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Blocker problems

Let π be a graph parameter
(independence number, domination number, size of longest path, ...).

LetM be a set of allowed graph modification operations
(vertex deletion, edge deletion/addition/contraction, ...).

M-Blocker(π)
Input: A graph G and two integers k, d .
Question: Can G be modified into a graph G ′, via at most k
aaaaaaaaaaaoperations fromM, such that π(G ′) ≤ π(G)− d?

π = chromatic/independence/clique/matching/domination number
[Bentz et al. 2010] [Costa et al. 2011] [Bazgan et al. 2011, 2015]
[Diner et al. 2018] [Paulusma et al. 2019] [Fomin et al. 2020]
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Particular case: edge contractions

We focus onM = {edge contraction}.

Contraction(π)
Input: A graph G and two integers k, d .
Question: Can G be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that π(G ′) ≤ π(G)− d?

π = chromatic/independence/clique/domination number

π = feedback vertex set/odd cycle transversal/vertex cover number
[Lima, Santos, Sau, Souza, JCSS 2021]
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In the previous work [Lima, Santos, Sau, Souza, JCSS 2021]

Corollary
Contraction(fvs),Contraction(oct) are co-NP-hard for k = d = 1.

Is the Contraction(π) problem always hard for natural parameters π?

Theorem
The Contraction(vc) problem can be solved on n-vertex graphs in time
f (d) · n2d for some computable function f .

In particular, polynomial-time solvable for every fixed d ≥ 1.

Parameterized complexity: Contraction(vc) in XP parameterized by d .

Question: Is Contraction(vc) in FPT when parameterized by d?
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On Contraction(vc)

Contraction(vc)
Input: A graph G and two integers k, d .
Question: Can G be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that vc(G ′) ≤ vc(G)− d?

Contraction(vc) is NP-hard, even if vc(G) is given with the input:
The case d = vc(G)− 1 ≡ Star Contraction.

Star Contraction ≡ Connected Vertex Cover.
[Krithika et al. 2016]

Connected Vertex Cover is NP-hard even if vc is polynomial
(bipartite graphs). [Escoffier et al. 2010]
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Some hardness results on Contraction(vc)

Contraction(vc)
Input: A graph G and two integers k, d .
Question: Can G be k-edge-contracted into a graph
aaaaaaaaaaaG ′ such that vc(G ′) ≤ vc(G)− d?

As any edge contraction can decrease vc(G) by at most one, if k < d then
the input instance is a trivial No-instance.

Rank of a graph
rank(G) is the number of vertices of G minus its number of connected
components (or equivalently, the number of edges of a set of spanning
trees of each of the connected components of G).
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Some hardness results on Contraction(vc)

Theorem

To decide whether an instance (G , k, d) of Contraction(vc) is a
Yes-instance is

coNP-hard if k = rank(G),
coNP-hard if k < rank(G) and 2d ≤ k, and
NP-hard if k < rank(G) and k = d.

If k = rank(G) then (G , k, d) is a Yes-instance iff d ≤ vc(G).
If G is connected, k < rank(G), and 2d ≤ k, then (G , k, d) is a
Yes-instance if and only if d < vc(G).
Reduction from Multicolored Independent Set.
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An improved algorithm

Theorem [Lima, Santos, Sau, Souza, JCSS 2021]
The Contraction(vc) problem can be solved on n-vertex graphs in time
f (d) · n2d for some computable function f .

Theorem

There exists an algorithm that solves Contraction(vc) in time

2O(d) · nk−d+O(1).

In particular, the problem is FPT parameterized by d when k = d .

Question: Is Contraction(vc) in FPT when parameterized by d?
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Is Contraction(vc) in FPT when parameterized by d?

Theorem

Contraction(vc) is W[1]-hard parameterized by k + d. Moreover,
unless the ETH fails, it does not admit an algorithm running in time
f (k + d) · no(k+d) for any computable function f : N 7→ N.

The result holds even if G is a bipartite graph with a bipartition 〈X ,Y 〉
such that X is a minimum vertex cover of G .
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W[1]-hardness parameterized by k + d

Edge Induced Forest (EIF)
Given a graph G and an integer `, the goal is to determine whether G has
a set F of at least ` edges such that G [V (F )] is a forest?

Theorem
EIF parameterized by the size of the solution `, is W[1]-hard.
Moreover, unless the ETH fails, it does not admit an algorithm running in
time f (`) · no(`) for any computable function f : N 7→ N.
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Reduction from EIF parameterized by `
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Reduction from EIF parameterized by `
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Reduction from EIF parameterized by `

(3,1) (1,1)

(4,1) (3,1)

(6,2)
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Summary of our main results on Contraction(vc)

NP-hardness for k = d .
A (2O(d) · nk−d+O(1))-time algorithm.
W[1]-hardness when parameterized by k + d .
It does not admit an algorithm running in time f (k + d) · no(k+d).

Thanks!
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