On the Parameterized Complexily of Grid Coneraction

Sakel Saurabh, Uverton Dos Souza, and Prafullkumar Tale

Graph Modification Problems
\mathscr{G} - Graph class (poly time recognisable)
Input: Graph G, int k
Question: Can we make at most k modifications in G sit. resulting graph is in \mathscr{G} ?

Modification : (1) vertex deletion (2) edge deletion
(3) edge addition (4) edge contraction

Edge contraction
No self-loop No parallel edges

\mathscr{G} - Contraction

Input: Graph G, int k

Question: Can we contract at most k edges in G s.k. resulting graph is in \mathscr{G} ?

Parameterized Complexity and Known Results

Our Results

Overview of FPT Algorithm

Open Questions

Parameterized Complexity

- Instance + relevant secondary measure (ie. parameter)

Ex. For \mathscr{G}-Contraction Problem
Instance: (C, k)
Parameter: k

- Objective: Find an algorithm $f(k)$ poly (n)
$f(k)$ - function depending only on k k - collection of parameters
- Fixed Parameter Tractable (FPT): Class of problems that can be solved in $f(k)$ poly (n).
n - size of input
k - parameter
- Such algorithm may not exist for every problem + selected parameter W[i]-Hardness

Redefining FPT: Kernelization

Redefining FPT: Kernelization
Problem admits a kernel of size $g(k)$ if there exists an poly-time algorithm that

- on input (G, k) produces output $\left(c^{\prime}, k^{\prime}\right)$

$$
\text { s.k. }\left|G^{\prime}\right|+k^{\prime}<g(k)
$$

$-(G, k)$ is a Yes instance if and only if $\left(G^{\prime}, K^{\prime}\right)$ is.
Theorem : Problem is in FPT iff it admits a kernel.
Q. If a problem is in FPT, does it admit a polynomial kernel?
\mathscr{G} - Contraction: FPT

\mathscr{G} - Contrackion: Kernel

Heggernes + H.L.L.P. (2011):	Path	K^2
Tree	no-poly	
min-deg $>=14$	$? ?$	
Bipartice	$? ?$	
Planar	$? ?$	
Belmonte + G.H.P. $(2013):$ max-deg $=2$	k^2	
Guo \& Cai $(2016):$	Clique	no-poly

\mathscr{G} - Contraction: W[i]-Hardness
Golovach + K.P.T. (2011): min-deg $>=d \quad W[1]$ (only K)
Belmonke + G.H.P.(2013): max-deg $=d$ W[2] (only k)
Cai \& Cua(2013) +
Loksheanov + M.S.(2013): Chordal W[2]
Agrawal + L.S.Z.(2017): Split W[1]

Comparing Graph Modification problems.
(1) vertex deletion
(2) edge deletion
(3) edge addition
(4) edge contraction

Edge Contraction problems are harder than corresponding vertex/edge deletion/addition problems.

Edge Contraction problems are harder than corresponding vertex/edge deletion/addition problems.

Ex. (1) Target Graph Class: $\{P \ldots 4\}$
Q1 : Delete vertices in G to get P. 4.
(Find induced P.4) Polynomial time

Q2 : Contract edges in G to get P. 4 .

Edge Contraction problems are harder than corresponding vertex/edge delelion/addition problems.

Ex. (2) Target Graph Class: Chordal Graphs
Q1 : Add al most k edges in G ko get a chordal graph.
(Minimum Fill-In)
FRT
Q2 : Contract at most k edges in © ko get a chordal graph.

Edge Contraction problems are harder than corresponding vertex/edge deletion/addition problems.

Ex. (3) Target Graph Class: Acyclic Graphs
Q1 : Delete at most k vertices to make G acyclic. (Feedback Vertex Set) kt kernel

Q2 : Contract at most k edges to make G acyclic.

Parameterized Complexity and Known Results

Our Results

Overview of FPT Algorithm

Open Questions
$(r \times q)$ Grid

- Graph on $r * q$ vertices
- Vertex $v:=[i, j]$

(4×7)-Grid

$$
1 \ll=r ; 1<j<=q
$$

- Edge $\left(v_{\ldots} 1, v_{-2}\right) i f f|i 1-i 2|+|j 1-j 2|=1$

Grid Contraction

Input: Graph G, integer k
Parameter : K
Question: Does there exist a set F of at most k edges sit. G/F is a grid?

Our Results: Grid Contraction
(R1) is NP-Hard

- does not admit an algo running in time $2^{\wedge}\{0(k)\}$ under ETH
(R2) admits an FPT algo running in lime $4 \wedge\{6 k\} * n^{\wedge} c$
(R3) admits a kernel with $0\left(k^{\wedge} 4\right)$ vertices and edges.

Paramelerized Complexily and Known Resulls

Our Resules

Overview of FPT Algorithm

Open Queskions

Grid Contraction
Input: Graph G, integers k
Parameter: K
Question: Does there exist a set F of at most k edges s.t. G/F is a grid?

Bounded Grid Contraction
Input: Graph G, integers k, r
Parameter: $k+r$
Question: Does there exist a set F of at most k edges s.t. G/F is a grid with rows?
(c,k) - Yes inst of Grid Contr.
iff (G, k, r) - Yes inst. of Bounded Grid Contr. for $\operatorname{rin}\{1,2, \ldots,|V(G)|\}$

FPT Algorithms: Two Phases

Phase (I):
Bounded Grid Contraction is FPT when parameterised by $k+r$.
Phase (II):
(G, k) - Yes inst of Grid Contr.
iff (G, k, r) - Yes inst. of Bounded Grid Contr. for $r \operatorname{in}\{1,2, \ldots, 2 k+s\}$

Edge contraction :: Graph Partitioning
G can be contracted to $H:: V(G)$ can be partitioned into $|V(H)|$ many parts sit.
a. Each part is connected
b. Each part is mapped to some vertex is H s.t. V1, V_{2} adjacent iff $h 1$, hi are adjacent.

If G is k-contrackible to a $(r \times q)$ grid

Contraction of $G 1$ and $G 2$ to grids affects only A Dynamic Programming

Separator in G:

- connected
- bounded closed nor.
- 'well partitioned'

Separator in ©:

- connected
- bounded closed nor.
- 'well partitioned'

Def: [r-slab] An ordered r-partition <A1, A2, ... Ar> of set A, such that

(i) Ai is non-emply and connected
(ii) $A i, A j$ are adjacent of $|i-j|=1$
(iii) $B i:=N(A i) \backslash A$. If $B i, B j$ are adj. then $|i-j|=1$

Def: [r-sLab] An ordered r-partition <A1, A2, ... Ar> of set A, such that
(i), (ii), and (iii)
$\operatorname{Def:[\{ (a,b)\} r-sLab]r-slab} A$ s.c. $|A|<a,|N(A)|=|B|<=b$.

Def: $[\{(Q 1, Q 2, \ldots, Q r)\} r-s L a b]: r$-slab A s.t. Qi contains in Ai.

Def: $\{(Q 1, Q 2, \ldots, Q r) ;(a, b)\} r-s L a b$
$\operatorname{Def:}\{(Q 1, Q 2, \ldots, Q r) ;(a, b)\} r-s L a b$
Lemma: The number of these types of r-slabs are at $\operatorname{mosk} \exp (a+b-|Q|)$.

$-a+b<k+3 r$

- Neg. |Q| berm to gel better running lime

Def: [nice -subsets] Connected subsets that are separated by $\{(a, b)\}$ r-slabs.

Lemma: The number of nice-subsets is at most $\exp (a+b)$

Dynamic Programming
$T[G 1, P(Q)]$ - Min nr of edges to contract $\in 1$ into grid sit. vertices in last row are 'adj' to $P(Q)$.

If $T[\in 1, P(Q)]$ is true
Construct $\{(Q 1, Q 2, \ldots, Q r) ;(a, b)\} r$-stab and update $T[G 1+A ; P(B)]$

Lemma: Nr. of entries in the table is $\exp (k+r)$.
Lemma: Time spent at each entry is $\exp (k+r)$.
Theorem: Bounded Grid Contraction is FPT when parameterised by $k+r$.

Corr: Tailored algorithm for $r=1$ gives algo for Path Contraction running in time $2^{n} \mathrm{~K}$.

Improvement over $2^{\wedge}\{k+k / \log k\}$.

FPT Algorithms: Two Phases

Phase (I):
Bounded Grid Contraction is FPT when parameterised by $k+r$.
Phase (II):
(G, k) - Yes inst of Grid Contr.
iff (G, k, r) - Yes inst. of Bounded Grid Contr. for $r \operatorname{in}\{1,2, \ldots, 2 k+s\}$

Phase (II):
If G is k-contractible to $(r \times g)$ grid with $r>2 k+s$ then there is a $(2 \times q)$ separator S.

It is safe to contract all vertical edges in S

If G is k-contractible to $(r \times q$) grid with $r>2 k+s$ then there is a $(2 \times q)$ separator S.
It is safe to contract all vertical edges in S

$$
(\epsilon, k, r) \rightarrow\left(\epsilon^{\prime}, k, r-1\right)
$$

Parameter r is reduced.
Such a separator can be found in poly time.

FPT Algorithms: Two Phases

Phase (I):
Bounded Grid Contraction is FPT when parameterised by $k+r$.
Phase (II):
(G, k) - Yes inst of Grid Contr.
iff (G, k, r) - Yes inst. of Bounded Grid Contr. for $r \operatorname{in}\{1,2, \ldots, 2 k+s\}$

Paramelerized Complexily and Known Resulls

Our Resulles

Overview of FPT ALgorichm

Open Questions

Q1. Can we improve running lime from $4^{\wedge}\{6 \mathrm{k}\}$ bo $2^{\wedge} \mathrm{k}$?
1-slab :: connected comp.
Better bounds for (a, b)-connected comp.

Q2. Can we improve kernel?
Kernel -kA
Turing Compression $-k_{2} 2$

G - Contraction: Kernel

Q3. Any graph class \mathscr{G}, sit \mathscr{G}-Contraction admits a poly kernel and some width parameter is unbounded?

Thank you.

