
Tight (Double) Exponential Lower
Bounds for Identification Problems

Prafullkumar Tale

@ ISAAC, 2024

Dec 9, 2024

Joint work with

D. Chakraborty, F. Foucaud, and D. Majumdar

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

Locating Dominating Set
Input: Graph , int
Output: a subset of size such that  

 for any vertex , at least one of
its neighbour is in , and

 for any two vertices ,  
their neighbourhood in are different, i.e.,  

.

G k
∃ S k

(i) u ∈ V(G)∖S
S

(ii) u ≠ v ∈ V(G)∖S
S

N(u) ∩ S ≠ N(v) ∩ S

e1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover

- Multiple elements, multiple tests
Elements

Testse1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover

- Multiple elements, multiple tests
- Each test is positive for one or more
elements

Elements
Testse1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover

- Multiple elements, multiple tests
- Each test is positive for one or more
elements
- Determine the smallest set of tests that
need to be performed to uniquely identify
the element

Elements
Testse1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover

- Multiple elements, multiple tests
- Each test is positive for one or more
elements
- Determine the smallest set of tests that
need to be performed to uniquely identify
the element

Elements
Testse1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover

Test Cover
Input: Set of elements, collection of tests, int
Output: Does there exist a collection of tests
s.t. for each pair of elements, there is a test
that is positive for exactly one of them?

k
k

- Multiple elements, multiple tests
- Each test is positive for one or more
elements
- Determine the smallest set of tests that
need to be performed to uniquely identify
the element

Elements
Testse1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover

Parameterized Complexity

Parameterized Complexity

‣ Identify a relevant secondary measure (i.e. parameter).

Parameterized Complexity

‣ Parameter: solution size, property of input graph

‣ Identify a relevant secondary measure (i.e. parameter).

Parameterized Complexity

‣ is fi

Π k

f(k) ⋅ poly(n)

‣ Parameter: solution size, property of input graph

‣ Identify a relevant secondary measure (i.e. parameter).

Parameterized Complexity

‣ is fi

Π k

f(k) ⋅ poly(n)

‣ Parameter: solution size, property of input graph

‣ Identify a relevant secondary measure (i.e. parameter).

‣ is -hard when parameterized by if there is no algo
that solves it in time.
Π W[1] k

f(k) ⋅ poly(n)

‣ Parameter: solution size, property of input graph

‣ Parameter: solution size, property of input graph

Locating Dominating Set

‣ Parameter: solution size, property of input graph

Locating Dominating Set

Obs: Any solution of size can locate at most vertices.k 2k − 1

‣ Parameter: solution size, property of input graph

Locating Dominating Set

Obs: Any solution of size can locate at most vertices.k 2k − 1

S

‣ Parameter: solution size, property of input graph

Locating Dominating Set

Obs: Any solution of size can locate at most vertices.k 2k − 1

S
V(G)∖S

‣ Parameter: solution size, property of input graph

Locating Dominating Set

Obs: Any solution of size can locate at most vertices.k 2k − 1

S
V(G)∖S

‣ Parameter: solution size, property of input graph

Locating Dominating Set

Obs: Any solution of size can locate at most vertices.k 2k − 1

S
V(G)∖S

- If return No.
- Enumerate all possible subsets of size

|V(G) | > k + (2k − 1)
≤ k

‣ Parameter: solution size, property of input graph

Locating Dominating Set

Obs: Any solution of size can locate at most vertices.k 2k − 1

S
V(G)∖S

- If return No.
- Enumerate all possible subsets of size

|V(G) | > k + (2k − 1)
≤ k

Claim: Locating Dominating Set admits algo

running in time .(2k

k) ⋅ n𝒪(1) = 2𝒪(k2) ⋅ n𝒪(1)

S
elements

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

S
elements

‣ Parameter: solution size, property of input graph
Locating Dominating Set

Obs: Any tests can identify at most elements.k 2k − 1

admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

S
elements

‣ Parameter: solution size, property of input graph
Locating Dominating Set

Obs: Any tests can identify at most elements.k 2k − 1

admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

Nr of elements is at most elements.2k

S
elements

‣ Parameter: solution size, property of input graph
Locating Dominating Set

Obs: Any tests can identify at most elements.k 2k − 1

admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

Nr of elements is at most elements.2k

tests

S
elements

‣ Parameter: solution size, property of input graph
Locating Dominating Set

Obs: Any tests can identify at most elements.k 2k − 1

admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

Nr of elements is at most elements.2k

tests

Nr of unique tests is at most elements.22k

S
elements

‣ Parameter: solution size, property of input graph
Locating Dominating Set

Obs: Any tests can identify at most elements.k 2k − 1

admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

Nr of elements is at most elements.2k

tests

Nr of unique tests is at most elements.22k

Claim: Test Cover admits algo

running in time .(22k

k) ⋅ n𝒪(1) = 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph Treewidth ():  
closeness to trees

tw

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph

Locating Dominating Set admits algo running in time 22𝒪(tw) ⋅ n𝒪(1)

Treewidth ():  
closeness to trees

tw

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph

Locating Dominating Set admits algo running in time 22𝒪(tw) ⋅ n𝒪(1)

Test Cover admits algo running in time .22𝒪(tw) ⋅ n𝒪(1)

Treewidth ():  
closeness to trees

tw

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph

Locating Dominating Set admits algo running in time 22𝒪(tw) ⋅ n𝒪(1)

Test Cover admits algo running in time .22𝒪(tw) ⋅ n𝒪(1)

Treewidth ():  
closeness to trees

tw

What is the best possible multiplier in the running time?f(k)

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph

Locating Dominating Set admits algo running in time 22𝒪(tw) ⋅ n𝒪(1)

Test Cover admits algo running in time .22𝒪(tw) ⋅ n𝒪(1)

Treewidth ():  
closeness to trees

tw

What is the best possible multiplier in the running time?f(k)

0
2 k 2k 2k log k 2k2 22k [222....]k f(k)

‣ Parameter: solution size, property of input graph
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph

Locating Dominating Set admits algo running in time 22𝒪(tw) ⋅ n𝒪(1)

Test Cover admits algo running in time .22𝒪(tw) ⋅ n𝒪(1)

Treewidth ():  
closeness to trees

tw

What is the best possible multiplier in the running time?f(k)

0
2 k 2k 2k log k 2k2 22k [222....]k f(k)

ETH based lower bounds

Our results

Thm. The Locating Dominating Set problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Our results

Thm. The Locating Dominating Set problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Thm. The Test Cover problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Our results

Our results

Thm. The Locating Dominating Set problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

2𝒪(k2) ⋅ n𝒪(1)

2o(k2) ⋅ n𝒪(1)

Our results

Thm. The Locating Dominating Set problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

2𝒪(k2) ⋅ n𝒪(1)

2o(k2) ⋅ n𝒪(1)

Thm. The Test Cover problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

22𝒪(k) ⋅ n𝒪(1)

22o(k) ⋅ n𝒪(1)

Our results

Our results

Thm. Locating Dominating Set and Test Cover  
— admit kernel with and vertices, respectively, but
— do not admit a kernel with and vertices,
respectively, unless the ETH fails.

2𝒪(k) 22𝒪(k)

2o(k) 22o(k)

Our results

Thm. Locating Dominating Set and Test Cover  
— admit kernel with and vertices, respectively, but
— do not admit a kernel with and vertices,
respectively, unless the ETH fails.

2𝒪(k) 22𝒪(k)

2o(k) 22o(k)

0
poly(k) 2𝒪(k)

KernelNP ⊊ coNP/poly ETH

Our results

Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Treewidth (): closeness to treestw
Σp

2
Hard even  
to verify

P Easy to solve

⊆
⊆

Hardness

NP Hard to solve,  
easy to verify

0
2 k 2k 2k log k 2k2 22k

[222....]k f(k)

ETH based lower bounds

Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Treewidth (): closeness to treestw
Σp

2
Hard even  
to verify

P Easy to solve

⊆
⊆

Hardness

NP Hard to solve,  
easy to verify

0
2 k 2k 2k log k 2k2 22k

[222....]k f(k)

ETH based lower bounds

Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Treewidth (): closeness to treestw

“… the problem definition is an
underlying reason for being in the

higher levels of the polynomial
hierarchy and for requiring unusually

large dependence on treewidth.’’

Σp
2

Hard even  
to verify

P Easy to solve

⊆
⊆

Hardness

NP Hard to solve,  
easy to verify

0
2 k 2k 2k log k 2k2 22k

[222....]k f(k)

ETH based lower bounds

Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Treewidth (): closeness to treestw

Our result (in ICALP’24): Not necessary to go higher up in the
polynomial hierarchy to achieve double-exponential lower bounds.

“… the problem definition is an
underlying reason for being in the

higher levels of the polynomial
hierarchy and for requiring unusually

large dependence on treewidth.’’

Σp
2

Hard even  
to verify

P Easy to solve

⊆
⊆

Hardness

NP Hard to solve,  
easy to verify

Problems in NP can admit double-exponential lower bounds
when parameterized by treewidth and vertex cover
by Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale (2023)

Thm [FGKLIST (ICALP’24)]. The Metric
Dimension problem on bounded diameter
graphs 
— admits -time algo, but
— does not admit algo
unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Σp
2

Hard even  
to verify

P Easy to solve

⊆
⊆

Hardness

NP Hard to solve,  
easy to verify

- Metric Dimension  
(Treasure Hunt)  
Digging at a vertex reveals its
distance from the treasure.  
Can we dig at vertices to
locate the treasure?

k

- Metric Dimension  
(Treasure Hunt)  
Digging at a vertex reveals its
distance from the treasure.  
Can we dig at vertices to
locate the treasure?

k

- Effect of a solution vertex is global in `metric graph problems’.

- Metric Dimension  
(Treasure Hunt)  
Digging at a vertex reveals its
distance from the treasure.  
Can we dig at vertices to
locate the treasure?

k

- Effect of a solution vertex is global in `metric graph problems’.

- Effect of a solution vertex is local in `identification problems’.

- Metric Dimension  
(Treasure Hunt)  
Digging at a vertex reveals its
distance from the treasure.  
Can we dig at vertices to
locate the treasure?

k

It is not necessary to use `metric graph problems’ to use double
exponential lower bound.  

We can obtain similar results with `identification problems’.

- Effect of a solution vertex is global in `metric graph problems’.

- Effect of a solution vertex is local in `identification problems’.

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set
- -variable formula graph with n →
tw = 𝒪(log(n))

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set
- -variable formula graph with n →
tw = 𝒪(log(n))

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set
- -variable formula graph with n →
tw = 𝒪(log(n))

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- For every variable, exactly one vertex
is in solution.

- -variable formula graph with n →
tw = 𝒪(log(n))

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- For every variable, exactly one vertex
is in solution.
- For every clause, exactly two
vertices are is in solution.

- -variable formula graph with n →
tw = 𝒪(log(n))

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- For every variable, exactly one vertex
is in solution.
- For every clause, exactly two
vertices are is in solution.
- Selection in variable side
should reflect selection on
clause side and vice-versa.

- -variable formula graph with n →
tw = 𝒪(log(n))

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- For every variable, exactly one vertex
is in solution.
- For every clause, exactly two
vertices are is in solution.
- Selection in variable side
should reflect selection on
clause side and vice-versa.
- (no better bound)𝚝𝚠 = 𝒪(n)

- -variable formula graph with n →
tw = 𝒪(log(n))

3-SAT to Loc-Dom-Set

Sperner Family: Collection of subsets of such that no set
in is contained in any other set in .

ℱ [2p]
ℱ ℱ

3-SAT to Loc-Dom-Set

Sperner Family: Collection of subsets of such that no set
in is contained in any other set in .

ℱ [2p]
ℱ ℱ

Ex: — each set contains exactly elements.ℱ p

3-SAT to Loc-Dom-Set

Sperner Family: Collection of subsets of such that no set
in is contained in any other set in .

ℱ [2p]
ℱ ℱ

Ex: — each set contains exactly elements.ℱ p
For , p = 3, X1 = {1,3,5} X3 = {1,3,6} ∈ ℱ

3-SAT to Loc-Dom-Set

Sperner Family: Collection of subsets of such that no set
in is contained in any other set in .

ℱ [2p]
ℱ ℱ

Ex: — each set contains exactly elements.ℱ p
For , p = 3, X1 = {1,3,5} X3 = {1,3,6} ∈ ℱ
We get which is of size ℱ 2p

3-SAT to Loc-Dom-Set

Sperner Family: Collection of subsets of such that no set
in is contained in any other set in .

ℱ [2p]
ℱ ℱ

Ex: — each set contains exactly elements.ℱ p
For , p = 3, X1 = {1,3,5} X3 = {1,3,6} ∈ ℱ
We get which is of size ℱ 2p

For is of size , i.e. unique set for each variable.p = log(n), ℱ n

3-SAT to Loc-Dom-Set

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Variable vert. are connected
to corresponding set element.

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Variable vert. are connected
to corresponding set element.

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Variable vert. are connected
to corresponding set element.

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Variable vert. are connected
to corresponding set element.
- Vertices in clause side are
also connected to
corresponding set elements.

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Variable vert. are connected
to corresponding set element.
- Vertices in clause side are
also connected to
corresponding set elements.

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- Variable vert. are connected
to corresponding set element.
- Vertices in clause side are
also connected to
corresponding set elements.

- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

- Add many vertices
to facilitate the connections

𝒪(log(n))

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

3-SAT to Loc-Dom-Set

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]
C[x3]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]
C[x3]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

- For every variable, exactly
one vertex is in solution.

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]
C[x3]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

- For every variable, exactly
one vertex is in solution.

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

- For every clause, exactly two
vertices are is in solution.

C[x1]

C[x2]
C[x3]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

- For every variable, exactly
one vertex is in solution.

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

- For every clause, exactly two
vertices are is in solution.

C[x1]

C[x2]
C[x3]

- Suppose is in solution
(for the sake of analysis).

C[x2]

- Both and can not be
out of the solution.

x1 C[x1]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

- For every variable, exactly
one vertex is in solution.

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

- For every clause, exactly two
vertices are is in solution.

C[x1]

C[x2]
C[x3]

- Suppose is in solution
(for the sake of analysis).

C[x2]

- Both and can not be
out of the solution.

x1 C[x1]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

- For every variable, exactly
one vertex is in solution.

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

- For every clause, exactly two
vertices are is in solution.

C[x1]

C[x2]
C[x3]

- Suppose is in solution
(for the sake of analysis).

C[x2]

- Both and can not be
out of the solution.

x3 C[x3]

- Both and can not be
out of the solution.

x1 C[x1]

3-SAT to Loc-Dom-Set

- vertex forced in solution

variables

x3

x1
¬x1

¬x3

- For every variable, exactly
one vertex is in solution.

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

- For every clause, exactly two
vertices are is in solution.

C[x1]

C[x2]
C[x3]

- Suppose is in solution
(for the sake of analysis).

C[x2]

- Both and can not be
out of the solution.

x3 C[x3] Useful to encode 3-SAT instance.

Future Directions

Future Directions

‣ Any other NP-Complete problems that admit double
exponential lower bounds?

Future Directions

‣ Can our tight double-exponential lower bound for Locating-
Dominating Set parameterized by treewidth be applied to the
feedback vertex set number (a larger parameter)?

‣ Any other NP-Complete problems that admit double
exponential lower bounds?

Thank you

-Choosabilityλ

- A proper -coloring of a graph is a mapping
 st for any two adjacent vertices .

λ G
f : V(G) ↦ [λ] f(u) ≠ f(v) u, v

-Choosabilityλ

- A proper -coloring of a graph is a mapping
 st for any two adjacent vertices .

λ G
f : V(G) ↦ [λ] f(u) ≠ f(v) u, v
- List coloring: Instead of having the same set of colors,
each vertex has its own list of available colors.

[λ]
v L(v)

-Choosabilityλ

- A proper -coloring of a graph is a mapping
 st for any two adjacent vertices .

λ G
f : V(G) ↦ [λ] f(u) ≠ f(v) u, v
- List coloring: Instead of having the same set of colors,
each vertex has its own list of available colors.

[λ]
v L(v)

- Graph is -choosable if it has a coloring for any list
assignment that has size at each vertex.

G λ
L λ

-Choosabilityλ

- A proper -coloring of a graph is a mapping
 st for any two adjacent vertices .

λ G
f : V(G) ↦ [λ] f(u) ≠ f(v) u, v
- List coloring: Instead of having the same set of colors,
each vertex has its own list of available colors.

[λ]
v L(v)

- Graph is -choosable if it has a coloring for any list
assignment that has size at each vertex.

G λ
L λ

- -Choosability problem: Not in NP (unless …)λ

-Choosabilityλ

- A proper -coloring of a graph is a mapping
 st for any two adjacent vertices .

λ G
f : V(G) ↦ [λ] f(u) ≠ f(v) u, v
- List coloring: Instead of having the same set of colors,
each vertex has its own list of available colors.

[λ]
v L(v)

- Graph is -choosable if it has a coloring for any list
assignment that has size at each vertex.

G λ
L λ

Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

- -Choosability problem: Not in NP (unless …)λ

-Choosabilityλ

