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Locating Dominating Set
Input: Graph , int 
Output:  a subset  of size  such that  

 for any vertex , at least one of 
its neighbour is in , and

 for any two vertices ,  
their neighbourhood in  are different, i.e.,  

.

G k
∃ S k

(i) u ∈ V(G)∖S
S

(ii) u ≠ v ∈ V(G)∖S
S

N(u) ∩ S ≠ N(v) ∩ S
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- Multiple elements, multiple tests
- Each test is positive for one or more 
elements
- Determine the smallest set of tests that 
need to be performed to uniquely identify 
the element
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Test Cover
Input: Set of elements, collection of tests, int 
Output: Does there exist a collection of  tests 
s.t. for each pair of elements, there is a test 
that is positive for exactly one of them?

k
k

- Multiple elements, multiple tests
- Each test is positive for one or more 
elements
- Determine the smallest set of tests that 
need to be performed to uniquely identify 
the element

Elements
Testse1

e2

e3

e4

e5

t1

t2

t3

t4

t5

Test Cover



Parameterized Complexity



Parameterized Complexity

‣ Identify a relevant secondary measure (i.e. parameter).



Parameterized Complexity

‣ Parameter: solution size, property of input graph 

‣ Identify a relevant secondary measure (i.e. parameter).



Parameterized Complexity

‣  is fi

Π k

f(k) ⋅ poly(n)

‣ Parameter: solution size, property of input graph 

‣ Identify a relevant secondary measure (i.e. parameter).



Parameterized Complexity

‣  is fi

Π k

f(k) ⋅ poly(n)

‣ Parameter: solution size, property of input graph 

‣ Identify a relevant secondary measure (i.e. parameter).

‣  is -hard when parameterized by  if there is no algo 
that solves it in  time. 
Π W[1] k

f(k) ⋅ poly(n)
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‣ Parameter: solution size, property of input graph 

Locating Dominating Set

Obs: Any solution of size  can locate at most  vertices.k 2k − 1

S
V(G)∖S

- If  return No.
- Enumerate all possible subsets of size 

|V(G) | > k + (2k − 1)
≤ k

Claim: Locating Dominating Set admits algo

running in time .(2k

k ) ⋅ n𝒪(1) = 2𝒪(k2) ⋅ n𝒪(1)
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‣ Parameter: solution size, property of input graph 
Locating Dominating Set

Obs: Any  tests can identify at most  elements.k 2k − 1

admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover

Nr of elements is at most  elements.2k

tests

Nr of unique tests is at most  elements.22k

Claim: Test Cover admits algo

running in time .(22k

k ) ⋅ n𝒪(1) = 22𝒪(k) ⋅ n𝒪(1)
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‣ Parameter: solution size, property of input graph 
Locating Dominating Set admits algo running in time 2𝒪(k2) ⋅ n𝒪(1)

Test Cover admits algo running in time 22𝒪(k) ⋅ n𝒪(1)

‣ Parameter: solution size, property of input graph 

Locating Dominating Set admits algo running in time 22𝒪(tw) ⋅ n𝒪(1)

Test Cover admits algo running in time .22𝒪(tw) ⋅ n𝒪(1)

Treewidth ( ):  
closeness to trees

tw

What is the best possible multiplier  in the running time?f(k)

0
2 k 2k 2k log k 2k2 22k [222....]k f(k)
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Thm. Locating Dominating Set and  Test Cover  
— admit kernel with  and  vertices, respectively, but
— do not admit a kernel with  and  vertices, 
respectively, unless the ETH fails.

2𝒪(k) 22𝒪(k)

2o(k) 22o(k)

0
poly(k) 2𝒪(k)

KernelNP ⊊ coNP/poly ETH

Our results
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Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit  algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Treewidth ( ): closeness to treestw

Our result (in ICALP’24): Not necessary to go higher up in the 
polynomial hierarchy to achieve double-exponential lower bounds.

“… the problem definition is an 
underlying reason for being in the 

higher levels of the polynomial 
hierarchy and for requiring unusually 

large dependence on treewidth.’’
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Problems in NP can admit double-exponential lower bounds 
when parameterized by treewidth and vertex cover 
by Foucaud, Galby, Khazaliya, Li, Mc Inerney, Sharma, Tale (2023)

Thm [FGKLIST (ICALP’24)]. The Metric 
Dimension problem on bounded diameter 
graphs 
— admits -time algo, but
— does not admit  algo 
unless the ETH fails.
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- Metric Dimension  
(Treasure Hunt)  
Digging at a vertex reveals its 
distance from the treasure.  
Can we dig at  vertices to 
locate the treasure?

k

It is not necessary to use `metric graph problems’ to use double 
exponential lower bound.  

We can obtain similar results with `identification problems’.

- Effect of a solution vertex is global in `metric graph problems’.

- Effect of a solution vertex is local in `identification problems’.
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- Add pair of vertices for each variable

variables

x3

x1
¬x1

¬x3

- Add 3 vertices for each clause

clauses

X1 = {1,3,5} X3 = {1,3,6}

⟨x1 ∨ x2 ∨ x3⟩

C[x1]

C[x2]

C[x3]

3-SAT to Loc-Dom-Set

- For every variable, exactly one vertex 
is in solution. 
- For every clause, exactly two 
vertices are is in solution. 
- Selection in variable side 
should reflect selection on 
clause side and vice-versa.
-  (no better bound)𝚝𝚠 = 𝒪(n)

-  -variable formula  graph with n →
tw = 𝒪(log(n))
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Sperner Family: Collection  of subsets of  such that no set 
in  is contained in any other set in .

ℱ [2p]
ℱ ℱ

Ex:  — each set contains exactly  elements.ℱ p
For           ,  p = 3, X1 = {1,3,5} X3 = {1,3,6} ∈ ℱ
We get  which is of size ℱ 2p

For   is of size , i.e. unique set for each variable.p = log(n), ℱ n

3-SAT to Loc-Dom-Set
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- Both  and  can not be 
out of the solution.

x3 C[x3] Useful to encode 3-SAT instance.



Future Directions



Future Directions

‣ Any other NP-Complete problems that admit double 
exponential lower bounds?



Future Directions

‣ Can our tight double-exponential lower bound for Locating-
Dominating Set parameterized by treewidth be applied to the 
feedback vertex set number (a larger parameter)?

‣ Any other NP-Complete problems that admit double 
exponential lower bounds?
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- List coloring: Instead of having the same set  of colors,  
each vertex  has its own list  of available colors.

[λ]
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- Graph  is -choosable if it has a coloring for any list 
assignment  that has size  at each vertex.
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Thm [Marx, Mitsou (ICALP’16)]. The -Choosability problem 
— admits -time algo, but
— does not admit  algo unless the ETH fails.

λ
22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

- -Choosability problem: Not in NP (unless …)λ
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