
Parameterized Complexity of Weighted Multicut in Trees

WG 2022

Esther Galby1 Dániel Marx1 Philipp Schepper1
Roohani Sharma2 Prafullkumar Tale1

1 CISPA Helmholtz Center for Information Security, Germany
2 Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

June 23, 2022

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)

p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)

p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Multicut

Definition of Multicut
Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
and a positive integer k .
Question: Is there an edge set S ⊆ E(G) with |S| ≤ k ,
such that for all i ∈ [p]: there is no path from si to ti in G − S.

s1

t2

s2 t3

t1s3

p = 1: classical (s; t)-cut problem, poly-time solvable (Ford, Fulkerson ’62)
p = 2: Solvable in poly-time (Yannakakis et al. ’83)
p = 3: NP-hard (Dahlhaus et al. ’94)

2/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.

1 Pick the connected pair (si ; ti) such that:
the lowest common ancestor v is farthest from r .

2 Guess which of the two “outgoing” edges of v are
deleted.

3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .

2 Guess which of the two “outgoing” edges of v are
deleted.

3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.

3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Trees as Input

Simple branching algorithm (Guo and Niedermeier ’05):

Let r be the root of the tree.
1 Pick the connected pair (si ; ti) such that:

the lowest common ancestor v is farthest from r .
2 Guess which of the two “outgoing” edges of v are

deleted.
3 Repeat.

Running time: 2knO(1)

r

s4

s1 s3

t1

t3
s2

t2

t4

General graphs:
2O(k3)nO(1) algorithm based on important separators
(Marx and Razgon ’14, Bousquet et al. ’18)

A problem with running time f (k) · nO(1) is fixed parameter tractable (FPT).
FPT also denotes the class of “efficient” problems in the parameterized setting.

3/10

Adding Weights

As for other problems keep size constraint and add weight constraint.
Weighted (s; t)-Cut
Weighted Directed Feedback Vertex Set
Weighted Steiner Tree

Weighted Multicut (wMC)

Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]: there is no path from si to ti in G − S.

All previous algorithms fail to generalize!

Goal: Solve more restrictive versions first

=⇒ Focus on (subdivided) stars
s1 t1

10 10

1 1

4/10

Adding Weights

As for other problems keep size constraint and add weight constraint.
Weighted (s; t)-Cut
Weighted Directed Feedback Vertex Set
Weighted Steiner Tree

Weighted Multicut (wMC)

Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]: there is no path from si to ti in G − S.

All previous algorithms fail to generalize!

Goal: Solve more restrictive versions first

=⇒ Focus on (subdivided) stars
s1 t1

10 10

1 1

4/10

Adding Weights

As for other problems keep size constraint and add weight constraint.
Weighted (s; t)-Cut
Weighted Directed Feedback Vertex Set
Weighted Steiner Tree

Weighted Multicut (wMC)

Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]: there is no path from si to ti in G − S.

All previous algorithms fail to generalize!

Goal: Solve more restrictive versions first

=⇒ Focus on (subdivided) stars

s1 t1

10 10

1 1

4/10

Adding Weights

As for other problems keep size constraint and add weight constraint.
Weighted (s; t)-Cut
Weighted Directed Feedback Vertex Set
Weighted Steiner Tree

Weighted Multicut (wMC)

Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]: there is no path from si to ti in G − S.

All previous algorithms fail to generalize!

Goal: Solve more restrictive versions first

=⇒ Focus on (subdivided) stars

s1 t1

10 10

1 1

4/10

Adding Weights

As for other problems keep size constraint and add weight constraint.
Weighted (s; t)-Cut
Weighted Directed Feedback Vertex Set
Weighted Steiner Tree

Weighted Multicut (wMC)

Input: An undirected graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]: there is no path from si to ti in G − S.

All previous algorithms fail to generalize!

Goal: Solve more restrictive versions first

=⇒ Focus on (subdivided) stars
s1 t1

10 10

1 1

4/10

Hardness on Stars
(Subdivided) Stars seem to be important to handle:

Theorem (Garg et al. ’97)

(Weighted) Multicut is NP-hard on stars.

Vertex Cover

v1 v2

v3

v4

v5

Multicut on Stars

v0

v1 v2 v3 v4 v5

(v1; v2)
(v2; v3)
(v3; v4)
(v4; v5)
(v2; v5)
(v3; v5)

(Weighted) Vertex Cover and (Weighted) Multicut on Stars are equivalent.

More evidence that (subdivided) stars are important.

5/10

Hardness on Stars
(Subdivided) Stars seem to be important to handle:

Theorem (Garg et al. ’97)

(Weighted) Multicut is NP-hard on stars.

Vertex Cover

v1 v2

v3

v4

v5

Multicut on Stars

v0

v1 v2 v3 v4 v5

(v1; v2)
(v2; v3)
(v3; v4)
(v4; v5)
(v2; v5)
(v3; v5)

(Weighted) Vertex Cover and (Weighted) Multicut on Stars are equivalent.

More evidence that (subdivided) stars are important.

5/10

Hardness on Stars
(Subdivided) Stars seem to be important to handle:

Theorem (Garg et al. ’97)

(Weighted) Multicut is NP-hard on stars.

Vertex Cover

v1 v2

v3

v4

v5

Multicut on Stars

v0

v1 v2 v3 v4 v5

(v1; v2)
(v2; v3)
(v3; v4)
(v4; v5)
(v2; v5)
(v3; v5)

(Weighted) Vertex Cover and (Weighted) Multicut on Stars are equivalent.

More evidence that (subdivided) stars are important.

5/10

Hardness on Stars
(Subdivided) Stars seem to be important to handle:

Theorem (Garg et al. ’97)

(Weighted) Multicut is NP-hard on stars.

Vertex Cover

v1 v2

v3

v4

v5

Multicut on Stars

v0

v1 v2 v3 v4 v5

(v1; v2)
(v2; v3)
(v3; v4)
(v4; v5)
(v2; v5)
(v3; v5)

(Weighted) Vertex Cover and (Weighted) Multicut on Stars are equivalent.

More evidence that (subdivided) stars are important.

5/10

Hardness on Stars
(Subdivided) Stars seem to be important to handle:

Theorem (Garg et al. ’97)

(Weighted) Multicut is NP-hard on stars.

Vertex Cover

v1 v2

v3

v4

v5

Multicut on Stars

v0

v1 v2 v3 v4 v5

(v1; v2)
(v2; v3)
(v3; v4)
(v4; v5)
(v2; v5)
(v3; v5)

(Weighted) Vertex Cover and (Weighted) Multicut on Stars are equivalent.

More evidence that (subdivided) stars are important.

5/10

Hardness on Stars
(Subdivided) Stars seem to be important to handle:

Theorem (Garg et al. ’97)

(Weighted) Multicut is NP-hard on stars.

Vertex Cover

v1 v2

v3

v4

v5

Multicut on Stars

v0

v1 v2 v3 v4 v5

(v1; v2)
(v2; v3)
(v3; v4)
(v4; v5)
(v2; v5)
(v3; v5)

(Weighted) Vertex Cover and (Weighted) Multicut on Stars are equivalent.

More evidence that (subdivided) stars are important.

5/10

Solving Bicriteria Problems

First criterion: size bound for solution, i.e. |S| ≤ k

Second criterion: “weight” of the solution, i.e.
P

e∈S wt(e) ≤ W

Directed Feedback Vertex Set
(s; t)-Cut
Almost 2-SAT
Digraph Pair-Cut

are solved in the unweighted setting but the weighted setting was long not
known.
Main issue: techniques for unweighted setting fail to generalize.

Theorem (Kim et al., STOC’22)

The weighted versions of these problems are (randomized) FPT.

The proof uses directed flow augmentation.

6/10

Solving Bicriteria Problems

First criterion: size bound for solution, i.e. |S| ≤ k
Second criterion: “weight” of the solution, i.e.

P
e∈S wt(e) ≤ W

Directed Feedback Vertex Set
(s; t)-Cut
Almost 2-SAT
Digraph Pair-Cut

are solved in the unweighted setting but the weighted setting was long not
known.
Main issue: techniques for unweighted setting fail to generalize.

Theorem (Kim et al., STOC’22)

The weighted versions of these problems are (randomized) FPT.

The proof uses directed flow augmentation.

6/10

Solving Bicriteria Problems

First criterion: size bound for solution, i.e. |S| ≤ k
Second criterion: “weight” of the solution, i.e.

P
e∈S wt(e) ≤ W

Directed Feedback Vertex Set
(s; t)-Cut
Almost 2-SAT
Digraph Pair-Cut

are solved in the unweighted setting but the weighted setting was long not
known.

Main issue: techniques for unweighted setting fail to generalize.

Theorem (Kim et al., STOC’22)

The weighted versions of these problems are (randomized) FPT.

The proof uses directed flow augmentation.

6/10

Solving Bicriteria Problems

First criterion: size bound for solution, i.e. |S| ≤ k
Second criterion: “weight” of the solution, i.e.

P
e∈S wt(e) ≤ W

Directed Feedback Vertex Set
(s; t)-Cut
Almost 2-SAT
Digraph Pair-Cut

are solved in the unweighted setting but the weighted setting was long not
known.
Main issue: techniques for unweighted setting fail to generalize.

Theorem (Kim et al., STOC’22)

The weighted versions of these problems are (randomized) FPT.

The proof uses directed flow augmentation.

6/10

Solving Bicriteria Problems

First criterion: size bound for solution, i.e. |S| ≤ k
Second criterion: “weight” of the solution, i.e.

P
e∈S wt(e) ≤ W

Directed Feedback Vertex Set
(s; t)-Cut
Almost 2-SAT
Digraph Pair-Cut

are solved in the unweighted setting but the weighted setting was long not
known.
Main issue: techniques for unweighted setting fail to generalize.

Theorem (Kim et al., STOC’22)

The weighted versions of these problems are (randomized) FPT.

The proof uses directed flow augmentation.

6/10

Weighted Digraph Pair-Cut

Definition
Input: A directed graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
a source vertex r ∈ V (G), and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]:
if there is a path from r to si in G−S, then there is no path from r to ti in G−S.

Recall: Weighted Digraph Pair-Cut is FPT.

7/10

Weighted Digraph Pair-Cut

Definition
Input: A directed graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
a source vertex r ∈ V (G), and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]:
if there is a path from r to si in G−S, then there is no path from r to ti in G−S.

s1

t2

s2 t3

t1s3

r

Recall: Weighted Digraph Pair-Cut is FPT.

7/10

Weighted Digraph Pair-Cut

Definition
Input: A directed graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
a source vertex r ∈ V (G), and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]:
if there is a path from r to si in G−S, then there is no path from r to ti in G−S.

s1

t2

s2 t3

t1s3

r

Recall: Weighted Digraph Pair-Cut is FPT.

7/10

Weighted Digraph Pair-Cut

Definition
Input: A directed graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
a source vertex r ∈ V (G), and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]:
if there is a path from r to si in G−S, then there is no path from r to ti in G−S.

s1

t2

s2 t3

t1s3

r

Recall: Weighted Digraph Pair-Cut is FPT.

7/10

Weighted Digraph Pair-Cut

Definition
Input: A directed graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
a source vertex r ∈ V (G), and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]:
if there is a path from r to si in G−S, then there is no path from r to ti in G−S.

s1

t2

s2 t3

t1s3

r

Recall: Weighted Digraph Pair-Cut is FPT.

7/10

Weighted Digraph Pair-Cut

Definition
Input: A directed graph G, vertex pairs (s1; t1); : : : ; (sp; tp) ∈ V (G)× V (G),
a weight function wt : E(G)→ N, an integer weight budget W ,
a source vertex r ∈ V (G), and a positive integer k .
Question: Is there a set S ⊆ E(G) with |S| ≤ k and

P
e∈S wt(e) ≤ W

such that for all i ∈ [p]:
if there is a path from r to si in G−S, then there is no path from r to ti in G−S.

s1

t2

s2 t3

t1s3

r

Recall: Weighted Digraph Pair-Cut is FPT.

7/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k.

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .

Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .

Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Weighted Multicut on Subdivided Stars

Assume all pairs use the root r .
Orient all edges away from r .
Solve the constructed Weighted Digraph
Pair-Cut instance.

Observe: This also works for trees if we have the
assumption!

r

s2 s4

s3 t1
t4

s1 t2 t3

To achieve the assumption:
Compute an unweighted solution (with certain properties)
and then modify the graph while using the algorithm for subdivided stars.

Main Theorem
Weighted Multicut on trees is FPT when parameterizing by the solution size k .

Answers an implicit question by Bousquet et al. (STACS ’09).

8/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Multicut
Unweighted FPT:

Simple branching algorithm
Weighted

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:

Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Multicut
Unweighted FPT:

Simple branching algorithm
Weighted FPT:

Algorithm we have just seen

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:

Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
Weighted FPT:

Algorithm we have just seen

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:

Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
poly-time:
Greedily delete the lowest common
ancestor

Weighted FPT:
Algorithm we have just seen

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:

Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
poly-time:
Greedily delete the lowest common
ancestor

Weighted FPT:
Algorithm we have just seen

??

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:

Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
poly-time:
Greedily delete the lowest common
ancestor

Weighted FPT:
Algorithm we have just seen

??

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:

Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
poly-time:
Greedily delete the lowest common
ancestor

Weighted FPT:
Algorithm we have just seen

??

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:
Split each edge by a vertex which has the weight of the original edge.

Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
poly-time:
Greedily delete the lowest common
ancestor

Weighted FPT:
Algorithm we have just seen

??

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:
Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Edge Deletion vs. Vertex Deletion

Situation on trees:

Edge Multicut Vertex Multicut
Unweighted FPT:

Simple branching algorithm
poly-time:
Greedily delete the lowest common
ancestor

Weighted FPT:
Algorithm we have just seen

FPT:
Algorithm we have just seen

Observation:
Weighted Vertex Multicut generalized Weighted Edge Multicut:
Split each edge by a vertex which has the weight of the original edge.
Make all original vertices undeletable (e.g. infinite weight).

Our algorithm also works for the vertex version!

9/10

Conclusion
We use results for Weighted Digraph Pair-Cut to show the following:

Main Theorem 1
Weighted Multicut on trees can be solved in randomized time 2O(k4) · nO(1).

Similarly we solve a version of the problem without the size constraint k .

Main Theorem 2
Weighted Multicut without size constraint on trees with ‘ leaves can be solved in
time 2O(‘3) · nO(1).

One more result generalizing Main Theorem 2 and a result by Guo and
Niedermeier (2006) about request degree.

Full version: arXiv:2205.10105

10/10

Conclusion
We use results for Weighted Digraph Pair-Cut to show the following:

Main Theorem 1
Weighted Multicut on trees can be solved in randomized time 2O(k4) · nO(1).

Similarly we solve a version of the problem without the size constraint k .

Main Theorem 2
Weighted Multicut without size constraint on trees with ‘ leaves can be solved in
time 2O(‘3) · nO(1).

One more result generalizing Main Theorem 2 and a result by Guo and
Niedermeier (2006) about request degree.

Full version: arXiv:2205.10105

10/10

Conclusion
We use results for Weighted Digraph Pair-Cut to show the following:

Main Theorem 1
Weighted Multicut on trees can be solved in randomized time 2O(k4) · nO(1).

Similarly we solve a version of the problem without the size constraint k .

Main Theorem 2
Weighted Multicut without size constraint on trees with ‘ leaves can be solved in
time 2O(‘3) · nO(1).

One more result generalizing Main Theorem 2 and a result by Guo and
Niedermeier (2006) about request degree.

Full version: arXiv:2205.10105

10/10

Additional Material

(d; ‘)-Light Instances

Delete all vertices used for at most d terminal pair request.
The closed neighborhood of the remaining components must has at most ‘
leaves.

2/7

Result for (d; ‘)-Light Instances

Parameter: request degree d and number of leaves ‘
wMC on (d; ‘)-light trees can be solved in time 3d · 2d‘ · 2O(‘3) · nO(1)

if we drop the size constraint.

Proof idea:
For vertices with small (≤ d) request degree:
Use dynamic programming.
For components of vertices with large (≥ d) request degree:
Use one of the new algorithms as subroutine as the component has at most ‘
leaves.

This implies a result by Guo and Niedermeier (2006) about the request degree d .

3/7

Parameterizing by Number of Leaves

Parameter: number of leaves ‘
wMC on trees with ‘ leaves can be solved in time 2O(‘3) · nO(1)

if we drop the size constraint.

Proof idea:
Use another result from Kim et al. ’22 to solve the problem on paths and stars.
Apply similar procedure as for previous algorithm to solve the problem on trees.

4/7

Algorithm – Main Idea
Preprocessing:
1 Compute a minimum unweighted solution Xopt.

2 Extend Xopt to X by computing the closure under taking
the “lowest common ancestor”.

Branching algorithm:

1 Pick x ∈ X to be furthest from the root.
Let y ∈ X be its closest ancestor.

2 Guess if some vertex between x and y is selected.
3 Case “no such vertex”:

Contract the path from x to y onto an undeletable vertex.
4 Case “there is such a vertex”:

For each vertex v between x and y :
Update wt(v) = wt(v) + OPT(T †

v;x) (next step)
Delete T †

x and add the pair (x; y).
5 Recurse.

t3

s4

s1 s2

t1

t2 s3

t4

5/7

Algorithm – Main Idea
Preprocessing:
1 Compute a minimum unweighted solution Xopt.

2 Extend Xopt to X by computing the closure under taking
the “lowest common ancestor”.

Branching algorithm:

1 Pick x ∈ X to be furthest from the root.
Let y ∈ X be its closest ancestor.

2 Guess if some vertex between x and y is selected.
3 Case “no such vertex”:

Contract the path from x to y onto an undeletable vertex.
4 Case “there is such a vertex”:

For each vertex v between x and y :
Update wt(v) = wt(v) + OPT(T †

v;x) (next step)
Delete T †

x and add the pair (x; y).
5 Recurse.

t3

s4

s1 s2

t1

t2 s3

t4

5/7

Algorithm – Main Idea
Preprocessing:
1 Compute a minimum unweighted solution Xopt.
2 Extend Xopt to X by computing the closure under taking

the “lowest common ancestor”.

Branching algorithm:

1 Pick x ∈ X to be furthest from the root.
Let y ∈ X be its closest ancestor.

2 Guess if some vertex between x and y is selected.
3 Case “no such vertex”:

Contract the path from x to y onto an undeletable vertex.
4 Case “there is such a vertex”:

For each vertex v between x and y :
Update wt(v) = wt(v) + OPT(T †

v;x) (next step)
Delete T †

x and add the pair (x; y).
5 Recurse.

t3

s4

s1 s2

t1

t2 s3

t4

5/7

Algorithm – Main Idea
Preprocessing:
1 Compute a minimum unweighted solution Xopt.
2 Extend Xopt to X by computing the closure under taking

the “lowest common ancestor”.
Branching algorithm:
1 Pick x ∈ X to be furthest from the root.

Let y ∈ X be its closest ancestor.

2 Guess if some vertex between x and y is selected.
3 Case “no such vertex”:

Contract the path from x to y onto an undeletable vertex.
4 Case “there is such a vertex”:

For each vertex v between x and y :
Update wt(v) = wt(v) + OPT(T †

v;x) (next step)
Delete T †

x and add the pair (x; y).
5 Recurse.

t3

y

s4

x

s1 s2

t1

t2 s3

t4

5/7

Algorithm – Main Idea
Preprocessing:
1 Compute a minimum unweighted solution Xopt.
2 Extend Xopt to X by computing the closure under taking

the “lowest common ancestor”.
Branching algorithm:
1 Pick x ∈ X to be furthest from the root.

Let y ∈ X be its closest ancestor.
2 Guess if some vertex between x and y is selected.
3 Case “no such vertex”:

Contract the path from x to y onto an undeletable vertex.

4 Case “there is such a vertex”:
For each vertex v between x and y :
Update wt(v) = wt(v) + OPT(T †

v;x) (next step)
Delete T †

x and add the pair (x; y).
5 Recurse.

t3

y

s4

x

s1 s2

t1

t2 s3

t4

5/7

Algorithm – Main Idea
Preprocessing:
1 Compute a minimum unweighted solution Xopt.
2 Extend Xopt to X by computing the closure under taking

the “lowest common ancestor”.
Branching algorithm:
1 Pick x ∈ X to be furthest from the root.

Let y ∈ X be its closest ancestor.
2 Guess if some vertex between x and y is selected.
3 Case “no such vertex”:

Contract the path from x to y onto an undeletable vertex.
4 Case “there is such a vertex”:

For each vertex v between x and y :
Update wt(v) = wt(v) + OPT(T †

v;x) (next step)
Delete T †

x and add the pair (x; y).
5 Recurse.

t3

y

s4

x

s1 s2

t1

t2 s3

t4

5/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .
Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

v

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .
Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

v

v ′

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .
Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

v

v ′

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .
Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

v

v ′

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .
Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

v

v ′

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .

Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

y

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Updating the Weights
Goal: Compute for each v the optimal solution in the subtree below, i.e. in T †

v;x .

Guess the size i ∈ [k] of the solution in this part.

1 Consider the graph T †
v;x , i.e. the subtree of Tv containing x .

Let v ′ be its root.
Observe: For each (s; t) ∈ P|v ′ , the path from x to s or
from x to t has to be cut.

2 Direct all edges away from x .
Define the weight of each edge as the weight of its head.
→ Must solve a digraph pair-cut problem.

3 By Kim et al. ’22 this can be solved in time 2O(k4)nO(1).
Let Cv;i be the optimal value.

4 Define wt(v) = wt(v) + Cv;i .

Repeat this for all vertices between x and y .
Remove the subtree below x and the corresponding pairs.
Remove x from X and add (x; y) as a new pair to P.

t3

y

s4

x

s1 s2

t1

t2 s3

t4

6/7

Algorithm – Running Time

Preprocessing:
Solution Xopt and its closure X can be computed in polynomial time
|X| ≤ 2|Xopt| ≤ 2k

For each iteration of the branching algorithm:
create k + 1 new branches,
create O(n) digraph pair-cut instances

solve them in time 2O(k4)nO(1) due to the subroutine, and
remove one vertex from X.

=⇒ Total running time is kO(k) · 2O(k4)nO(1) = 2O(k4)nO(1).
˜

7/7

Algorithm – Running Time

Preprocessing:
Solution Xopt and its closure X can be computed in polynomial time
|X| ≤ 2|Xopt| ≤ 2k

For each iteration of the branching algorithm:
create k + 1 new branches,
create O(n) digraph pair-cut instances

solve them in time 2O(k4)nO(1) due to the subroutine, and
remove one vertex from X.

=⇒ Total running time is kO(k) · 2O(k4)nO(1) = 2O(k4)nO(1).
˜

7/7

Algorithm – Running Time

Preprocessing:
Solution Xopt and its closure X can be computed in polynomial time
|X| ≤ 2|Xopt| ≤ 2k

For each iteration of the branching algorithm:
create k + 1 new branches,
create O(n) digraph pair-cut instances

solve them in time 2O(k4)nO(1) due to the subroutine, and
remove one vertex from X.

=⇒ Total running time is kO(k) · 2O(k4)nO(1) = 2O(k4)nO(1).
˜

7/7

	Introduction
	Appendix
	Additional Material
	More Results
	Parameterizing By Solution Size

