IPEC 2020

Sakel Saurabh The Institute Of Mathematical Sciences, HBNI, Chennai, India University of Bergen, Bergen, Norway Prafullkumar Tale CISPA Helmholtz Center for Information Security, Saarbrucken, Germany

Maximum Degree Contraction

Input: Graph C, ints k, d

Question: Can we contract at most k edges in G s.t. the maximum degree in the resulting graph is at most d?

Para: k+d

Parameterized complexity of three edge contraction problems with degree constraints. — Belmonte et. al. Acta Informatica, (2014).

Thm 1: Algo running in time (k + d) O(k).

Thm 2: When d = 2, linear kernel => $2^{0}(k)$ algo.

G: Poly kernel k + d?

R1: No algo running in lime n°o(k) unless ETH fails. No algo running in time $(k + d)^{\circ}(k)$ unless ETH fails. Thm 1: Algo running in time $(k + d)^{0}(k)$. (Optimum when k, d both part of input) R2: Algo running in lime 2°0(kd). Thm 2: When d = 2, linear kernel => $2^{0}(k)$ algo. R3: NO, UNLESS NP C CONP/poly G: Poly kernel k + d?

R1: No algo running in time n°o(k) unless ETH fails. (k x k)-Multicolored-Clique R2: Algo running in time 2°0(kd). Universal Sets + Branching G: Poly kernel k+d? RBDS para B + Log R

R3: NO, UNLESS NP CONP/poly

No self-loop No parallel edges

Known Results

our contributions

FFT ALgorillum

Open Questions

Input: Graph Cr, int k Question: Can we contract at most k edges in G st. resulting graph is in G? Para: K

Pach Tree Caclus

clique Splik Chordal

max-deg <= d (k)

Planar Biparlile Grid

min-deq z = d(k)

Path Grid poly-kernel Tree Caclus CLEQUE

min-deg >= d (k)

max-deg <= d (k)

Bipartile Planar

W[1] Splie

Chordal

W[2]

Known Results

Our Contributions

FFT ALgorillum

Open Questions

Theorem 1. Unless ETH fails, there is no algorithm that given any instance (G, k, d) of Maximum Degree Contraction runs in time no(k) and correctly determines whether it is a Yes instance. Brule force algo: h O(k) **Theorem 2.** There is an algorithm that given an instance (G, k, d) of Maximum Degree Contraction runs in time 2^{O(dk)} · n^{O(1)} and correctly determines whether it is a Yes instance. Lower bound: 2°o(kd)

Theorem 3. Unless NP \subseteq coNP/poly, Maximum Degree Contraction, parameterized by k + d, does not admit a polynomial compression.

Known Results

our contributions

FPT ALgorillum

Open Questions

Max-Deg Contra:: Partition of V(G) s.t. (a) Each part (called witness set) is connected (b) Any witness set is adj with at most d other

Max-Deg Contra:: Partition of V(G) s.t. (a) Each part (called witness set) is connected (b) Any witness set is adj with at most d other

212 vert in dig wilhess sets (a) + Solution size => kd vert adj to big witness sets (b) + Solution size =>

A 2-coloring of V(G) that colors 2k vert in big witness sets with red-color kd vert adj to big witness sets with blue-color

(n, 2k + dk) Universal Sets

(n, 2k + dk) Universal Sels - For any set X of size 2k + dk, and its partition (X1, X2), there is a coloring 'compatible' with it. X1 - vert in big witness sets X2 - vert adj to big witness sets

- Collection of exp(kd) n log n 2-colorings of [n]

Maximum Degree Contraction <=> compatible with (X1, X2).

(Does not contain a big witness set)

Bad-red

Given a 'compatible' 2-coloring: good-red vs bad-red — Any witness set is completely in red-part — Any red-part is either union of witness sets or doesn't intersect any witness set — Any vertex in blue-part can see at most d red-parts

- Any red-part is either union of witness sets or doesn't intersect any witness set - Any vertex in blue-part can see at most d red-parts

while (deg(u) >= d + 1)if u in red-part: contract that part if u in blue-part: branch over 2^d possibilities

Measure (k) drops in each case Running time = Universal Sets * Branching = exp(kd) * exp(kd)

Known Results

our contributions

FPT Algorichm

Open Questions

admils a poly? - arbitrary d, no poly kernel

Q2: Lossy kernel for MAXIMUM DEGREE CONTRACTION?

Q1: When d = 3, does MAXIMUM DEGREE CONTRACTION

-d = 2, kernel of size O(k) on connected graph

