Metric Dimension Parameterized by FVS and Other Structural Parameters

by E. Galby, L. Khazaliya, F. Mc Inerney, R. Sharma, P. Tale

August 22, 2022

Introduction

An invisible immobile target t is hidden at a vertex of a graph G.

Probe a vertex $v \in V(G)$: returned d(v, t).

An invisible immobile target t is hidden at a vertex of a graph G.

Probe a vertex $v \in V(G)$: returned d(v, t).

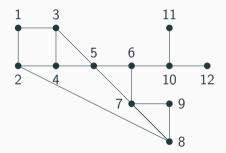
An invisible immobile target t is hidden at a vertex of a graph G.

Probe a vertex $v \in V(G)$: returned d(v, t).

Question. How many probes do we need?

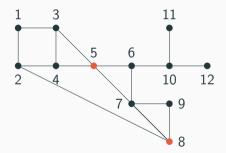
An invisible immobile target t is hidden at a vertex of a graph G.

Probe a vertex $v \in V(G)$: returned d(v, t).



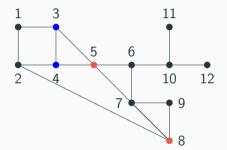
An invisible immobile target t is hidden at a vertex of a graph G.

Probe a vertex $v \in V(G)$: returned d(v, t).



An invisible immobile target t is hidden at a vertex of a graph G.

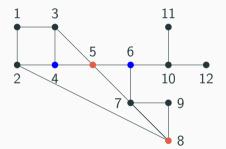
Probe a vertex $v \in V(G)$: returned d(v, t).



Vertices 3 and 4 are resolved by 8th vertex.

An invisible immobile target t is hidden at a vertex of a graph G.

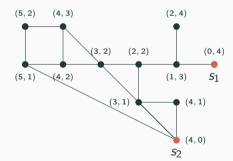
Probe a vertex $v \in V(G)$: returned d(v, t).



Vertices 4 and 6 are resolved by neither 5th nor 8th vertex.

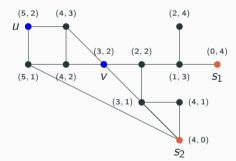
<u>Def.</u> A resolving set is an ordered set $S = \{s_1, s_2, \ldots, s_k\} \subseteq V(G)$ s.t. $\forall v, u \in V(G), v \neq u$

 $\langle \operatorname{dist}(v, s_1), \ldots, \operatorname{dist}(v, s_k) \rangle \neq \langle \operatorname{dist}(u, s_1), \ldots, \operatorname{dist}(u, s_k) \rangle.$



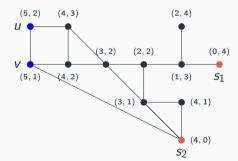
<u>Def.</u> A resolving set is an ordered set $S = \{s_1, s_2, \ldots, s_k\} \subseteq V(G)$ s.t. $\forall v, u \in V(G), v \neq u$

 $\langle \operatorname{dist}(v, s_1), \ldots, \operatorname{dist}(v, s_k) \rangle \neq \langle \operatorname{dist}(u, s_1), \ldots, \operatorname{dist}(u, s_k) \rangle.$



<u>Def.</u> A resolving set is an ordered set $S = \{s_1, s_2, \ldots, s_k\} \subseteq V(G)$ s.t. $\forall v, u \in V(G), v \neq u$

 $\langle \operatorname{dist}(v, s_1), \ldots, \operatorname{dist}(v, s_k) \rangle \neq \langle \operatorname{dist}(u, s_1), \ldots, \operatorname{dist}(u, s_k) \rangle.$



<u>Def.</u> Metric dimension (md(G)) is the size of a smallest resolving set of G.

Metric Dimension

Input: an undirected graph G = (V, E), integer k **Question:** Is $md(G) \le k$?

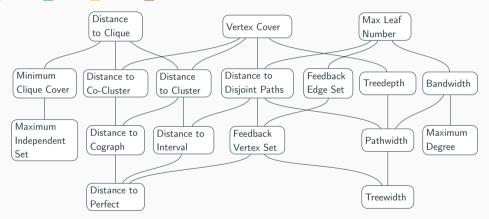
Overview of what is known

METRICDIMENSION

NP-complete	Linearly solvable
split graphs	cographs
bipartite	trees
co-bipartite	cactus block graphs
line graphs of bipartite graphs	
planar with bounded degree	Polynomially solvable
interval	outerplanar graphs
permutation graphs of diam 2	

Hasse diagram

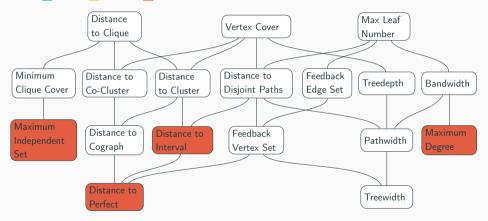
📕 — FPT; 🗾 — XP; 🔛 — W[1]; 📕 — para-NP.



W[2]-hard when parameterized by the natural parameter.

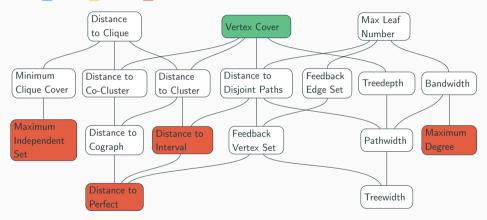
An edge from a lower parameter to a higher parameter indicates that the lower one is upper bounded by a function of the higher one.

🔳 — FPT; 🗾 — XP; 🗾 — W[1]; 📕 — para-NP.



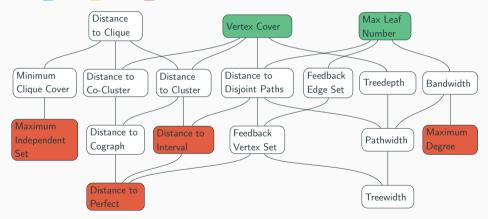
From NP-hard cases that were listed above.

🔳 — FPT; 🗾 — XP; 🗾 — W[1]; 📕 — para-NP.



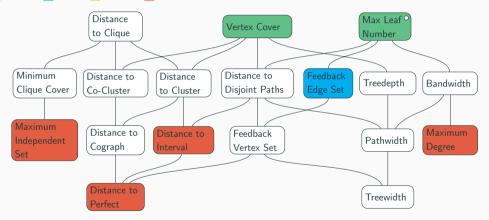
Hartung and Nichterlein, 2013: W[2]-hard for natural parameterization even for bipartite and maxdeg \leq 3; FPT when parameterized by the VC;

Stated as an open: on planar graphs; for tree-width parameterization; complexity for FVS.



Eppstein, 2015: FPT when parameterized by the max leaf number;

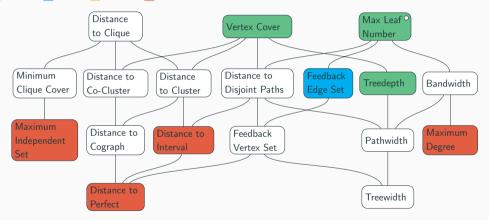
🔳 — FPT; 🔁 — XP; 🗾 — W[1]; 📕 — para-NP.



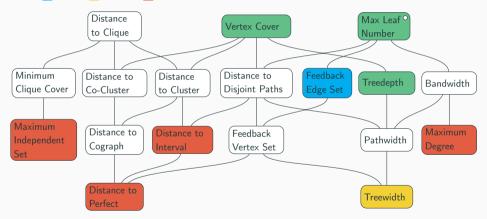
Epstein, et al, 2015: XP when parameterized by the feedback edge set;

White circle means that MetricDimension admits a polynomial size kernel under the parameter marked.

— FPT; — — XP; — — W[1]; — — para-NP.

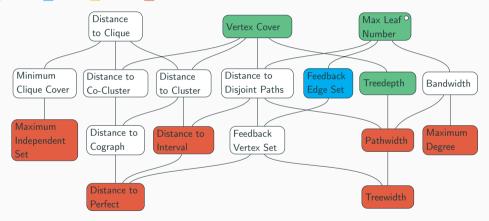


Gima et al, 2021: FPT when parameterized by the treedepth;



Bonnet and Purohit, 2019: W[1]-hard when parameterized by the tw;

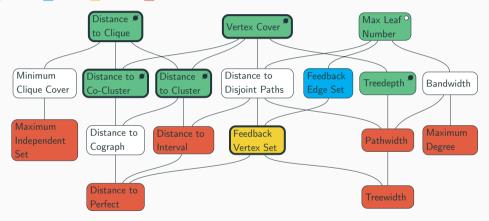
🔳 — FPT; 🗾 — XP; 🗾 — W[1]; 📕 — para-NP.



Li and Pilipczuk, 2021: NP-hard in graphs of pw \leq 24;

Our results

🔳 — FPT; 🗾 — XP; 🗾 — W[1]; 📕 — para-NP.



Black circle means that METRICDIMENSION does not admit a polynomial size kernel under the parameter marked.

<u>Def.</u> Any two vertices $u, v \in V(G)$ are true twins if N[u] = N[v], and are false twins if N(u) = N(v).

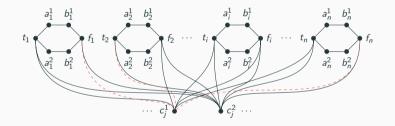
Observation.

For any (true or false) twins $u, v \in V(G)$, for any resolving set S of a graph G, $S \cap \{u, v\} \neq \emptyset$. [No] Polynomial Kernels

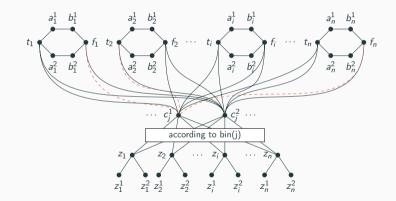
Theorem

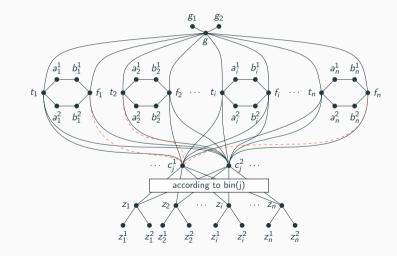
METRIC DIMENSION parameterized by the minimum size of a vertex cover of the graph does not admit a polynomial kernel unless NP \subseteq *co*NP/*poly*.

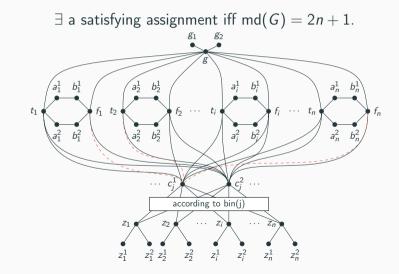
Reduction from SAT parameterized by the number of variables.



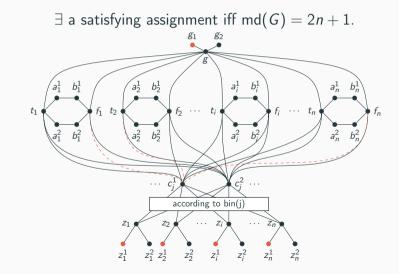
 $C_j = (\overline{x_1} \lor x_2 \lor \overline{x_n})$



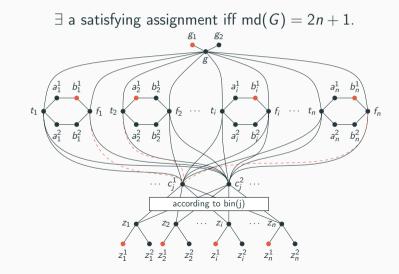




11



11



11

By making the vertices of $\{C_j \mid j \in [m]\}$ into a clique, the distance to clique of the resulting graph is at most 9n + 3.

Then, for this modified G:

Theorem

METRIC DIMENSION parameterized by the distance to clique does not admit a polynomial kernel unless NP \subseteq coNP/*poly*.

W[1]-hardness, FVS

NAE-Integer-3-Sat, W[1]-hard param. by the number of variables **Input:** a set X of variables, a set C of clauses, and an integer d.

- Each variable $x \in X$ takes a value in $\{1, \ldots, d\}$;
- Each clause is of the form $(x \le a_x, y \le a_y, z \le a_z)$, $a_x, a_y, a_z \in [d]$;
- A clause is satisfied if not all three inequalities are true and not all are false.

Question: Does a satisfying assignment of the variables exist?

NAE-Integer-3-Sat, W[1]-hard param. by the number of variables **Input:** a set X of variables, a set C of clauses, and an integer d.

- Each variable $x \in X$ takes a value in $\{1, \ldots, d\}$;
- Each clause is of the form $(x \le a_x, y \le a_y, z \le a_z)$, $a_x, a_y, a_z \in [d]$;
- A clause is satisfied if not all three inequalities are true and not all are false.

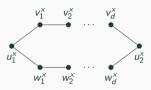
Question: Does a satisfying assignment of the variables exist?

Theorem

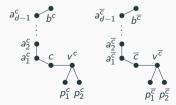
METRIC DIMENSION param. by the feedback vertex set number is W[1]-hard.

W[1]-hardness

The variable gadget G_x :

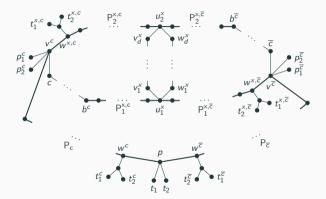


The clause gadget G_c : a disjoint union of H_c and $H_{\bar{c}}$



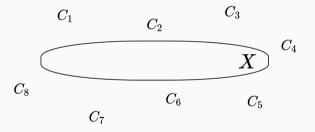
W[1]-hardness

Complete construction:



(X, C, d) is satisfiable iff (G, k) is a yes-instance for k = |X| + 10|C| + 1.

Def. The distance to \mathcal{F} of graph G is the size of minimum set $X \subseteq V(G)$ such that $G - X \in \mathcal{F}$.



Theorem

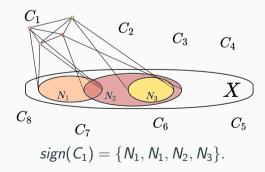
METRIC DIMENSION is FPT parameterized by the distance to cluster.

<u>Red.</u> Rule 1. If there exist $u, v, w \in V(G)$ s.t. u, v, w are true (or false) twins, then remove u from G and decrease k by one.

So, $\forall C \in G \setminus X$, at most 2 of its vertices have the same neighborhood in X. Thus, $|C| \leq 2^{|X|+1}$.

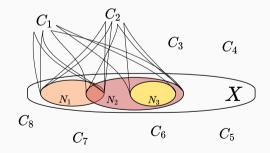
<u>Def.</u> For every clique C of G - X, define the signature sign(C) of C

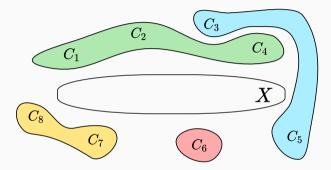
 $sign(C) = \{N(u) \cap X : u \in C\}.$



<u>**Def.**</u> For any two cliques $C_1, C_2 \in G - X$, let $C_1 \sim C_2$, if and only if

 $sign(C_1) = sign(C_2).$

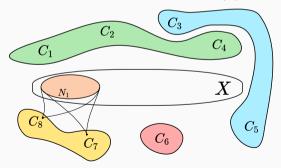


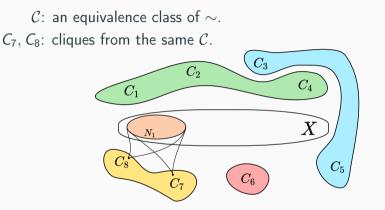


Thus, there are at most $2^{2^{|X|+1}}$ equivalence classes.

C: an equivalence class of \sim . C_7, C_8 : cliques from the same C.

<u>Def.</u> Two vertices $u \in C_7$ and $v \in C_8$ are clones if $N(u) \cap X = N(v) \cap X$.





<u>Claim.</u> Let $u \in C_7$ and $v \in C_8$ be clones. Then, for any resolving set S of G, $S \cap (V(C_7) \cup V(C_8)) \neq \emptyset$.

<u>Red. Rule 2.</u> If there exists C such that

$$|\mathcal{C}| \ge 2^{|X|+2} + |X| + 2,$$

remove a clique $C \in C$ from G and reduce k by max $\{1, t(C)\}$.

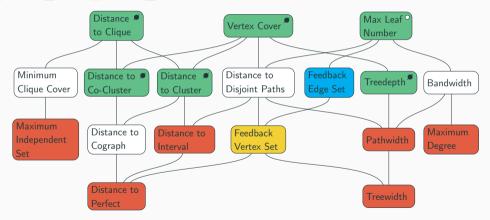
Thus,
$$|V(G)| \leq 2^{2^{|X|+1}} \cdot (2^{|X|+2} + |X| + 1) \cdot 2^{|X|+1} + |X|$$
:

- $2^{2^{|X|+1}}$ equivalence classes;
- each C contains at most $2^{|X|+2} + |X| + 1$ cliques;
- for each clique $C \in G X$, $|V(C)| \le 2^{|X|+1}$.

Further directions

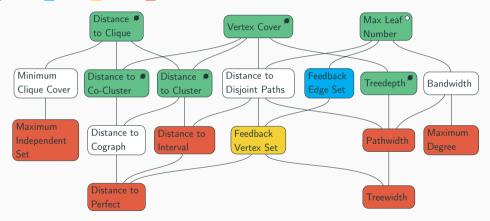
Further

■ - FPT; = - XP; - W[1]; = - para-NP.



Further

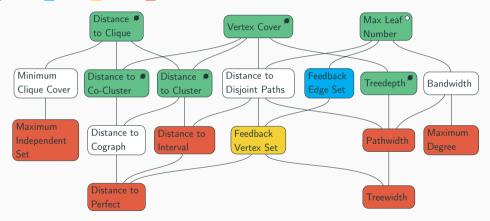
🛛 — FPT; 🗾 — XP; 🔛 — W[1]; 📕 — para-NP.



? FPT with the feedback edge set.

Further

📕 — FPT; 🗾 — XP; 🗾 — W[1]; 📕 — para-NP.



? Parameterization with the distance to cograph.

- Structural parameterization by:
 - the feedback edge set;
 - the distance to cograph;
 - dist to disjoint paths;
 - bandwidth;
 - the fvs + solution-size.

Further directions

- Structural parameterization by:
 - the feedback edge set;
 - the distance to cograph;
 - dist to disjoint paths;
 - bandwidth;
 - the fvs + solution-size.

Contents

Introduction Overview of what is known [No] Polynomial Kernels W[1]-hardness, FVS FPT, the dist to cluster