Parameterized Subexponential Algorithms for Generalized Cycle Hitting Problems on Planar Graphs

Daniel Marx, Pranabendu Misra, Daniel Neuen, Prafullkumar Tale

CISPA Helmholtz Center for Information Security

MPI Noon Seminar

• many NP-problems remain NP-hard on planar graphs

- many NP-problems remain NP-hard on planar graphs
- algorithms can often be improved to a running time of $2^{\widetilde{\mathcal{O}}(\sqrt{n})}$

- many NP-problems remain NP-hard on planar graphs
- algorithms can often be improved to a running time of $2^{\widetilde{\mathcal{O}}(\sqrt{n})}$
- algorithms often exploit that planar graphs have tree-width $\mathcal{O}(\sqrt{n})$

- many NP-problems remain NP-hard on planar graphs
- algorithms can often be improved to a running time of $2^{\widetilde{\mathcal{O}}(\sqrt{n})}$
- algorithms often exploit that planar graphs have tree-width $\mathcal{O}(\sqrt{n})$
- running times of $2^{\widetilde{O}(\sqrt{k})} n^{\mathcal{O}(1)}$ or $n^{\mathcal{O}(\sqrt{k})}$ also common in parameterized complexity

- many NP-problems remain NP-hard on planar graphs
- algorithms can often be improved to a running time of $2^{\tilde{\mathcal{O}}(\sqrt{n})}$
- algorithms often exploit that planar graphs have tree-width $\mathcal{O}(\sqrt{n})$
- running times of $2^{\widetilde{O}(\sqrt{k})} n^{O(1)}$ or $n^{O(\sqrt{k})}$ also common in parameterized complexity
- ideas often problem-specific

 Π Deletion

Input: Graph G, terminals $T \subseteq V(G)$, and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z satisfies Π

- Input: Graph G, terminals $T \subseteq V(G)$, and integer k
- Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G Z satisfies Π

- Input: Graph G, terminals $T \subseteq V(G)$, and integer k
- Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G Z satisfies Π

- Input: Graph G, terminals $T \subseteq V(G)$, and integer k
- Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G Z satisfies Π

- Input: Graph G, terminals $T \subseteq V(G)$, and integer k
- Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G Z satisfies Π

Techniques

Techniques

D. Neuen (CISPA)

Cycle Hitting on Planar Graphs

Bidimensionality

Feedback Vertex Set

Input: Graph G and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z is a forest

Bidimensionality

Feedback Vertex Set

Input: Graph G and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z is a forest

Bidimensionality

Feedback Vertex Set

Input: Graph G and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z is a forest

Techniques

D. Neuen (CISPA)

Cycle Hitting on Planar Graphs

Techniques

Subset-OCT

Hit all odd cycles through T

Extended Contraction Decomposition & Body Guessing

D. Neuen (CISPA)

Beyond Bidimensionality

Odd Cycle Transversal (OCT)

Input: Graph G, and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z is bipartite

Beyond Bidimensionality

Odd Cycle Transversal (OCT)

Input: Graph G, and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z is bipartite

D. Neuen (CISPA)

Beyond Bidimensionality

Odd Cycle Transversal (OCT)

Input: Graph G, and integer k

Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z is bipartite

Relaxed Goal: Find XP-algorithm running in time $n^{\mathcal{O}(\sqrt{k})}$

Extended OCT

Input: Graph G, edge labeling $\lambda \colon E(G) \to \{0,1\}$, and integer k Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z has no odd λ -cycle

Relaxed Goal: Find XP-algorithm running in time $n^{\mathcal{O}(\sqrt{k})}$

Extended OCT

Suppose that both endpoints of the red edge are not in the solution:

Relaxed Goal: Find XP-algorithm running in time $n^{\mathcal{O}(\sqrt{k})}$

Extended OCT

Suppose that both endpoints of the red edge are not in the solution:

Relaxed Goal: Find XP-algorithm running in time $n^{\mathcal{O}(\sqrt{k})}$

Extended OCT

Suppose that both endpoints of the red edge are not in the solution:

Idea: Find edges that can be safely contracted until the tree-width is small.

Theorem

$$\mathsf{tw}\left({{\mathsf{G}}/({\mathsf{V}}_i\setminus {\mathsf{W}})}
ight)={\mathcal{O}}(\ell+|{\mathsf{W}}|)\qquad orall {\mathsf{W}}\subseteq {\mathsf{V}}({\mathsf{G}}), i\in [\ell].$$

Theorem

$$\mathsf{tw}\left({{\mathsf{G}}/({\mathsf{V}}_i\setminus {\mathsf{W}})}
ight)={\mathcal{O}}(\ell+|{\mathsf{W}}|)\qquad orall {\mathsf{W}}\subseteq {\mathsf{V}}({\mathsf{G}}), i\in [\ell].$$

Theorem

$$\mathsf{tw}\left({{\mathsf{G}}/({\mathsf{V}}_i\setminus {\mathsf{W}})}
ight)={\mathcal{O}}(\ell+|{\mathsf{W}}|)\qquad orall {\mathsf{W}}\subseteq {\mathsf{V}}({\mathsf{G}}), i\in [\ell].$$

Theorem

$$\mathsf{tw}\left({{\mathsf{G}}/({\mathsf{V}}_i\setminus {\mathsf{W}})}
ight)={\mathcal{O}}(\ell+|{\mathsf{W}}|)\qquad orall {\mathsf{W}}\subseteq {\mathsf{V}}({\mathsf{G}}), i\in [\ell].$$

Algorithm for Extended OCT:

1 set
$$\ell \coloneqq \sqrt{k}$$

 $\mathcal{O}(1)$

Algorithm for Extended OCT:

1 set
$$\ell \coloneqq \sqrt{k}$$

2 compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$

 $\mathcal{O}(1)$ $n^{\mathcal{O}(1)}$

Algorithm for Extended OCT:

• set
$$\ell := \sqrt{k}$$

• compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$
• $\mathcal{O}(1)$
• $\mathcal{O}(1)$

- 2 compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$
- **3** guess $i \in [\ell]$ such that $|Z \cap V_i| \leq \sqrt{k}$

 $\mathcal{O}(k)$

Image: Set
$$\ell := \sqrt{k}$$
 $\mathcal{O}(1)$ Image: Compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$ $n^{\mathcal{O}(1)}$ Image: Compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$ $n^{\mathcal{O}(1)}$ Image: Compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$ $n^{\mathcal{O}(1)}$ Image: Compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$ $n^{\mathcal{O}(\sqrt{k})}$ Image: Compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$ $n^{\mathcal{O}(\sqrt{k})}$ Image: Compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$ $n^{\mathcal{O}(\sqrt{k})}$

1	set $\ell \coloneqq \sqrt{k}$	$\mathcal{O}(1)$
2	compute partition $V(G) = V_1 \uplus \cdots \uplus V_\ell$	$n^{\mathcal{O}(1)}$
3	guess $i \in [\ell]$ such that $ Z \cap V_i \leq \sqrt{k}$	$\mathcal{O}(k)$
4	guess $Z_i \coloneqq Z \cap V_i$	$n^{\mathcal{O}(\sqrt{k})}$
5	contract all edges between vertices from $V_i \setminus Z_i$	$\mathcal{O}(n)$

• set $\ell \coloneqq \sqrt{k}$		$\mathcal{O}(1$	L)
e compute partitio	n $V(G) = V_1 \uplus \cdots \uplus V_\ell$	n ^{O(3}	1)
• guess $i \in [\ell]$ suc	h that $ Z \cap V_i \leq \sqrt{k}$	$\mathcal{O}(k$	()
• guess $Z_i \coloneqq Z \cap$	Vi	$n^{\mathcal{O}(\sqrt{n})}$	k)
S contract all edge	s between vertices from $V_i \setminus Z_i$	$\mathcal{O}(r$	1)
solve problem by	DP on graph of tree-width $\mathcal{O}(\ell+ Z_i)$	$2^{\mathcal{O}(\sqrt{k})}$	n
D. Neuen (CISPA)	Cycle Hitting on Planar Graphs	MPI Seminar	1(

Exploiting Kernels

A parameterized problem Π admits a polynomial kernel if there is a polynomial-time algorithm that, given an instance (I, k) of Π , computes an equivalent instance (I', k') of Π such that $k' = k^{\mathcal{O}(1)}$ and $|I'| = k^{\mathcal{O}(1)}$.

Exploiting Kernels

A parameterized problem Π admits a polynomial kernel if there is a polynomial-time algorithm that, given an instance (I, k) of Π , computes an equivalent instance (I', k') of Π such that $k' = k^{\mathcal{O}(1)}$ and $|I'| = k^{\mathcal{O}(1)}$.

Theorem

Planar OCT parameterized by solution size admits a randomized polynomial compression into Planar OCT with undeletable vertices that does not increase the parameter.

Corollary (Lokshtanov et al. 2012)

Planar OCT can be solved in randomized time $2^{\tilde{O}(\sqrt{k})}n^{O(1)}$.

Techniques

Subset-OCT

Hit all odd cycles through T

Extended Contraction Decomposition & Body Guessing

Techniques

D. Neuen (CISPA)

Cycle Hitting on Planar Graphs

Subset Odd Cycle Transversal (Subset OCT)

Input: Graph G, a set $T \subseteq V(G)$, and integer k

Subset Odd Cycle Transversal (Subset OCT)

- Input: Graph G, a set $T \subseteq V(G)$, and integer k
- Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G Z has no odd T-cycle

Subset Odd Cycle Transversal (Subset OCT)

Input: Graph G, a set $T \subseteq V(G)$, and integer k

Subset Odd Cycle Transversal (Subset OCT)

Input: Graph G, a set $T \subseteq V(G)$, and integer k

Subset Odd Cycle Transversal (Subset OCT)

Input: Graph G, a set $T \subseteq V(G)$, and integer k

Subset Odd Cycle Transversal (Subset OCT)

Input: Graph G, a set $T \subseteq V(G)$, and integer k

Subset Odd Cycle Transversal (Subset OCT)

Input: Graph G, a set $T \subseteq V(G)$, and integer k

Theorem

Given a planar graph and an integer k, one can compute in time $n^{\mathcal{O}(\sqrt{k})}$ a sequence $(V_1, \mathcal{B}_1), \ldots, (V_h, \mathcal{B}_h)$ with $h = n^{\mathcal{O}(\sqrt{k})}$, where $V_i \subseteq V(G)$ and \mathcal{B}_i contains $n^{\mathcal{O}(1)}$ sets of vertices, such that the following holds. For every $Z \subseteq V(G)$ with $|Z| \leq k$, there is at least one $1 \leq i \leq h$ such that • $V_i \cap Z = \emptyset$, • $tw(G/V_i) = \mathcal{O}(\sqrt{k})$, and • $\mathcal{B}_Z(I) \in \mathcal{B}_i$ for every component I of $G[V_i]$.

Theorem

Given a planar graph and an integer k, one can compute in time $n^{\mathcal{O}(\sqrt{k})}$ a sequence $(V_1, \mathcal{B}_1), \ldots, (V_h, \mathcal{B}_h)$ with $h = n^{\mathcal{O}(\sqrt{k})}$, where $V_i \subseteq V(G)$ and \mathcal{B}_i contains $n^{\mathcal{O}(1)}$ sets of vertices, such that the following holds. For every $Z \subseteq V(G)$ with $|Z| \leq k$, there is at least one $1 \leq i \leq h$ such that **1** $V_i \cap Z = \emptyset$, **2** $\operatorname{tw}(G/V_i) = \mathcal{O}(\sqrt{k})$, and **3** $B_Z(I) \in \mathcal{B}_i$ for every component I of $G[V_i]$.

Proof Idea:

• compute partition V_1',\ldots,V_ℓ' for $\ell=100\sqrt{k}$

Theorem

Given a planar graph and an integer k, one can compute in time $n^{\mathcal{O}(\sqrt{k})}$ a sequence $(V_1, \mathcal{B}_1), \ldots, (V_h, \mathcal{B}_h)$ with $h = n^{\mathcal{O}(\sqrt{k})}$, where $V_i \subseteq V(G)$ and \mathcal{B}_i contains $n^{\mathcal{O}(1)}$ sets of vertices, such that the following holds. For every $Z \subseteq V(G)$ with $|Z| \leq k$, there is at least one $1 \leq i \leq h$ such that • $V_i \cap Z = \emptyset$, • $tw(G/V_i) = \mathcal{O}(\sqrt{k})$, and • $\mathcal{B}_Z(I) \in \mathcal{B}_i$ for every component I of $G[V_i]$.

Proof Idea:

- compute partition V_1',\ldots,V_ℓ' for $\ell=100\sqrt{k}$
- there are many $i \in [\ell]$ such that $|Z \cap V_i'| \leq \sqrt{k}$

Theorem

Given a planar graph and an integer k, one can compute in time $n^{\mathcal{O}(\sqrt{k})}$ a sequence $(V_1, \mathcal{B}_1), \ldots, (V_h, \mathcal{B}_h)$ with $h = n^{\mathcal{O}(\sqrt{k})}$, where $V_i \subseteq V(G)$ and \mathcal{B}_i contains $n^{\mathcal{O}(1)}$ sets of vertices, such that the following holds. For every $Z \subseteq V(G)$ with $|Z| \leq k$, there is at least one $1 \leq i \leq h$ such that **1** $V_i \cap Z = \emptyset$, **2** tw $(G/V_i) = \mathcal{O}(\sqrt{k})$, and **3** $B_Z(I) \in \mathcal{B}_i$ for every component I of $G[V_i]$.

Proof Idea:

- compute partition V_1',\ldots,V_ℓ' for $\ell=100\sqrt{k}$
- there are many $i \in [\ell]$ such that $|Z \cap V_i'| \leq \sqrt{k}$
- since planar graphs have constant average degree, one of those *i* provides segments whose bodies have small interaction with solution vertices

Subexponential Algorithms

Theorem

Planar Subset OCT can be solved in time $n^{\mathcal{O}(\sqrt{k})}$.

Subexponential Algorithms

Theorem

Planar Subset OCT can be solved in time $n^{\mathcal{O}(\sqrt{k})}$.

Subset Feedback Vertex Set (Subset FVS)

Input: Graph G, a set $T \subseteq V(G)$, and integer k Task: Find $Z \subseteq V(G)$ of size $\leq k$ such that G - Z has no T-cycle

Theorem

Planar Subset FVS can be solved in randomized time $2^{\tilde{O}(\sqrt{k})}n^{O(1)}$.

Techniques

Techniques

Wrap-Up - Extensions

CSPs and Size Constraints:

- techniques extend to Permutation CSP Deletion problems
- size bounds for global appearances, or in connected or two-connected components

Wrap-Up - Extensions

CSPs and Size Constraints:

- techniques extend to Permutation CSP Deletion problems
- size bounds for global appearances, or in connected or two-connected components

H-Minor-Free Graphs:

- almost all arguments carry over to H-minor-free graphs for fixed H
- only missing piece is the Extended Contraction Decomposition
- we conjecture that it also holds for *H*-minor-free graphs
- proved by Bandyapadhyay et. al (SODA '22) for *h*-alomst embeddable graphs