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Maximum Edge-Colorable Subgraph

Problem

Maximum Edge-Colorable Subgraph Problem
Input: A graph G, integers l and p.
Question: Find a subgraph H of G and a p-edge coloring of
H, such that |E(H)| ≥ l.

p-Edge Coloring of G: Function ψ : E(G)→ {1, 2, . . . , p} s.t. any
two edges having common end point receive different colors.
Maximum Matching is a special case of Maximum Edge
Colorable Subgraph when p = 1.
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Figure: p = 2 and l = 9
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Parameterized Complexity

• Goal is to find better ways of solving NP-Hard problems

• Associate (small) parameter k to each instance I

• Restrict the combinatorial explosion to a parameter k

• Parameterized problem (I, k) is fixed-parameter
tractable (FPT) if there is an algorithm that solves the

problem in time f(k) · |I|O(1).

Vertex Cover(G, k) O(1.27k · n2)
Feedback Vertex Set(G, k) O(3.46k · nc)
Independent Set(G, k) No f(k) · |I|O(1)
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Kernelization

• A parameterized problem admits a h(k)-kernel if there is a
polynomial time algorithm that reduces the input instance to
an equivalent smaller instance with size upper bounded by
h(k).

• Goal is to bound the size of instance with some function of
parameter.

Vertex Cover(G, k) O(k)

Feedback Vertex Set(G, k) O(k3)

Independent Set(G, k) No such h(k)
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Structural Parameterization

• Associating right parameter is an art.

• Obvious choice : solution size ( in this case l)
• Structural Parameters:

• Vertex cover number, vc(G)
minimum number of vertices needed to be deleted to obtain
independent set.

• l − mm(G)
mm(G) is the size of a maximum matching in G.

• Deg-1-modulator
For a graph G, a set X ⊆ V (G) is a deg-1-modulator of G, if
the degree of each vertex in G−X is at most 1.
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Problem Statement with parameters

Problem

Maximum Edge-Colorable Subgraph Problem
Input: A graph G, integers l and p.
Parameters: k where k is

• The solution size(l)

• vertex cover number, vc(G)

• l − mm(G)

Question: Find a subgraph H of G and a p-edge-coloring of
H, such that |E(H)| ≥ l.



Known Results

• Vizing Theorem : ∆(G) ≤ χ′(G) ≤ ∆(G) + 1
• ∆(G) is the maximum degree of a vertex in G
• χ′(G) is the smallest integer p for which G is p-edge colorable

(also called chromatic index)

• Holyer (1981): Deciding chromatic index of G is ∆(G) or
∆(G) + 1 is NP-Hard (even for cubic graphs).

• Feige (2002): Maximum Edge Colorable Subgraph is
NP-Hard even for p = 2.
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Known Results

• Feige (2002): A constant factor approximation algorithm.
NP-Hard to get (1− ε)-approximation algorithm for every
fixed p ≥ 2.

• Aloisioa and Mkrtchyana (2019): The problem is FPT w.r.t.
structural graph parameters like path-width, curving-width
when p = 2.
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Known Results

• Grüttemeier (2020): Obtained kernels, when the parameter is
p+ k, where k is one of the following:
• the number of edges that needs to be deleted from G, to

obtain a graph with maximum degree at most p− 1
• the deletion set size to a graph whose connected components

have at most p vertices

• Galby (2019): Proved Edge Coloring is FPT when
parameterized by the number of colors,(p) and the number of
vertices having the maximum degree.
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Our Contribution

We denote k1 � k2 and say k1 is smaller than k2 if there exists a
computable function g(·) such that k1 ≤ g(k2).

Observation

For a given instance (G, l, p) of Maximum Edge Col-
orable Subgraph, in polynomial time, we can conclude
that either (G, l, p) is a Yes instance or vc(G) � l and
|X| � (l − mm(G)), where X is a minimum sized deg-1-
modulator of G.



Our Contribution

Theorem

Maximum Edge Colorable Subgraph, parameterized
by the vertex cover number, vc(G) of G, is FPT.



Our Contribution

Theorem

There exists a deterministic algorithm A and a randomized
algorithm B with constant probability of success that solves
Maximum Edge Colorable Subgraph. For a given
instance (G, l, p), Algorithms A and B terminate in time
O∗(4l+o(l)) and O∗(2l), respectively.



Our Contribution

Theorem

Maximum Edge Colorable Subgraph admits a kernel
with O(kp) vertices, for every k ∈ {`, vc(G), l − mm(G)}.

Theorem

For any k ∈ {`, vc(G), l − mm(G)}, Maximum Edge Col-
orable Subgraph does not admit a compression of size
O(k1−ε · f(p)), for any ε > 0 and computable function f ,
unless NP ⊆ coNP/poly.
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Techniques Used for FPT Paremeterized by
vc(G)

• For a given instance, our algorithm creates f(vc(G))-many
instances of ILP with nr. of variable bounded by h(vc(G)).

• Kannan, Lenstra: ILP is FPT para. by nr. of variable

• For the instance (G, l, p), let (H,φ) is the solution

• X be a vertex cover of G.

• We “guess” H ′ = H[X] and φ′ = φ|E(H′).

• Use ILP to find extension of this guess.
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Techniques Used for Deterministic and
Randomized Algorithms

The Algorithms A(deterministic algorithm) and B(randomized
algorithm) use different sets of ideas.

• Algorithm A, uses a combination of the technique of
Color-Coding and Divide and Color.

• Algorithm B uses the algorithm to solve Rainbow
Matching as a black-box.
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Techniques Used for Kernel
The technique that is used to find kernel is Expansion Lemma
t-expansion of P into Q is a set of edges M ⊆ E(G) if (i) every
vertex of P is incident with exactly t edges of M , and (ii) the
number of vertices in Q which are incident with at least one edge
in M is exactly t|P |.

Lemma: Expansion Lemma

Let t be a positive integer and G be a bipartite graph with
vertex bipartition (P,Q) such that |Q| ≥ t|P | and there are
no isolated vertices in Q. Then there exist nonempty vertex
sets P ′ ⊆ P and Q′ ⊆ Q such that

• P ′ has a t-expansion into Q′

• no vertex in Q′ has a neighbour outside P ′.

Furthermore two such sets P ′ and Q′ can be found in time
polynomial in the size of G.
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Techniques Used: For kernel lower bounds

• Reduction from Red Blue Dominating Set (RBDS)

• Given instance (G,R,B, k) of RBDS reduction produce
(G′, `, p) of Maximum Edge Colorable Subgraph s.t.
` = |E(G)| − k and p is a constant.

• Jansen and Pieterse (2015): RBDS does not admit a
compression of size O(n2−ε).

• This implies the desired lower bound.
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Open Questions

We showed –

• Kernel with O(kp) vertices for k ∈ {l, vc, l − mm(G)}
• No kernel of size O(k1−εf(p)).

Q Can we bridge the gap?

Problem is NP-Hard on regular graphs of degree p+ 1.
For such graphs classes, kernel lower bound is tight.



Open Questions

We showed –

• FPT when para. by vc

• FPT when para. by `

• Admits a polynomial kernel when para. by `

Q Is it FPT when para. by `− mm(G)?

Q Does it admits a polynomial kernel when parameterized by vc?
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