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Short Version



Input:

Maximum Degree Contraction

Question:

Para: k + d

Can we contract at most k edges in G   

s.t. the maximum degree in the resulting graph

is at most d?

Graph G, ints k, d



Parameterized complexity of three edge contraction problems with degree 
constraints. — Belmonte et. al. Acta Informatica, (2014).

Thm 1: Algo running in time (k + d)^O(k).

Q: Poly kernel k + d?

Thm 2: When d = 2, linear kernel => 2^O(k) algo.



No algo running in time (k + d)^o(k) unless ETH fails.

R2: Algo running in time 2^O(kd).

R3: No, unless NP  coNP/poly⊆

Thm 1: Algo running in time (k + d)^O(k).

Q: Poly kernel k + d?

R1: No algo running in time n^o(k) unless ETH fails.

Thm 2: When d = 2, linear kernel => 2^O(k) algo.

(Optimum when k, d both part of input) 



R2: Algo running in time 2^O(kd).

R3: No, unless NP  coNP/poly⊆Q: Poly kernel k + d?

R1: No algo running in time n^o(k) unless ETH fails.

RBDS para |B| + log |R|

(k x k)-MultiColored-Clique

Universal Sets + Branching



Longer Version



Edge contraction

No self-loop 

No parallel edges

u v
w



Known Results

Our Contributions 

FPT Algorithm

Open Questions



Input: Graph G, int k

 — Contraction𝒢

Question: Can we contract at most k edges in G 
s.t. resulting graph is in ?𝒢

Para: k

Path GridBipartitePlanar

Clique

Tree Cactus

Split Chordal

max-deg <= d (k) min-deg >= d (k)



W[1]

W[2]

Path
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Bipartite
Planar

Tree

max-deg <= d (k)

Split

Chordal

Grid

Cactus FPT

poly-kernel

min-deg >= d (k)



Known Results
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Theorem 1. Unless ETH fails, there is no algorithm that given any 
instance (G, k, d) of Maximum Degree Contraction runs in time no(k) 
and correctly determines whether it is a Yes instance. 

Theorem 2. There is an algorithm that given an instance (G, k, d) of 
Maximum Degree Contraction runs in time 2O(dk) · nO(1) and correctly 
determines whether it is a Yes instance. 

Theorem 3. Unless NP ⊆ coNP/poly, Maximum Degree Contraction, 
parameterized by k + d, does not admit a polynomial compression. 

Brute force algo: n^O(k)

Lower bound: 2^o(kd)



Known Results

Our Contributions 

FPT Algorithm

Open Questions



Max-Deg Contra:: Partition of V(G) s.t.

(a) Each part (called witness set) is connected

(b) Any witness set is adj with at most d other



Max-Deg Contra:: Partition of V(G) s.t.

(a) Each part (called witness set) is connected

(b) Any witness set is adj with at most d other

(a) + Solution size =>
kd vert adj to big witness sets
2k vert in big witness sets

(b) + Solution size =>



red-color
blue-color

(n, 2k + dk) Universal Sets

A 2-coloring of V(G) that colors

with
withkd vert adj to big witness sets

2k vert in big witness sets



(n, 2k + dk) Universal Sets
— Collection of exp(kd) n log n 2-colorings of [n]
— For any set X of size 2k + dk, and its partition 

(X1, X2), there is a coloring `compatible’ with it.

X1 - vert in big witness sets
X2 - vert adj to big witness sets

Bad-red
Bad-red



Maximum Degree Contraction <=> 
Given a ‘compatible’ 2-coloring: good-red vs bad-red

One of 2-colouring in (n, 2k + dk)-Universal Sets is 
compatible with (X1, X2). 

Fix a hypothetical solution F. X1 = V(F), X2 = N(V(F)) 

|F| <= k => |X1| <= 2k; |X2| <= kd

Bad-red

(Does not contain 

a big witness set)



Given a ‘compatible’ 2-coloring: good-red vs bad-red

— Any witness set is completely in red-part

— Any vertex in blue-part can see at most d red-parts

— Any red-part is either union of witness sets or 
doesn’t intersect any witness set

W1 W2



— Any vertex in blue-part can see at most d red-parts

while( deg(u) >= d + 1 )
if u in red-part: contract that part 
if u in blue-part: branch over 2^d possibilities

Measure (k) drops in each case

Running time = |Universal Sets| * |Branching| 

                 = exp(kd) * exp(kd)

— Any red-part is either union of witness sets or 
doesn’t intersect any witness set



Known Results

Our Contributions 

FPT Algorithm

Open Questions



Q1: When d = 3, does MAXIMUM DEGREE CONTRACTION 
admits a poly?

Q2: Lossy kernel for MAXIMUM DEGREE CONTRACTION?

— d = 2, kernel of size O(k) on connected graph

— arbitrary d, no poly kernel



Thank you!


