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Input: Graph G, int k

Output: 3 a subset § of size k such that L
(i) for any vertex u € V(G)\S, at least one of
its neighbour is in §, and

(ii) for any two vertices u # v € V(G)\S,
their neighbourhood in § are different, i.e.,

Nu)nS #Ny)NnSs.
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- Multiple elements, multiple tests

- Each test is positive for one or more
elements

- Determine the smallest set of tests that
need to be performed to uniquely identify
the element

Input: Set of elements, collection of tests, int &

Output: Does there exist a collection of k tests

s.t. for each pair of elements, there is a test
that is positive for exactly one of them?

Elements

Tests
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Parameterized Complexity

» ldentify a relevant secondary measure (i.e. parameter).

» Parameter: solution size, property of input graph

» Il is fixed-parameter tractable (FPT) parameterized by k if
there is an algo that solves it in f(k) - poly(n) time.

» I1is W]1]-hard when parameterized by k if there is no algo
that solves it in f(k) - poly(n) time.
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» Parameter: solution size, property of input graph

Obs: Any solution of size k can locate at most 2K — 1 vertices.

~If |[V(G)| > k+ (2¥ = 1) return No.
- Enumerate all possible subsets of size <k

Claim: admits algo

2k
L 0D — 70 , , 6(1)

k

running in time (
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» Parameter: solution size, property of input graph

admits algo running in time 2@("2) . 0

Obs: Any k tests can identify at most 2 — 1 elements.

Nr of elements is at most 2% elements.

k
Nr of unique tests is at most 2° elements.

Claim: admits algo
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running in time (
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» Parameter: solution size, property of input graph
admits algo running in time 209 . ;0

admits algo running in time 22°" . n2M
Treewidth (tw):
closeness to trees

admits algo running in time 22°™ . o0

» Parameter: solution size, property of input graph

. - t
admits algo running in time 22°7" . y 0,

What is the best possible multiplier f(k) in the running time?

2\/7{ 2k 2k log k 2k2 22" [222“"]k f (k)

ETH base lower bounds



+

¢
-
3141
A |
'
—toosie
’ O |
| ,
i
- _ 4
=4 4
}
' BN
4
$ 4
TR
'
SR
'
-t B
.
oot
{
|
{
!
i
!
)
1
!
]
-4
|
:
- .
‘
—— & =4
:
—y g oy
—s
!
{
'
- —— iy
)
'
'
{
\
fomes-
|
|
o o 3
o astisw
.
.- i
i
4+ H
:
hd ot
e | )
:
.
YD S—
'
1
‘
-—y )
‘
e e

——

blidhiest s alesstli s e
.n i i m i . N ! %
! ' L R .

i 72 21 R |
per gow g tpe ma .oimany oo

A !

|

———ad b

enee + .
)
]
!
|
i
]
!
!
!
|

P22 SRR TR
$
\
|

. ‘
!
i
i
|
1
|
{
|
1
4 '
|
4
4
|
|
|
|
|
{
4
!
|
{
{
!
4
4
)
!
|
$
|
|
!

SUSUS SRS s .
]
!
!
4
|
|

D S — .

S S —

|
|
|
!
|
$
|
'
|
s
}
!
|
1
|
i
{
|
\
$
{
{
——eee e

RS SN SI DD ——

N SIS T G .

.
.

— e e 0t -+

S PO S ——

dbnnas

§o——i

e s - .'...lsm

|

:

“

3 | |

M 1

_ |

T

| | |
!

| |

|

| |

| |

BB R S i 3
|

m !

| |

| !

’ |

| |

| |

| “
.............. 0 00 114001 0
_ |

| |

w m

| |

| h

ot

— e

bl I o,

B

-

L L I

R T ———
.

e

Ee

P S——"

!
‘

e b

i
4
:
.

e v e e e s e s b e

e et e e e+ e e

R

|
——
- -t
'

o—
:
1
|
.
PR G

—
b ot

reboie ~oul
o -

| b

F—

P e

;
|
!
-
, ~
|
4 :
|
|
ot ) P e P ——— - ———— e —
|
| \ |
' ]
1
| !
§
} )
!
! !
{ {
- ) SEDSN T ¢ -
4 }
}
S R S o -
' ’ ’
| |
oot i . : -
: .
-y + +* ‘ S ooy - .

: } ! : 7 i
S-S g oy ] 2 g + e dine _ 4
| i 3 a3
AT 3 5o 378 | o) i NS

r -
IR E NS s +




Our results

Thm. The problem

— admits -time algo, but

2'20('I:W) ‘ n@(l)

— does not admit algo unless the ETH fails.



Our results

Thm. The problem
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Thm. The problem
— admits -time algo, but

o(TW
_ does not admit 22" . p O algo unless the ETH fails.



+

¢
-
3141
A |
'
—toosie
’ O |
| ,
i
- _ 4
=4 4
}
' BN
4
$ 4
TR
'
SR
'
-t B
.
oot
{
|
{
!
i
!
)
1
!
]
-4
|
:
- .
‘
—— & =4
:
—y g oy
—s
!
{
'
- —— iy
)
'
'
{
\
fomes-
|
|
o o 3
o astisw
.
.- i
i
4+ H
:
hd ot
e | )
:
.
YD S—
'
1
‘
-—y )
‘
e e

——

blidhiest s alesstli s e
.n i i m i . N ! %
! ' L R .

i 72 21 R |
per gow g tpe ma .oimany oo

A !

|

———ad b

enee + .
)
]
!
|
i
]
!
!
!
|

P22 SRR TR
$
\
|

. ‘
!
i
i
|
1
|
{
|
1
4 '
|
4
4
|
|
|
|
|
{
4
!
|
{
{
!
4
4
)
!
|
$
|
|
!

SUSUS SRS s .
]
!
!
4
|
|

D S — .

S S —

|
|
|
!
|
$
|
'
|
s
}
!
|
1
|
i
{
|
\
$
{
{
——eee e

RS SN SI DD ——

N SIS T G .

.
.

— e e 0t -+

S PO S ——

dbnnas

§o——i

e s - .'...lsm

|

:

“

3 | |

M 1

_ |

T

| | |
!

| |

|

| |

| |

BB R S i 3
|

m !

| |

| !

’ |

| |

| |

| “
.............. 0 00 114001 0
_ |

| |

w m

| |

| h

ot

— e

bl I o,

B

-

L L I

R T ———
.

e

Ee

P S——"

!
‘

e b

i
4
:
.

e v e e e s e s b e

e et e e e+ e e

R

|
——
- -t
'

o—
:
1
|
.
PR G

—
b ot

reboie ~oul
o -

| b

F—

P e

;
|
!
-
, ~
|
4 :
|
|
ot ) P e P ——— - ———— e —
|
| \ |
' ]
1
| !
§
} )
!
! !
{ {
- ) SEDSN T ¢ -
4 }
}
S R S o -
' ’ ’
| |
oot i . : -
: .
-y + +* ‘ S ooy - .

: } ! : 7 i
S-S g oy ] 2 g + e dine _ 4
| i 3 a3
AT 3 5o 378 | o) i NS

r -
IR E NS s +




Our results

Thm. The problem
— admits -time algo, but
2
— does not admit 2°%7) . O algo unless the ETH fails.



Our results

Thm. The problem
— admits -time algo, but
2
— does not admit 2°%7) . O algo unless the ETH fails.
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Our results

Thm. and

— admit kernel with and vertices, respectively, but

— do not admit a kernel with 2°® and 220(k) vertices,
respectively, unless the ETH fails.

) - i ly (k) e S @(

NP C coNP/poly|~ | ETH e
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Thm [Marx, Mitsou (ICALP’16)]. The problem

— admits algo, but
_ o(TW) .
— does not admit 2° . %W algo unless the ETH fails.
Treewidth (tw): closeness to trees Hard even
: .
‘... the problem definition is an U to verify
underlying reason for being in the Np Hard to solve,

higher levels of the polynomial easy to verifty

hierarchy and for requiring unusually
large dependence on treewidth.”

Ul
P Easy to solve

Hardness

Our result (in ICALP'24): Not necessary to go higher up in the
polynomial hierarchy to achieve double-exponential lower bounds.




Problems in NP can admit double-exponential lower bounds
when parameterized by treewidth and vertex cover
by Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale (2023)

Thm [FGKLIST (ICALP’24)]. The yp Hard even
problem on bounded diameter u% to verity

graphs Hard to solve,

— admits -time algo, but o asy to verity

o(IW
_ does not admit 22" . p oD algo P Easy to solve
unless the ETH fails.

Hardness
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Digging at a vertex reveals its
distance from the treasure.

Can we dig at k vertices to
locate the treasure?

- Effect of a solution vertex is global in metric graph problems’.

- Effect of a solution vertex is local in identification problems’.

It is not necessary to use metric graph problems’ to use double
exponential lower bound.
We can obtain similar results with identification problems’.
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N X3)
to

- n-variable formula — graph with
tw = O(log(n))
- Add pair of vertices for each variable

- Add 3 vertices for each clause

- For every variable, exactly one vertex
IS in solution.

- For every clause, exactly two
vertices are is in solution. variables claiises

L [X1]
Clx, |
C [X3]

— Selection in variable side
should reflect selection on
clause side and vice-versa.

- tw = O(n) (no better bound)

Xl — {1,3,5} X3 o {19396}
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o

Sperner Family: Collection & of subsets of [2p] such that no set
in # is contained in any other set in #.

Ex: # — each set contains exactly p elements.
For p = 3, A il s A=t 506 £
We get # which is of size 27

For p = log(n), & is of size n, i.e. unique set for each variable.
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g vertex forced in solution

- For every variable, exactly
one vertex is in solution.

- For every clause, exactly two
vertices are is in solution.
- Suppose C|x,] is in solution
(for the sake of analysis).

- Both x; and Clx;] can not be
out of the solution.
- Both x3 and C|x3] can not be
out of the solution.

(X1 VX, V X3)

b
A1 * CH
X * Clx, |
H * C[’XB]
; 9w
X3 *
variables clauses

X.=[1351 X —1{138]



(X1 V X Y X3)

to

- 3¢ vertex forced in solution e Clx,]

| X, o6 i
- For every variable, exactly o b= C
one vertex is in solution. e %)
- For every clause, exactly two X3 8¢ Cly
vertices are is in solution. i ). ¢
- Suppose Clx,] is in solution
(for the sake of analysis). variables e

- Both x; and Clx;] can not be
out of the solution. X, ={13,5} X3=1{13,6}

- Both x3 and C|x3] can not be
out of the solution. Useful to encode instance.
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Future Directions

» Any other NP-Complete problems that admit double
exponential lower bounds?

» Can our tight double-exponential lower bound for
parameterized by treewidth be applied to the
feedback vertex set number (a larger parameter)?



Thank you
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- A proper A-coloring of a graph G is a mapping
f: V(G) — [A] st f(u) # f(v) for any two adjacent vertices u, v.
- List coloring: Instead of having the same set [4]| of colors,
each vertex v has its own list L(v) of available colors.

- Graph G is A-choosable if it has a coloring for any list

assignment L that has size A at each vertex.
— problem: Not in NP (unless ...)

Thm [Marx, Mitsou (ICALP’16)]. The problem

— admits algo, but

22t o)

— does not admit algo unless the ETH fails.



