Parameterized Complexity of Biclique Contraction and Balanced Biclique Contraction

R. Krithika¹, V. K. Kutty Malu¹, Roohani Sharma², Prafullkumar Tale³

¹Indian Institute of Technology Palakkad, India

²Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany

³Indian Institute of Science Education and Research Pune, India,

18 December 2023

Edge Contractions

(FSTTCS 2023)

Graph Contraction Problems

December 2023

< ∃→

2/4

æ

Edge Contractions

æ

∃ →

Bipartite Graph

- A graph is bipartite if its vertex set has a bipartition (X, Y), such that X and Y are independent sets.
- A set of vertices X is an *independent set*: if no two vertices in X are adjacent.

 A bipartite graph G with bipartition (X, Y) is a biclique if every vertex in X is adjacent to every vertex in Y.

(FSTTCS 2023)

 A bipartite graph G with bipartition (X, Y) is a biclique if every vertex in X is adjacent to every vertex in Y.

 A biclique G with bipartition ⟨X, Y⟩ is a balanced biclique if |X| = |Y|.

BICLIQUE CONTRACTION **Input:** A graph G on n vertices and an integer k. **Question:** Can we contract $\leq k$ edges in G to obtain a biclique? **Parameter:** k.

(FSTTCS 2023)

BALANCED BICLIQUE CONTRACTION **Input:** A graph G on n vertices and an integer k. **Question:** Can we contract $\leq k$ edges in G to obtain a balanced biclique? **Parameter:** k.

Our Results

3

(FSTTCS 2023)

Graph Contraction Problems

December 2023

<ロト <問ト < 目と < 目と

• BICLIQUE CONTRACTION is NP-complete.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

Image: Image:

< ∃⇒

æ

- BICLIQUE CONTRACTION is NP-complete.
- BALANCED BICLIQUE CONTRACTION is NP-complete.

(FSTTCS 2023)

Graph Contraction Problems

∃ >

- BICLIQUE CONTRACTION is NP-complete.
- BALANCED BICLIQUE CONTRACTION is NP-complete.
- BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.

- BICLIQUE CONTRACTION is NP-complete.
- BALANCED BICLIQUE CONTRACTION is NP-complete.
- BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.
- BALANCED BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.

- BICLIQUE CONTRACTION is NP-complete.
- BALANCED BICLIQUE CONTRACTION is NP-complete.
- BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.
- BALANCED BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.
- BALANCED BICLIQUE CONTRACTION admits a quadratic vertex kernel

- BICLIQUE CONTRACTION is NP-complete.
- BALANCED BICLIQUE CONTRACTION is NP-complete.
- BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.
- BALANCED BICLIQUE CONTRACTION is FPT via an $\mathcal{O}^*(25.904^k)$ -time algorithm.
- BALANCED BICLIQUE CONTRACTION admits a quadratic vertex kernel
- BICLIQUE CONTRACTION does not admit any polynomial kernel unless NP ⊆ coNP/poly.

k-constrained valid partition

(G, k) is a YES-instance of BICLIQUE CONTRACTION iff V(G) can be partioned into two parts $\langle L, R \rangle$:

- Size_of(Span_forest of G[L]) + Size_of(Span_forest of G[R]) $\leq k$.
- **2** Every component of G[L] is adjacent to every component of G[R].

k-constrained valid balanced partition

(G, k) is a YES-instance of BALANCED BICLIQUE CONTRACTION iff V(G) can be particle into two parts $\langle L, R \rangle$:

- $\langle L, R \rangle$ is a *k*-constrained valid partition.
- ② Number of components of G[L] = Number of components of G[R].

(FSTTCS 2023)

Graph Contraction Problems

NP-completeness of BICLIQUE CONTRACTION

• Red-Blue Dominating Set \leq_P Biclique Contraction.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

• Red-Blue Dominating Set \leq_P Biclique Contraction.

• $(G, R, B, \kappa) \longmapsto (H, k)$ where H is bipartite, $k = |B| + \kappa$

- Red-Blue Dominating Set \leq_P Biclique Contraction.
 - $(G, R, B, \kappa) \longmapsto (H, k)$ where H is bipartite, $k = |B| + \kappa$
- BICLIQUE CONTRACTION is NP-complete even when restricted to bipartite graphs.
- BICLIQUE CONTRACTION does not admit any polynomial compression (or kernel)

NP-completeness of BALANCED BICLIQUE CONTRACTION

• Hypergraph 2-Coloring \leq_P Bal Biclique Contraction.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

NP-completeness of BALANCED BICLIQUE CONTRACTION

- Hypergraph 2-Coloring \leq_P Bal Biclique Contraction.
 - $(\mathcal{G}) \longmapsto (\mathcal{G}, \kappa)$, κ is a function of the number of vertices and the number of hyperedges in \mathcal{G}

NP-completeness of BALANCED BICLIQUE CONTRACTION

- Hypergraph 2-Coloring \leq_P Bal Biclique Contraction.
 - $(\mathcal{G}) \longmapsto (\mathcal{G}, \kappa)$, κ is a function of the number of vertices and the number of hyperedges in \mathcal{G}
- BAL BICLIQUE CONTRACTION is NP-complete even when restricted to bipartite graphs.

BICLIQUE CONTRACTION and BALANCED BICLIQUE CONTRACTION can be solved in $\mathcal{O}^*(25.904^k)$ time.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

Biclique modulator

Observation 1

If G is k-contractible to a (balanced) biclique, then G has a biclique modulator of size at most 2k.

Proposition 1 [Hüffner et al., 2010]

A Biclique modulator Z of size at most k can be obtained in $\mathcal{O}^*(1.4^k)$ time.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

• Let (G, k) be an instance of BICLIQUE CONTRACTION.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

- Let (G, k) be an instance of BICLIQUE CONTRACTION.
- If G does not has a biclique modulator Z of size at most 2k: -Declare No

- Let (G, k) be an instance of BICLIQUE CONTRACTION.
- If G does not has a biclique modulator Z of size at most 2k: -Declare No
- Otherwise:

R

Case 1: $X \cup Y = \emptyset$

Guess the partition of Z in $\mathcal{O}^*(2^{|Z|})$ time.

Case 2: $X \cup Y \neq \emptyset$ where $X = \emptyset$

(FSTTCS 2023)

Graph Contraction Problems

December 2023

< ∃⇒

Case 2: $X \cup Y \neq \emptyset$ where $X = \emptyset$

Case 2.1: $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both.

Determine if $(Z_L, Z_R \cup Y)$ is a k-constrained valid partition.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

Case 2: $X \cup Y \neq \emptyset$ where $X = \emptyset$

Case 2.2: $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$.

(FSTTCS 2023)

Graph Contraction Problems

Branching Rule 1 for Case 2.2

If there is a vertex $v \in Y$ such that $N(v) \cap Z_L \neq \emptyset$, $N(v) \cap Z_R \neq \emptyset$ and $|N(v) \cap (Z_L \cup Z_R)| > 2$, then branch into the following.

- Contract all edges in $E(v, Z_L)$ and dec k.
- Contract all edges in $E(v, Z_R)$ and dec k.

Preprocessing Rule 1 for Case 2.2

If there is a vertex $v \in Y$ of degree 2 such that $N(v) \cap Z_L \neq \emptyset$ and $N(v) \cap Z_R \neq \emptyset$, then contract edges in $E(v, Z_L)$ and dec k.

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

• Check if $(Z_L \cup Y_L, Z_R \cup Y_R)$ is a *k*-constrained valid partition.

20 / 42

(FSTTCS 2023)

Graph Contraction Problems

December 2023
When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

- Check if $(Z_L \cup Y_L, Z_R \cup Y_R)$ is a *k*-constrained valid partition.
- Contract all edges in $E(Y_R, Z_R)$ and dec k.

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

- Check if $(Z_L \cup Y_L, Z_R \cup Y_R)$ is a *k*-constrained valid partition.
- Contract all edges in $E(Y_R, Z_R)$ and dec k.
- Check if $(Z_L \cup Y_1 \cup Y_2, Z_R \cup Y_3)$ is a *k*-constrained valid partition.

Total running time - $\mathcal{O}^*(1.619^k 2^{2|Z|})$

• Case 1:
$$X \cup Y = \emptyset$$
 - $\mathcal{O}^*(2^{|Z|})$

• Case 2:
$$X \cap L = \emptyset$$
 and $X \cap R = \emptyset$:

• Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^*(2^{|Z|})$ • $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case - $\mathcal{O}^*(1.619^k 2^{2|Z|})$

• **Case 3:** Either $X \cap L \neq \emptyset$ or $X \cap R \neq \emptyset$ but not both:

• Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^*(2^{|Z|})$

2 $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case - $\mathcal{O}^*(1.619^{k}2^{2|Z|})$

• Case 4:
$$X \cap L \neq \emptyset$$
 and $X \cap R \neq \emptyset$:

Similar Case - $\mathcal{O}^*(1.619^k 2^{2|Z|})$

2)
$$Y \cap L \neq \emptyset$$
 and $Y \cap R \neq \emptyset$ - $\mathcal{O}^*(2^{|Z|+k})$

• Case 1:
$$X \cup Y = \emptyset$$
 - $\mathcal{O}^*(2^{|Z|})$

• Case 2:
$$X \cap L = \emptyset$$
 and $X \cap R = \emptyset$:

Either Y ∩ L ≠ Ø or Y ∩ R ≠ Ø but not both - O*(2^{|Z|})
Y ∩ L ≠ Ø and Y ∩ R ≠ Ø. Similar Case - O*(1.619^k2^{2|Z|})

• **Case 3:** Either $X \cap L \neq \emptyset$ or $X \cap R \neq \emptyset$ but not both:

• Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^*(2^{|Z|})$

2 $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case - $\mathcal{O}^*(1.619^{k}2^{2|Z|})$

• Case 4:
$$X \cap L \neq \emptyset$$
 and $X \cap R \neq \emptyset$:

Similar Case - $\mathcal{O}^*(1.619^k 2^{2|Z|})$

2
$$Y \cap L \neq \emptyset$$
 and $Y \cap R \neq \emptyset$ - $\mathcal{O}^*(2^{|Z|+k})$

Biclique Contraction can be solved in time $\mathcal{O}^*(25.904^k)$

• BALANCED BICLIQUE CONTRACTION: to determine if the partition is a *k*-constrained valid balanced partition or not.

 $k-{\rm constrained}$ valid balanced partition of V(G)

• BALANCED BICLIQUE CONTRACTION: to determine if the partition is a *k*-constrained valid balanced partition or not.

December 2023

22 / 42

Balanced Biclique Contraction can be solved in time $\mathcal{O}^*(25.904^k)$

		•
TCS 2023)	Graph Contraction Problems	

(FST

Kernelization of BALANCED BICLIQUE CONTRACTION

• Admits Quadratic Vertex Kernel for BALANCED BICLIQUE CONTRACTION using a sequence of reduction rules.

23 / 42

(FSTTCS 2023)

Graph Contraction Problems

December 2023

Polynomial Kernel for BAL BICLIQUE CONTRACTION

C be a maximal collection of vertex-disjoint $K_1 + K_2$ and K_3 in G and $Z = \bigcup_{C \in C} V(C)$.

(FSTTCS 2023)

If |Z| > 6k, then return a trivial No-instance.

Subsequently, we assume that $|Z| \leq 6k$, $|X| \leq |Y|$, $|Y| \geq k+3$

(FSTTCS 2023)

Graph Contraction Problems

December 2023

3. 3

Subsequently, we assume that $|Z| \leq 6k$, $|X| \leq |Y|$, $|Y| \geq k+3$

If |Y| > |X| + |Z| + k, then return a trivial No-instance.

(FSTTCS 2023)

If (G, k) is a YES-instance then, in any *k*-constrained valid balanced partition $\langle L, R \rangle$ of V(G) either $X \subseteq L$, $Y \subseteq R$ or $X \subseteq R$, $Y \subseteq L$.

If there is an edge in $E(X, Z_X) \cup E(Y, Z_Y) \cup E(Z_X) \cup E(Z_Y)$, then contract it and decrease k by 1.

 Z_X has more than k + 1 neighbours in Y Z_Y has more than k + 1 neighbours in X

Z

G = Z

If there is an edge in $E(X, Z_X) \cup E(Y, Z_Y) \cup E(Z_X) \cup E(Z_Y)$, then contract it and decrease k by 1.

 Z_X has more than k + 1 neighbours in Y Z_Y has more than k + 1 neighbours in X

G = Z

• if $Z_X \cap Z_Y \neq \emptyset$, then (G, k) is a No-instance.

If there is an edge in $E(X, Z_X) \cup E(Y, Z_Y) \cup E(Z_X) \cup E(Z_Y)$, then contract it and decrease k by 1.

Graph Contraction Problems

 Z_X has more than k + 1 neighbours in Y Z_Y has more than k + 1 neighbours in X

(FSTTCS 2023)

Z

• if $Z_X \cap Z_Y \neq \emptyset$, then (G, k) is a NO-instance.

December 2023

• Z', Z_X and Z_Y partition Z.

• Mark all vertices in Z

(FSTTCS 2023)

< 4 ► >

→ ∃ →

э

• Mark all vertices in Z

• Mark all vertices in $N(Z') \cap X$ and $N(Z') \cap Y$.

• For each vertex $z \in Z$, mark one of its non-neighbour (if it exists) each in $X \setminus N(Z')$ and $Y \setminus N(Z')$.

(FSTTCS 2023)

(FSTTCS 2023)

Graph Contraction Problems

December 2023

Image: A mathematical states and a mathem

< ∃ →

32 / 42

æ

Image: A matched block

(FSTTCS 2023)

Graph Contraction Problems

December 2023

∃ →

32 / 42

æ

The marking procedure marks $\mathcal{O}(k^2)$ vertices.

- Faster FPT Algorithm.
- **2** Linear vertex kernel for BAL BICLIQUE CONTRACTION.
- **③** BICLIQUE CONTRACTION: lower bound l = n k on the number of vertices in the resultant biclique is
 - W[1]-hard.
 - XP Algorithm?
- **6** BAL BICLIQUE CONTRACTION: when parameterized by ℓ
 - para-NP-hard ?

Thank you

(FSTTCS 2023)

Graph Contraction Problems

December 2023

イロト イヨト イヨト イヨト

34 / 42

æ

• Red-Blue Dominating Set \leq_P Biclique Contraction.

• $(G, R, B, \kappa) \longmapsto (H, k)$ where H is bipartite, $k = |B| + \kappa$

- Red-Blue Dominating Set \leq_P Biclique Contraction.
 - $(G, R, B, \kappa) \longmapsto (H, k)$ where H is bipartite, $k = |B| + \kappa$
- BICLIQUE CONTRACTION is NP-complete even when restricted to bipartite graphs.
- BICLIQUE CONTRACTION does not admit any polynomial compression (or kernel)

Red-Blue Dominating Set

Given a bipartite graph G with bipartition $\langle R, B \rangle$ and an integer κ , the objective is to find a set $S \subseteq R$ of size at most κ that dominates B.

A set X is said to *dominate* a set Y if $Y \subseteq N(X)$.

36 / 42

(FSTTCS 2023)

Graph Contraction Problems

NP-completeness of BICLIQUE CONTRACTION

- Let (G, R, B, κ) be an instance of RED BLUE DOMINATING SET
- (H, k) be an instance of BICLIQUE CONTRACTION (H is bipartite)
 k = |B| + κ

Figure 1: $|V(H)| = \mathcal{O}(|V(G)|)$, $C = \{v_1, \ldots, v_{\kappa + |B| + 1}\}$

NP-completeness of BALANCED BICLIQUE CONTRACTION

• Hypergraph 2-Coloring \leq_P Bal Biclique Contraction.

38 / 4<u>2</u>

(FSTTCS 2023)

Graph Contraction Problems

December 2023

NP-completeness of BALANCED BICLIQUE CONTRACTION

- Hypergraph 2-Coloring \leq_P Bal Biclique Contraction.
 - $(\mathcal{G}) \longmapsto (\mathcal{G}, \kappa)$, κ is a function of the number of vertices and the number of hyperedges in \mathcal{G}

38 / 42

(FSTTCS 2023)

Graph Contraction Problems

December 2023

NP-completeness of BALANCED BICLIQUE CONTRACTION

- Hypergraph 2-Coloring \leq_P Bal Biclique Contraction.
 - $(\mathcal{G}) \longmapsto (\mathcal{G}, \kappa)$, κ is a function of the number of vertices and the number of hyperedges in \mathcal{G}
- BAL BICLIQUE CONTRACTION is NP-complete even when restricted to bipartite graphs.

HYPERGRAPH 2-COLORING problem

In the HYPERGRAPH 2-COLORING problem, the input is a hypergraph \mathcal{G} and the objective is to determine if there is a 2-coloring $\phi : V(\mathcal{G}) \mapsto \{1, 2\}$ such that no hyperedge is monochromatic.

Figure 2: Hypergraph \mathcal{G}

HYPERGRAPH 2-COLORING problem

In the HYPERGRAPH 2-COLORING problem, the input is a hypergraph \mathcal{G} and the objective is to determine if there is a 2-coloring $\phi : V(\mathcal{G}) \mapsto \{1, 2\}$ such that no hyperedge is monochromatic.

NP-completeness of BAL BICLIQUE CONTRACTION

- Given an instance (\mathcal{G}) of Hypergraph 2-Coloring
- (H, k) be an instance of BAL BICLIQUE CONTRACTION.
- k = 2M + N 2

Figure 4:
$$|V(H)| = O(|V(G)|)$$
.

(FSTTCS 2023)

Graph Contraction Problems

December 2023

NP-completeness of BAL BICLIQUE CONTRACTION

(H, k) is a YES-instance of BAL BICLIQUE CONTRACTION $\Leftrightarrow (G, \kappa = k + |Z|)$ is a YES-instance of BAL BICLIQUE CONTRACTION.

Figure 5: Intermediate graph H.

Hüffner, F., Komusiewicz, C., Moser, H., and Niedermeier, R. (2010). Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217.

