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Blocker problems

Let 7w be a graph parameter
(independence number, domination number, size of longest path, ...).

Let M be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-BLOCKER(T)

Input: A graph G and two integers k, d.

Question: Can G be modified into a graph G/, via at most k
operations from M, such that 7(G’) < 7(G) — d?
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M-BLOCKER(T)

Input: A graph G and two integers k, d.

Question: Can G be modified into a graph G/, via at most k
operations from M, such that 7(G’) < 7(G) — d?

e 71 = chromatic/independence/clique/matching/domination number
[Bentz et al. 2010] [Costa et al. 2011] [Bazgan et al. 2011, 2015]
[Diner et al. 2018] [Paulusma et al. 2019] [Fomin et al. 2020]
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Particular case: edge contractions

We focus on M = {edge contraction}.

CONTRACTION(T)

Input: A graph G and two integers k, d.

Question: Can G be k-edge-contracted into a graph
G’ such that 7(G') < w(G) — d?

e 7 = chromatic/independence/clique/domination number

o 71 = feedback vertex set/odd cycle transversal /vertex cover number
[Lima, Santos, Sau, Souza, JCSS 2021]
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In the previous work

CONTRACTION(fvs), CONTRACTION(oct) are co-NP-hard for k = d = 1.

Is the CONTRACTION(7) problem always hard for natural parameters 77

The CONTRACTION(vc) problem can be solved on n-vertex graphs in time
f(d) - n?? for some computable function f.

In particular, polynomial-time solvable for every fixed d > 1.

Parameterized complexity: CONTRACTION(vc) in XP parameterized by d.

Question: Is CONTRACTION(vc) in FPT when parameterized by d?
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On Contraction(vc)

CONTRACTION(vC)

Input: A graph G and two integers k, d.

Question: Can G be k-edge-contracted into a graph
G’ such that ve(G') < ve(G) — d?

CONTRACTION(vc) is NP-hard, even if vc(G) is given with the input:
@ The case d = v¢(G) — 1 = STAR CONTRACTION.

@ STAR CONTRACTION = CONNECTED VERTEX COVER.
[Krithika et al. 2016]

@ CONNECTED VERTEX COVER is NP-hard even if vc is polynomial
(bipartite graphs). [Escoffier et al. 2010]
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As any edge contraction can decrease vc(G) by at most one, if k < d then
the input instance is a trivial NO-instance.
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CONTRACTION(vC)

Input: A graph G and two integers k. d.

Question: Can G be k-edge-contracted into a graph
G’ such that ve(G') < vc(G) — d?

As any edge contraction can decrease vc(G) by at most one, if k < d then
the input instance is a trivial NO-instance.

Rank of a graph

rank(G) is the number of vertices of G minus its number of connected
components (or equivalently, the number of edges of a set of spanning
trees of each of the connected components of G).
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Some hardness results on Contraction(vc)

Theorem
To decide whether an instance (G, k, d) of CONTRACTION(vcC) is a
YES-instance is
@ coNP-hard if k = rank(G),
e colNP-hard if k < rank(G) and 2d < k, and
o NP-hard if k < rank(G) and k = d.

o If k = rank(G) then (G, k,d) is a YES-instance iff d < vc(G).

e If G is connected, k < rank(G), and 2d < k, then (G, k,d) is a
YEs-instance if and only if d < vc(G).

@ Reduction from MULTICOLORED INDEPENDENT SET.
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Is Contraction(vc) in FPT when parameterized by d?

CONTRACTION(vc) is W[1]-hard parameterized by k + d. Moreover,
unless the ETH fails, it does not admit an algorithm running in time
f(k + d) - n°k*9) for any computable function f : N — N.

The result holds even if G is a bipartite graph with a bipartition (X, Y)
such that X is a minimum vertex cover of G.



WI[1]-hardness parameterized by k + d

Edge Induced Forest (EIF)

Given a graph G and an integer ¢, the goal is to determine whether G has
a set F of at least ¢ edges such that G[V/(F)] is a forest?

10



WI[1]-hardness parameterized by k + d

Edge Induced Forest (EIF)

Given a graph G and an integer ¢, the goal is to determine whether G has
a set F of at least ¢ edges such that G[V/(F)] is a forest?

Theorem

EIF parameterized by the size of the solution ¢, is W[1]-hard.
Moreover, unless the ETH fails, it does not admit an algorithm running in
time £(£) - n°¥) for any computable function f : N — N.

| \




Reduction from EIF parameterized by ¢
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Reduction from EIF parameterized by ¢
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Reduction from EIF parameterized by ¢
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Reduction from EIF parameterized by ¢
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Summary of our main results on Contraction(vc)

NP-hardness for k = d.

A (20(d) . pk=d+O0(1))_time algorithm.

W[1]-hardness when parameterized by k + d.

It does not admit an algorithm running in time f(k + d) - n°k+d).
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NP-hardness for k = d.

A (20(d) . pk=d+O0(1))_time algorithm.

W[1]-hardness when parameterized by k + d.

It does not admit an algorithm running in time f(k + d) - n°k+d).

Thanks!
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