Parameterized Complexity of Biclique Contraction and Balanced Biclique Contraction

R. Krithika ${ }^{1}$, V. K. Kutty Malu ${ }^{1}$, Roohani Sharma ${ }^{2}$, Prafullkumar Tale ${ }^{3}$
${ }^{1}$ Indian Institute of Technology Palakkad, India

${ }^{2}$ Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
${ }^{3}$ Indian Institute of Science Education and Research Pune, India,
18 December 2023

Edge Contractions

Edge Contractions

Bipartite Graph

- A graph is bipartite if its vertex set has a bipartition $\langle X, Y\rangle$, such that X and Y are independent sets.
- A set of vertices X is an independent set: if no two vertices in X are adjacent.

Biclique and Balanced Biclique

- A bipartite graph G with bipartition $\langle X, Y\rangle$ is a biclique if every vertex in X is adjacent to every vertex in Y.

Biclique and Balanced Biclique

- A bipartite graph G with bipartition $\langle X, Y\rangle$ is a biclique if every vertex in X is adjacent to every vertex in Y.

- A biclique G with bipartition $\langle X, Y\rangle$ is a balanced biclique if $|X|=|Y|$.

Biclique Contraction

Biclique Contraction

Input: A graph G on n vertices and an integer k.
Question: Can we contract $\leq k$ edges in G to obtain a biclique? Parameter: k.

Balanced Biclique Contraction

Balanced Biclique Contraction
Input: A graph G on n vertices and an integer k.
Question: Can we contract $\leq k$ edges in G to obtain a balanced biclique? Parameter: k.

Our Results

Our Results

- Biclique Contraction is NP-complete.

Our Results

- Biclique Contraction is NP-complete.
- Balanced Biclique Contraction is NP-complete.

Our Results

- Biclique Contraction is NP-complete.
- Balanced Biclique Contraction is NP-complete.
- Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.

Our Results

- Biclique Contraction is NP-complete.
- Balanced Biclique Contraction is NP-complete.
- Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.
- Balanced Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.

Our Results

- Biclique Contraction is NP-complete.
- Balanced Biclique Contraction is NP-complete.
- Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.
- Balanced Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.
- Balanced Biclique Contraction admits a quadratic vertex kernel

Our Results

- Biclique Contraction is NP-complete.
- Balanced Biclique Contraction is NP-complete.
- Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.
- Balanced Biclique Contraction is FPT via an $\mathcal{O}^{*}\left(25.904^{k}\right)$-time algorithm.
- Balanced Biclique Contraction admits a quadratic vertex kernel
- Biclique Contraction does not admit any polynomial kernel unless NP \subseteq coNP/poly.

Contracting Graphs to Bicliques

k-constrained valid partition

(G, k) is a Yes-instance of Biclique Contraction iff $V(G)$ can be partioned into two parts $\langle L, R\rangle$:
(1) Size_of $($ Span_forest of $G[L])+$ Size_of(Span_forest of $G[R]) \leq k$.
(2) Every component of $G[L]$ is adjacent to every component of $G[R]$.

Contracting Graphs to Balanced Bicliques

k-constrained valid balanced partition

(G, k) is a Yes-instance of Balanced Biclique Contraction iff $V(G)$ can be partioned into two parts $\langle L, R\rangle$:
(1) $\langle L, R\rangle$ is a k-constrained valid partition.
(2) Number of components of $G[L]=$ Number of components of $G[R]$.

NP-completeness of Biclique Contraction

- Red-Blue Dominating Set \leq_{p} Biclique Contraction.

NP-completeness of Biclique Contraction

- Red-Blue Dominating Set \leq_{P} Biclique Contraction.
- $(G, R, B, \kappa) \longmapsto(H, k)$ where H is bipartite, $k=|B|+\kappa$

NP-completeness of Biclique Contraction

- Red-Blue Dominating Set \leq_{P} Biclique Contraction.
- $(G, R, B, \kappa) \longmapsto(H, k)$ where H is bipartite, $k=|B|+\kappa$
- Biclique Contraction is NP-complete even when restricted to bipartite graphs.
- Biclique Contraction does not admit any polynomial compression (or kernel)

NP-completeness of BALANced BicliQue Contraction

- Hypergraph 2-Coloring \leq_{P} Bal Biclique Contraction.

NP-completeness of BALANced Biclique Contraction

- Hypergraph 2-Coloring \leq_{p} Bal Biclique Contraction.
- $(\mathcal{G}) \longmapsto(G, \kappa), \kappa$ is a function of the number of vertices and the number of hyperedges in \mathcal{G}

NP-completeness of Balanced Biclique Contraction

- Hypergraph 2-Coloring \leq_{p} Bal Biclique Contraction.
- $(\mathcal{G}) \longmapsto(G, \kappa), \kappa$ is a function of the number of vertices and the number of hyperedges in \mathcal{G}
- Bal Biclique Contraction is NP-complete even when restricted to bipartite graphs.

FPT Algorithm

Biclique Contraction and Balanced Biclique Contraction can be solved in $\mathcal{O}^{*}\left(25.904^{k}\right)$ time.

Biclique modulator

Observation 1

If G is k-contractible to a (balanced) biclique, then G has a biclique modulator of size at most $2 k$.

Proposition 1 [Hüffner et al., 2010]

A Biclique modulator Z of size at most k can be obtained in $\mathcal{O}^{*}\left(1.4^{k}\right)$ time.

FPT Algorithm for Biclique Contraction

- Let (G, k) be an instance of Biclique Contraction.

FPT Algorithm for Biclique Contraction

- Let (G, k) be an instance of Biclique Contraction.
- If G does not has a biclique modulator Z of size at most $2 k$: -Declare No

FPT Algorithm for Biclique Contraction

- Let (G, k) be an instance of Biclique Contraction.
- If G does not has a biclique modulator Z of size at most $2 k$:
-Declare No
- Otherwise:

FPT Algorithm for Biclique Contraction

Case 1: $X \cup Y=\emptyset$
Guess the partition of Z in $\mathcal{O}^{*}\left(2^{|Z|}\right)$ time.

k - constrained valid partition of $\mathrm{V}(\mathrm{G})$

FPT Algorithm for Biclique Contraction

Case 2: $X \cup Y \neq \emptyset$ where $X=\emptyset$

FPT Algorithm for Biclique Contraction

Case 2: $X \cup Y \neq \emptyset$ where $X=\emptyset$
Case 2.1: $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both.
Determine if $\left\langle Z_{L}, Z_{R} \cup Y\right\rangle$ is a k-constrained valid partition.

k - constrained valid partition of $\mathrm{V}(\mathrm{G})$

The total running time $-\mathcal{O}^{*}\left(2_{a}^{|Z|}\right)$

FPT Algorithm for Biclique Contraction

Case 2: $X \cup Y \neq \emptyset$ where $X=\emptyset$
Case 2.2: $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$.

k - constrained valid partition of $V(\mathrm{G})$

$$
G-Z
$$

FPT Algorithm for Biclique Contraction

Branching Rule 1 for Case 2.2

If there is a vertex $v \in Y$ such that $N(v) \cap Z_{L} \neq \emptyset, N(v) \cap Z_{R} \neq \emptyset$ and $\left|N(v) \cap\left(Z_{L} \cup Z_{R}\right)\right|>2$, then branch into the following.

- Contract all edges in $E\left(v, Z_{L}\right)$ and dec k.
- Contract all edges in $E\left(v, Z_{R}\right)$ and dec k.

$$
G-Z
$$

FPT Algorithm for Biclique Contraction

Preprocessing Rule 1 for Case 2.2

If there is a vertex $v \in Y$ of degree 2 such that $N(v) \cap Z_{L} \neq \emptyset$ and $N(v) \cap Z_{R} \neq \emptyset$, then contract edges in $E\left(v, Z_{L}\right)$ and dec k.

$$
G-Z
$$

FPT Algorithm for Biclique Contraction

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

FPT Algorithm for Biclique Contraction

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

- Check if $\left(Z_{L} \cup Y_{L}, Z_{R} \cup Y_{R}\right)$ is a k-constrained valid partition.

FPT Algorithm for Biclique Contraction

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

- Check if $\left(Z_{L} \cup Y_{L}, Z_{R} \cup Y_{R}\right)$ is a k-constrained valid partition.
- Contract all edges in $E\left(Y_{R}, Z_{R}\right)$ and dec k.

FPT Algorithm for Biclique Contraction

When neither Branching Rule 1 nor Prepossessing Rule 1 is applicable.

- Check if $\left(Z_{L} \cup Y_{L}, Z_{R} \cup Y_{R}\right)$ is a k-constrained valid partition.
- Contract all edges in $E\left(Y_{R}, Z_{R}\right)$ and dec k.
- Check if $\left(Z_{L} \cup Y_{1} \cup Y_{2}, Z_{R} \cup Y_{3}\right)$ is a k-constrained valid partition.

Total running time $-\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$

FPT Algorithm for Biclique Contraction

- Case 1: $X \cup Y=\emptyset-\mathcal{O}^{*}\left(2^{|Z|}\right)$
- Case 2: $X \cap L=\emptyset$ and $X \cap R=\emptyset$:
(1) Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^{*}\left(2^{|Z|}\right)$
(2) $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case $-\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$
- Case 3: Either $X \cap L \neq \emptyset$ or $X \cap R \neq \emptyset$ but not both:
(1) Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^{*}\left(2^{|Z|}\right)$
(2) $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case $-\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$
- Case 4: $X \cap L \neq \emptyset$ and $X \cap R \neq \emptyset$:
(1) Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both. Similar Case $\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$
(2) $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset-\mathcal{O}^{*}\left(2^{|Z|+k}\right)$

FPT Algorithm for Biclique Contraction

- Case 1: $X \cup Y=\emptyset-\mathcal{O}^{*}\left(2^{|Z|}\right)$
- Case 2: $X \cap L=\emptyset$ and $X \cap R=\emptyset$:
(1) Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^{*}\left(2^{|Z|}\right)$
(2) $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case $-\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$
- Case 3: Either $X \cap L \neq \emptyset$ or $X \cap R \neq \emptyset$ but not both:
(1) Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both - $\mathcal{O}^{*}\left(2^{|Z|}\right)$
(2) $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset$. Similar Case $-\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$
- Case 4: $X \cap L \neq \emptyset$ and $X \cap R \neq \emptyset$:
(1) Either $Y \cap L \neq \emptyset$ or $Y \cap R \neq \emptyset$ but not both. Similar Case $\mathcal{O}^{*}\left(1.619^{k} 2^{2|Z|}\right)$
(2) $Y \cap L \neq \emptyset$ and $Y \cap R \neq \emptyset-\mathcal{O}^{*}\left(2^{|Z|+k}\right)$

Biclique Contraction can be solved in time $\mathcal{O}^{*}\left(25.904^{k}\right)$

FPT Algorithm for Bal Biclique Contraction

- Balanced Biclique Contraction: to determine if the partition is a k-constrained valid balanced partition or not.

k - constrained valid balanced partition of $\mathrm{V}(\mathrm{G})$

FPT Algorithm for Bal Biclique Contraction

- Balanced Biclique Contraction: to determine if the partition is a k-constrained valid balanced partition or not.

k - constrained valid balanced partition of $\mathrm{V}(\mathrm{G})$

Balanced Biclique Contraction can be solved in time $\mathcal{O}^{*}\left(25.904^{k}\right)$

Kernelization of Balanced Biclique Contraction

- Admits Quadratic Vertex Kernel for Balanced Biclique Contraction using a sequence of reduction rules.

Polynomial Kernel for Bal Biclique Contraction

\mathcal{C} be a maximal collection of vertex-disjoint $K_{1}+K_{2}$ and K_{3} in G and $Z=\bigcup_{C \in \mathcal{C}} V(C)$.

Reduction Rule 1

If $|Z|>6 k$, then return a trivial No-instance.

Reduction Rule 2

Subsequently, we assume that $|Z| \leq 6 k,|X| \leq|Y|,|Y| \geq k+3$

Reduction Rule 2

Subsequently, we assume that $|Z| \leq 6 k,|X| \leq|Y|,|Y| \geq k+3$

If $|Y|>|X|+|Z|+k$, then return a trivial No-instance.

Observation

If (G, k) is a Yes-instance then, in any k-constrained valid balanced partition $\langle L, R\rangle$ of $V(G)$ either $X \subseteq L, Y \subseteq R$ or $X \subseteq R, Y \subseteq L$.

Reduction Rule 3

If there is an edge in $E\left(X, Z_{X}\right) \cup E\left(Y, Z_{Y}\right) \cup E\left(Z_{X}\right) \cup E\left(Z_{Y}\right)$, then contract it and decrease k by 1 .
Z_{X} has more than $k+1$ neighbours in Y Z_{Y} has more than $k+1$ neighbours in X

Reduction Rule 3

If there is an edge in $E\left(X, Z_{X}\right) \cup E\left(Y, Z_{Y}\right) \cup E\left(Z_{X}\right) \cup E\left(Z_{Y}\right)$, then contract it and decrease k by 1 .
Z_{X} has more than $k+1$ neighbours in Y Z_{Y} has more than $k+1$ neighbours in X

- if $Z_{X} \cap Z_{Y} \neq \emptyset$, then (G, k) is a No-instance.

Reduction Rule 3

If there is an edge in $E\left(X, Z_{X}\right) \cup E\left(Y, Z_{Y}\right) \cup E\left(Z_{X}\right) \cup E\left(Z_{Y}\right)$, then contract it and decrease k by 1 .
Z_{X} has more than $k+1$ neighbours in Y Z_{Y} has more than $k+1$ neighbours in X

- if $Z_{X} \cap Z_{Y} \neq \emptyset$, then (G, k) is a No-instance.
- Z^{\prime}, Z_{X} and Z_{Y} partition Z.

Reduction Rule 4

- Mark all vertices in Z

Reduction Rule 4

- Mark all vertices in Z

Reduction Rule 4

- Mark all vertices in $N\left(Z^{\prime}\right) \cap X$ and $N\left(Z^{\prime}\right) \cap Y$.

Reduction Rule 4

- For each vertex $z \in Z$, mark one of its non-neighbour (if it exists) each in $X \backslash N\left(Z^{\prime}\right)$ and $Y \backslash N\left(Z^{\prime}\right)$.

Reduction Rule 4

Reduction Rule 4

Reduction Rule 4

The marking procedure marks $\mathcal{O}\left(k^{2}\right)$ vertices.

Future Directions

(1) Faster FPT Algorithm.
(2) Linear vertex kernel for Bal Biclique Contraction.
(3) Biclique Contraction: lower bound $\ell=n-k$ on the number of vertices in the resultant biclique is

- W[1]-hard.
- XP Algorithm?
(1) Bal Biclique Contraction: when parameterized by ℓ
- para-NP-hard?

NP-completeness of Biclique Contraction

- Red-Blue Dominating Set \leq_{P} Biclique Contraction.
- $(G, R, B, \kappa) \longmapsto(H, k)$ where H is bipartite, $k=|B|+\kappa$

NP-completeness of Biclique Contraction

- Red-Blue Dominating Set \leq_{P} Biclique Contraction.
- $(G, R, B, \kappa) \longmapsto(H, k)$ where H is bipartite, $k=|B|+\kappa$
- Biclique Contraction is NP-complete even when restricted to bipartite graphs.
- Biclique Contraction does not admit any polynomial compression (or kernel)

Red-Blue Dominating Set

Red-Blue Dominating Set

Given a bipartite graph G with bipartition $\langle R, B\rangle$ and an integer κ, the objective is to find a set $S \subseteq R$ of size at most κ that dominates B.

A set X is said to dominate a set Y if $Y \subseteq N(X)$.

NP-completeness of Biclique Contraction

- Let (G, R, B, κ) be an instance of Red Blue Dominating Set
- (H, k) be an instance of Biclique Contraction (H is bipartite)
- $k=|B|+k$

Figure 1: $|V(H)|=\mathcal{O}(|V(G)|), C=\left\{v_{1}, \ldots, v_{\mathrm{K}+|B|+1}\right\}$

NP-completeness of BALANced BicliQue Contraction

- Hypergraph 2-Coloring \leq_{P} Bal Biclique Contraction.

NP-completeness of BALANced Biclique Contraction

- Hypergraph 2-Coloring \leq_{p} Bal Biclique Contraction.
- $(\mathcal{G}) \longmapsto(G, K), \kappa$ is a function of the number of vertices and the number of hyperedges in \mathcal{G}

NP-completeness of Balanced Biclique Contraction

- Hypergraph 2-Coloring \leq_{p} Bal Biclique Contraction.
- $(\mathcal{G}) \longmapsto(G, \kappa), \kappa$ is a function of the number of vertices and the number of hyperedges in \mathcal{G}
- Bal Biclique Contraction is NP-complete even when restricted to bipartite graphs.

NP-completeness of BAL Biclique Contraction

Hypergraph 2-COLORING problem

In the Hypergraph 2-Coloring problem, the input is a hypergraph \mathcal{G} and the objective is to determine if there is a 2-coloring $\phi: V(\mathcal{G}) \mapsto\{1,2\}$ such that no hyperedge is monochromatic.

Figure 2: Hypergraph \mathcal{G}

NP－completeness of BAL Biclique Contraction

Hypergraph 2－Coloring problem

In the Hypergraph 2－Coloring problem，the input is a hypergraph \mathcal{G} and the objective is to determine if there is a 2－coloring $\phi: V(\mathcal{G}) \mapsto\{1,2\}$ such that no hyperedge is monochromatic．

Figure 2：Hypergraph \mathcal{G}

Figure 3：2－coloring

NP-completeness of Bal Biclique Contraction

- Given an instance (\mathcal{G}) of Hypergraph 2-Coloring
- (H, k) be an instance of Bal Biclique Contraction.
- $k=2 M+N-2$

Figure 4: $|V(H)|=\mathcal{O}(|V(\mathcal{G})|)$.

NP-completeness of Bal Biclique Contraction

(H, k) is a Yes-instance of Bal Biclique Contraction $\Leftrightarrow(G, \kappa=k+|Z|)$ is a Yes-instance of Bal Biclique Contraction.

Figure 5: Intermediate graph H.

Figure 6: Bipartite graph G

References I

(1. Hüffner, F., Komusiewicz, C., Moser, H., and Niedermeier, R. (2010). Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196-217.

