Parameterized Complexity of Maximum Edge Colorable Subgraph

A. Agrawal ${ }^{1} \quad$ M. Kundu ${ }^{2} \quad$ A. Sahu ${ }^{3} \quad$ S. Saurabh ${ }^{3,4} \quad$ P. Tale ${ }^{5}$
${ }^{1}$ Ben Gurion University of the Negev, Israel.
${ }^{2}$ Indian Statistical Institute, Kolkata, India.
${ }^{3}$ The Institute of Mathematical Sciences, HBNI, Chennai, India.
${ }^{4}$ University of Bergen, Bergen, Norway.
${ }^{5}$ Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

August 25, 2020

Maximum Edge-Colorable Subgraph

Problem

Maximum Edge-Colorable Subgraph Problem

Input: A graph G, integers l and p.
Question: Find a subgraph H of G and a p-edge coloring of H, such that $|E(H)| \geq l$.
p-Edge Coloring of G : Function $\psi: E(G) \rightarrow\{1,2, \ldots, p\}$ s.t. any two edges having common end point receive different colors. Maximum Matching is a special case of Maximum Edge Colorable Subgraph when $p=1$.

Maximum Edge-Colorable Subgraph

Problem

Maximum Edge-Colorable Subgraph Problem

Input: A graph G, integers l and p.
Question: Find a subgraph H of G and a p-edge coloring of H, such that $|E(H)| \geq l$.

Maximum Edge-Colorable Subgraph

Problem

Maximum Edge-Colorable Subgraph Problem

Input: A graph G, integers l and p.
Question: Find a subgraph H of G and a p-edge coloring of H, such that $|E(H)| \geq l$.
p-Edge Coloring of G : Function $\psi: E(G) \rightarrow\{1,2, \ldots, p\}$ s.t. any two edges having common end point receive different colors.

Maximum Edge-Colorable Subgraph

Problem

Maximum Edge-Colorable Subgraph Problem

Input: A graph G, integers l and p.
Question: Find a subgraph H of G and a p-edge coloring of H, such that $|E(H)| \geq l$.
p-Edge Coloring of G : Function $\psi: E(G) \rightarrow\{1,2, \ldots, p\}$ s.t. any two edges having common end point receive different colors. Maximum Matching is a special case of Maximum Edge Colorable Subgraph when $p=1$.

Example

Figure: $p=2$ and $l=9$

Example

Figure: $p=2$ and $l=9$

Outline

- Parameterized Complexity
- Known Results
- Our Contributions
- Techniques Used
- Open Questions

Parameterized Complexity

- Goal is to find better ways of solving NP-Hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time $f(k) \cdot|I|^{O(1)}$.

Vertex Cover (G, k)	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$
Feedback Vertex $\operatorname{Set}(G, k)$	$\mathcal{O}\left(3.46^{k} \cdot n^{c}\right)$
Independent $\operatorname{Set}(G, k)$	No $f(k) \cdot\|I\|^{\mathcal{O}(1)}$

Parameterized Complexity

- Goal is to find better ways of solving NP-Hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time $f(k) \cdot|I|^{\mathcal{O}(1)}$

Vertex Cover (G, k)	$O\left(1.27^{k} \cdot n^{2}\right)$
Feedback $\operatorname{Vertex} \operatorname{Set}(G, k)$	$O\left(3.46^{k} \cdot n^{c}\right)$
Independent $\operatorname{Set}(G, k)$	$\mathrm{Nof}(k) \cdot\|I\|^{O(1)}$

Parameterized Complexity

- Goal is to find better ways of solving NP-Hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time $f(k) \cdot|I|^{\mathcal{O}(1)}$

Vertex Cover (G, k)	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$
Feedback Vertex $\operatorname{Set}(G, k)$	$\mathcal{O}\left(3.46^{k} \cdot n^{c}\right)$
Independent $\operatorname{Set}(G, k)$	No $f(k) \cdot\|I\|^{\mathcal{O}(1)}$

Parameterized Complexity

- Goal is to find better ways of solving NP-Hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time $f(k) \cdot|I|$

Vertex Cover (G, k)	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$
Feedback $\operatorname{Vertex} \operatorname{Set}(G, k)$	$\mathcal{O}\left(3.46^{k} \cdot n^{c}\right)$
Independent $\operatorname{Set}(G, k)$	No $f(k) \cdot\|I\|^{\mathcal{O}(1)}$

Parameterized Complexity

- Goal is to find better ways of solving NP-Hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time $f(k) \cdot|I|^{\mathcal{O}(1)}$.

Parameterized Complexity

- Goal is to find better ways of solving NP-Hard problems
- Associate (small) parameter k to each instance I
- Restrict the combinatorial explosion to a parameter k
- Parameterized problem (I, k) is fixed-parameter tractable (FPT) if there is an algorithm that solves the problem in time $f(k) \cdot|I|^{\mathcal{O}(1)}$.

$\operatorname{Vertex~Cover}(G, k)$	$\mathcal{O}\left(1.27^{k} \cdot n^{2}\right)$
Feedback $\operatorname{Vertex~} \operatorname{Set}(G, k)$	$\mathcal{O}\left(3.46^{k} \cdot n^{c}\right)$
Independent $\operatorname{Set}(G, k)$	No $f(k) \cdot\|I\|^{\mathcal{O}(1)}$

Kernelization

- A parameterized problem admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces the input instance to an equivalent smaller instance with size upper bounded by $h(k)$.
- Goal is to bound the size of instance with some function of parameter.

Vertex $\operatorname{Cover}(G, k)$	$\mathcal{O}(k)$
$\operatorname{Feedback} \operatorname{Vertex} \operatorname{Set}(G, k)$	$\mathcal{O}\left(k^{3}\right)$
Independent $\operatorname{Set}(G, k)$	No such $h(k)$

Kernelization

- A parameterized problem admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces the input instance to an equivalent smaller instance with size upper bounded by $h(k)$.
- Goal is to bound the size of instance with some function of parameter.

Kernelization

- A parameterized problem admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces the input instance to an equivalent smaller instance with size upper bounded by $h(k)$.
- Goal is to bound the size of instance with some function of parameter.

Kernelization

- A parameterized problem admits a $h(k)$-kernel if there is a polynomial time algorithm that reduces the input instance to an equivalent smaller instance with size upper bounded by $h(k)$.
- Goal is to bound the size of instance with some function of parameter.

$\operatorname{Vertex~} \operatorname{Cover}(G, k)$	$\mathcal{O}(k)$
$\operatorname{Feedback~Vertex~} \operatorname{Set}(G, k)$	$\mathcal{O}\left(k^{3}\right)$
Independent $\operatorname{Set}(G, k)$	No such $h(k)$

Structural Parameterization

- Associating right parameter is an art.
- Ohvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc (G) minimum number of vertices needed to be deleted to obtain independent set.
- l - $m m(G)$ $\mathrm{mm}(G)$ is the size of a maximum matching in G.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if the degree of each vertex in $G-X$ is at most 1 .

Structural Parameterization

- Associating right parameter is an art.
- Obvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc(G)
minimum number of vertices needed to be deleted to obtain independent set.
- l - mm (G)
$\operatorname{mm}(G)$ is the size of a maximum matching in G.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if the degree of each vertex in $G-X$ is at most 1 .

Structural Parameterization

- Associating right parameter is an art.
- Obvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc (G)
minimum number of vertices needed to be deleted to obtain independent set.
- $l-m m(G)$
$m m(G)$ is the size of a maximum matching in G.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if
the degree of each vertex in $G-X$ is at most 1 .

Structural Parameterization

- Associating right parameter is an art.
- Obvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc (G)
minimum number of vertices needed to be deleted to obtain independent set.
- l - mm (G)
$\mathrm{mm}(G)$ is the size of a maximum matching in G.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if
the degree of each vertex in $G-X$ is at most 1

Structural Parameterization

- Associating right parameter is an art.
- Obvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc (G) minimum number of vertices needed to be deleted to obtain independent set.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if
the degree of each vertex in $G-X$ is at most 1

Structural Parameterization

- Associating right parameter is an art.
- Obvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc (G)
minimum number of vertices needed to be deleted to obtain independent set.
- l - $m m(G)$
$\mathrm{mm}(G)$ is the size of a maximum matching in G.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if
the degree of each vertex in $G-X$ is at most 1

Structural Parameterization

- Associating right parameter is an art.
- Obvious choice : solution size (in this case l)
- Structural Parameters:
- Vertex cover number, vc (G)
minimum number of vertices needed to be deleted to obtain independent set.
- l - $m m(G)$
$\mathrm{mm}(G)$ is the size of a maximum matching in G.
- Deg-1-modulator

For a graph G, a set $X \subseteq V(G)$ is a deg-1-modulator of G, if the degree of each vertex in $G-X$ is at most 1 .

Problem Statement with Parameters

Problem

Maximum Edge-Colorable Subgraph Problem
Input: A graph G, integers l and p.
Parameters: k where k is

- The solution size (l)
- vertex cover number, vc (G)
- $l-\mathrm{mm}(G)$

Question: Find a subgraph H of G and a p-edge-coloring of H, such that $|E(H)| \geq l$.

Known Results

- Vizing Theorem : $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$
- $\Delta(G)$ is the maximum degree of a vertex in G
- $\chi^{\prime}(G)$ is the smallest integer p for which G is p-edge colorable (also called chromatic index)
- Holyer (1981): Deciding chromatic index of G is $\Delta(G)$ or $\Delta(G)+1$ is NP-Hard (even for cubic graphs).
- Feige (2002): Maximum Edge Colorable Subgraph is NP-Hard even for $p=2$.

Known Results

- Vizing Theorem : $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$
- $\Delta(G)$ is the maximum degree of a vertex in G
- $\chi^{\prime}(G)$ is the smallest integer p for which G is p-edge colorable (also called chromatic index)
- Holyer (1981): Deciding chromatic index of G is $\Delta(G)$ or $\Delta(G)+1$ is NP-Hard (even for cubic graphs).

Known Results

- Vizing Theorem : $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$
- $\Delta(G)$ is the maximum degree of a vertex in G
- $\chi^{\prime}(G)$ is the smallest integer p for which G is p-edge colorable (also called chromatic index)
- Holyer (1981): Deciding chromatic index of G is $\Delta(G)$ or $\Delta(G)+1$ is NP-Hard (even for cubic graphs).
- Feige (2002): Maximum Edge Colorable Subgraph is NP-Hard even for $p=2$.

Known Results

- Feige (2002): A constant factor approximation algorithm. NP-Hard to get $(1-\epsilon)$-approximation algorithm for every fixed $p \geq 2$.
- Aloisioa and Mkrtchyana (2019): The problem is FPT w.r.t. structural graph parameters like path-width, curving-width when $p=2$.

Known Results

- Feige (2002): A constant factor approximation algorithm. NP-Hard to get $(1-\epsilon)$-approximation algorithm for every fixed $p \geq 2$.
- Aloisioa and Mkrtchyana (2019): The problem is FPT w.r.t. structural graph parameters like path-width, curving-width when $p=2$.

Known Results

- Feige (2002): A constant factor approximation algorithm. NP-Hard to get $(1-\epsilon)$-approximation algorithm for every fixed $p \geq 2$.
- Aloisioa and Mkrtchyana (2019): The problem is FPT w.r.t. structural graph parameters like path-width, curving-width when $p=2$.

Known Results

- Grüttemeier (2020): Obtained kernels, when the parameter is $p+k$, where k is one of the following:
- the number of edges that needs to be deleted from G, to obtain a graph with maximum degree at most $p-1$
- the deletion set size to a graph whose connected components have at most p vertices
- Galby (2019): Proved Edge Coloring is FPT when parameterized by the number of colors, (p) and the number of vertices having the maximum degree.

Known Results

- Grüttemeier (2020): Obtained kernels, when the parameter is $p+k$, where k is one of the following:
- the number of edges that needs to be deleted from G, to obtain a graph with maximum degree at most $p-1$
- the deletion set size to a graph whose connected components have at most p vertices
- Galby (2019): Proved Edge Coloring is FPT when parameterized by the number of colors, (p) and the number of vertices having the maximum degree.

Known Results

- Grüttemeier (2020): Obtained kernels, when the parameter is $p+k$, where k is one of the following:
- the number of edges that needs to be deleted from G, to obtain a graph with maximum degree at most $p-1$
- the deletion set size to a graph whose connected components have at most p vertices
- Galby (2019): Proved Edge Coloring is FPT when parameterized by the number of colors, (p) and the number of vertices having the maximum degree.

Our Contribution

We denote $k_{1} \preceq k_{2}$ and say k_{1} is smaller than k_{2} if there exists a computable function $g(\cdot)$ such that $k_{1} \leq g\left(k_{2}\right)$.

Observation

For a given instance (G, l, p) of Maximum Edge Colorable Subgraph, in polynomial time, we can conclude that either (G, l, p) is a Yes instance or $\operatorname{vc}(G) \preceq l$ and $|X| \preceq(l-\mathrm{mm}(G))$, where X is a minimum sized deg-1modulator of G.

Our Contribution

Theorem

Maximum Edge Colorable Subgraph, parameterized by the vertex cover number, $\mathrm{vc}(\mathrm{G})$ of G, is FPT.

Our Contribution

Theorem

There exists a deterministic algorithm \mathcal{A} and a randomized algorithm \mathcal{B} with constant probability of success that solves Maximum Edge Colorable Subgraph. For a given instance (G, l, p), Algorithms \mathcal{A} and \mathcal{B} terminate in time $\mathcal{O}^{*}\left(4^{l+o(l)}\right)$ and $\mathcal{O}^{*}\left(2^{l}\right)$, respectively.

Our Contribution

Theorem

Maximum Edge Colorable Subgraph admits a kernel with $\mathcal{O}(k p)$ vertices, for every $k \in\{\ell, \mathrm{vc}(G), l-\mathrm{mm}(G)\}$.

Theorem

For any $k \in\{\ell, \operatorname{vc}(G), l-\operatorname{mm}(G)\}$, Maximum Edge Colorable Subgraph does not admit a compression of size $\mathcal{O}\left(k^{1-\epsilon} \cdot f(p)\right)$, for any $\epsilon>0$ and computable function f, unless NP \subseteq coNP/poly

Our Contribution

Theorem

Maximum Edge Colorable Subgraph admits a kernel with $\mathcal{O}(k p)$ vertices, for every $k \in\{\ell, \mathrm{vc}(G), l-\mathrm{mm}(G)\}$.

Theorem

For any $k \in\{\ell, \mathrm{vc}(G), l-\mathrm{mm}(G)\}$, Maximum Edge Colorable Subgraph does not admit a compression of size $\mathcal{O}\left(k^{1-\epsilon} \cdot f(p)\right)$, for any $\epsilon>0$ and computable function f, unless NP \subseteq coNP/poly.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\operatorname{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\operatorname{vc}(G))$
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution
- X be a vertex cover of G.
- We "guess" $H^{\prime}=H[X]$ and $\phi^{\prime}=\left.\phi\right|_{E\left(H^{\prime}\right)}$.
- Use ILP to find extension of this guess.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\mathrm{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\mathrm{vc}(G))$.
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution
- X be a vertex cover of G.
- We "guess" $H^{\prime}=H[X]$ and $\phi^{\prime}=\left.\phi\right|_{E\left(H^{\prime}\right)}$
- Use ILP to find extension of this guess.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\mathrm{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\mathrm{vc}(G))$.
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution
- X be a vertex cover of G.
- We "guess" $H^{\prime}=H[X]$ and $\phi^{\prime}=\phi_{E\left(H^{\prime}\right)}$
- Use ILP to find extension of this guess.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\mathrm{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\mathrm{vc}(G))$.
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution

- Use ILP to find extension of this guess.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\mathrm{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\mathrm{vc}(G))$.
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution
- X be a vertex cover of G.
- We "guess" $H^{\prime}=H[X]$ and $\phi^{\prime}=\left.\phi\right|_{E\left(H^{\prime}\right)}$
- Use ILP to find extension of this guess.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\mathrm{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\mathrm{vc}(G))$.
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution
- X be a vertex cover of G.
- We "guess" $H^{\prime}=H[X]$ and $\phi^{\prime}=\left.\phi\right|_{E\left(H^{\prime}\right)}$.
- Use ILP to find extension of this guess.

Techniques Used for FPT Paremeterized by vc(G)

- For a given instance, our algorithm creates $f(\mathrm{vc}(G))$-many instances of ILP with nr. of variable bounded by $h(\mathrm{vc}(G))$.
- Kannan, Lenstra: ILP is FPT para. by nr. of variable
- For the instance (G, l, p), let (H, ϕ) is the solution
- X be a vertex cover of G.
- We "guess" $H^{\prime}=H[X]$ and $\phi^{\prime}=\left.\phi\right|_{E\left(H^{\prime}\right)}$.
- Use ILP to find extension of this guess.

Techniques Used for Deterministic and Randomized Algorithms

The Algorithms \mathcal{A} (deterministic algorithm) and \mathcal{B} (randomized algorithm) use different sets of ideas.

- Algorithm \mathcal{A}, uses a combination of the technique of Color-Coding and Divide and Color.
- Algorithm \mathcal{B} uses the algorithm to solve Rainbow Matching as a black-box.

Techniques Used for Deterministic and Randomized Algorithms

The Algorithms \mathcal{A} (deterministic algorithm) and \mathcal{B} (randomized algorithm) use different sets of ideas.

- Algorithm \mathcal{A}, uses a combination of the technique of Color-Coding and Divide and Color.
- Algorithm \mathcal{B} uses the algorithm to solve R ainkow Matching as a black-box.

Techniques Used for Deterministic and Randomized Algorithms

The Algorithms \mathcal{A} (deterministic algorithm) and \mathcal{B} (randomized algorithm) use different sets of ideas.

- Algorithm \mathcal{A}, uses a combination of the technique of Color-Coding and Divide and Color.
- Algorithm \mathcal{B} uses the algorithm to solve Rainbow Matching as a black-box.

Techniques Used for Deterministic And Randomized Algorithms

The Algorithms \mathcal{A} (deterministic algorithm) and \mathcal{B} (randomized algorithm) use different sets of ideas.

- Algorithm \mathcal{A}, uses a combination of the technique of Color-Coding and Divide and Color.
- Algorithm \mathcal{B} uses the algorithm to solve Rainbow Matching as a black-box.

Techniques Used for Kernel

The technique that is used to find kernel is Expansion Lemma
t-expansion of P into Q is a set of edges $M \subseteq E(G)$ if (i) every vertex of P is incident with exactly t edges of M, and (ii) the number of vertices in Q which are incident with at least one edge in M is exactly $t|P|$.

Lemma: Expansion Lemma

Let t be a positive integer and G be a bipartite graph with vertex bipartition (P, Q) such that $|Q| \geq t|P|$ and there are no isolated vertices in Q. Then there exist nonempty vertex sets $P^{\prime} \subseteq P$ and $Q^{\prime} \subseteq Q$ such that

- P^{\prime} has a t-expansion into Q^{\prime}
- no vertex in Q^{\prime} has a neighbour outside P^{\prime}

Furthermore two such sets P^{\prime} and Q^{\prime} can be found in time polynomial in the size of G.

Techniques Used for Kernel

The technique that is used to find kernel is Expansion Lemma t-expansion of P into Q is a set of edges $M \subseteq E(G)$ if (i) every vertex of P is incident with exactly t edges of M, and (ii) the number of vertices in Q which are incident with at least one edge in M is exactly $t|P|$.

Lemma: Expansion Lemma

Techniques Used for Kernel

The technique that is used to find kernel is Expansion Lemma t-expansion of P into Q is a set of edges $M \subseteq E(G)$ if (i) every vertex of P is incident with exactly t edges of M, and (ii) the number of vertices in Q which are incident with at least one edge in M is exactly $t|P|$.

Lemma: Expansion Lemma

Let t be a positive integer and G be a bipartite graph with vertex bipartition (P, Q) such that $|Q| \geq t|P|$ and there are no isolated vertices in Q. Then there exist nonempty vertex sets $P^{\prime} \subseteq P$ and $Q^{\prime} \subseteq Q$ such that

- P^{\prime} has a t-expansion into Q^{\prime}
- no vertex in Q^{\prime} has a neighbour outside P^{\prime}.

Furthermore two such sets P^{\prime} and Q^{\prime} can be found in time polynomial in the size of G.

Techniques Used: For kernel lower bounds

- Reduction from Red Blue Dominating Set (RBDS)
- Given instance (G, R, B, k) of RBDS reduction produce $\left(G^{\prime}, \ell, p\right)$ of Maximum Edge Colorable Subgraph s.t. $\ell=|E(G)|-k$ and p is a constant.
- Jansen and Pieterse (2015): RBDS does not admit a compression of size $\mathcal{O}\left(n^{2-\epsilon}\right)$.
- This implies the desired lower bound.

Techniques Used: For kernel lower bounds

- Reduction from Red Blue Dominating Set (RBDS)
- Given instance (G, R, B, k) of RBDS reduction produce $\left(G^{\prime}, \ell, p\right)$ of Maximum Edge Colorable Subgraph s.t. $\ell=|E(G)|-k$ and p is a constant.
- Jansen and Pieterse (2015): RBDS does not admit a compression of size $\mathcal{O}\left(n^{2-\epsilon}\right)$.
- This implies the desired lower bound.

Techniques Used: For kernel lower bounds

- Reduction from Red Blue Dominating Set (RBDS)
- Given instance (G, R, B, k) of RBDS reduction produce (G^{\prime}, ℓ, p) of Maximum Edge Colorable Subgraph s.t. $\ell=|E(G)|-k$ and p is a constant.
- Jansen and Pieterse (2015): RBDS does not admit a
compression of size $\mathcal{O}\left(n^{2-\epsilon}\right)$.
- This implies the desired lower bound.

Techniques Used: For kernel lower bounds

- Reduction from Red Blue Dominating Set (RBDS)
- Given instance (G, R, B, k) of RBDS reduction produce (G^{\prime}, ℓ, p) of Maximum Edge Colorable Subgraph s.t. $\ell=|E(G)|-k$ and p is a constant.
- Jansen and Pieterse (2015): RBDS does not admit a compression of size $\mathcal{O}\left(n^{2-\epsilon}\right)$.
- This implies the desired lower bound.

Techniques Used: For kernel lower bounds

- Reduction from Red Blue Dominating Set (RBDS)
- Given instance (G, R, B, k) of RBDS reduction produce (G^{\prime}, ℓ, p) of Maximum Edge Colorable Subgraph s.t. $\ell=|E(G)|-k$ and p is a constant.
- Jansen and Pieterse (2015): RBDS does not admit a compression of size $\mathcal{O}\left(n^{2-\epsilon}\right)$.
- This implies the desired lower bound.

Open Questions

We showed -

- Kernel with $\mathcal{O}(k p)$ vertices for $k \in\{l, \mathrm{vc}, l-\mathrm{mm}(G)\}$
- No kernel of size $\mathcal{O}\left(k^{1-\epsilon} f(p)\right)$.

Q Can we bridge the gap?
Problem is NP-Hard on regular graphs of degree $p+1$.
For such graphs classes, kernel lower bound is tight.

Open Questions

We showed -

- FPT when para. by vc
- FPT when para. by ℓ
- Admits a polynomial kernel when para. by ℓ

Q Is it FPT when para. by $\ell-\operatorname{mm}(G)$?
Q Does it admits a polynomial kernel when parameterized by vc?

Thank You!

