solution for (G, k) in FPT time.

Assume ⍺-lossy kernel of size f(k)

(G, k) (G’, k’)

F’F

Compute optimum solution for (G’, k’) in FPT time.

s.t. if F’ is c-factor solution then F is (⍺ c)-factor solution.

Compute ⍺-factor solution for (G, k) in FPT time.

⍺-factor FPT approximation algorithm for SPLIT CONTRACTION.

Assume ⍺-lossy kernel of size f(k)

If there is a problem which

— does not admit an ⍺-factor FPT approximation algorithm

— has a gap preserving reduction to SPLIT CONTRACTION

then no ⍺-lossy kernel of any size exists.

⍺-factor FPT approximation algorithm for SPLIT CONTRACTION.

Input : Graph G, integers k, t and constants ε < 1 < β

Output : Are there at least β k vertices which spans ε t many edges?

DENSEST k SUBGRAPH

Parameters : k + t

Guarantee : There is a cliques of size k in G.

Input : Graph G, integers k, t and constants ε < 1 < β

Output : Are there at least β k vertices which spans ε t many edges?

DENSEST k SUBGRAPH

Parameters : k + t

Guarantee : There is a cliques of size k in G.

Theorem (Chalermsook et al. FOCS 2017) : Assuming Gap-ETH, DENSEST k
SUBGRAPH can not be solved in time f(k, t)poly(n) for any function f.

Theorem (Chalermsook et al. FOCS 2017) : Assuming Gap-ETH, DENSEST k
SUBGRAPH can not be solved in time f(k, t)poly(n) for any function f.

DENSEST k SUBGRAPH SPLIT CONTRACTION
(G, k, t, ε, β) (G’, k’)

Theorem (Chalermsook et al. FOCS 2017) : Assuming Gap-ETH, DENSEST k
SUBGRAPH can not be solved in time f(k, t)poly(n) for any function f.

DENSEST k SUBGRAPH SPLIT CONTRACTION
(G, k, t, ε, β) (G’, k’)

— Runs in FPT time.

Theorem (Chalermsook et al. FOCS 2017) : Assuming Gap-ETH, DENSEST k
SUBGRAPH can not be solved in time f(k, t)poly(n) for any function f.

DENSEST k SUBGRAPH SPLIT CONTRACTION
(G, k, t, ε, β) (G’, k’)

— Runs in FPT time.
— G’ can be contracted to a split graph with k’ edge contractions
 (because of guarantee)

Theorem (Chalermsook et al. FOCS 2017) : Assuming Gap-ETH, DENSEST k
SUBGRAPH can not be solved in time f(k, t)poly(n) for any function f.

DENSEST k SUBGRAPH SPLIT CONTRACTION
(G, k, t, ε, β) (G’, k’)

— Runs in FPT time.
— G’ can be contracted to a split graph with k’ edge contractions
 (because of guarantee)
— For 1.25 > ⍺, given an ⍺ -factor solution for SPLIT CONTRACTION,

we can obtain a solution for DENSEST k SUBGRAPH in poly-time.

Theorem : Assuming Gap-ETH, no FPT algorithm can approximate SPLIT
CONTRACTION within a factor of ⍺, for any ⍺ < 1.25.

To sum up…
Allowing only “edge contraction” makes
Graph Modification Problems harder.

— FPT algorithm
— (classical) kernels
— Exact algorithm.

Can we obtain FPT approx algorithm and lossy kernels?

Lossy kernels for

— TREE CONTRACTION (KMRT, FSTTCS 16)
— BOUNDED TREE CONTRACTION (ALST, CIAC 17)
— (Tree + q edges) CONTRACTION (AST, IPEC 17)
— CACTUS CONTRACTION (KRT, COCOON 18)

Exact Algorithms

— PATH CONTRACTION (ADFST, ICALP 19)

Other successes

Open Problems regarding Contraction
(No) kernels + lossy
kernels

— Planar graphs
— Bi-partite graphs

— Outer-planar graphs
— Graphs of tw <= 2

FPT algorithm for

— Interval graphs

— Outer-planar graphs
— Graph of tw <= 2

Exact algorithms for

— Tree Contraction
— Clique Contraction *

Thank you.
(Any Questions?)

