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Path and Cycle

Pℓ denotes path on ℓ vertices

Cℓ denotes cycle on ℓ vertices
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Path Contraction

Path Contraction
Input: A connected undirected graph G on n vertices and an integer k.
Question: Can one contract at most k edges in G to obtain a path?
Parameter: k .
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Path Contraction

P4 witness structure is (W1, . . . ,W4).
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Cycle Contraction

Cycle Contraction
Input: A connected undirected graph G on n vertices and an integer k.
Question: Can one contract at most k edges in G to obtain a cycle?
Parameter: k .
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Cycle Contraction

C5 witness structure (W1, . . . ,W4,W5)
W1 and W5 are regarded as consecutive witness sets.
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Path Contraction

[Brouwer and Veldman, 1987]

NP-complete.

[Heggernes et al., 2014a]

Exact algorithm running in O∗(2n) time.
Kernel with at most 5k + 3 vertices.
FPT algorithm running in 2k+O(

√
k log k) time.

[Li et al., 2017]

Improved kernel of at most 3k + 4 vertices.

[Agrawal et al., 2020]

Exact algorithm running in O∗(1.99987n)-time.
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Cycle Contraction

[Brouwer and Veldman, 1987], [Hammack, 2002].

NP-complete.

[Belmonte et al., 2014]

Kernel with at most 6k + 6 vertices.

[Sheng and Sun, 2019]

Improved kernel of at most 5k + 4 vertices.
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Our Results

1 Path Contraction admits an algorithm running in O∗(2k) time.

2 Cycle Contraction admits an algorithm running in O∗((2+ ϵℓ)
k)

time where 0 < ϵℓ ≤ 0.5509 and ϵℓ decreases as ℓ increases.

3 Longest cycle to which a graph can be contracted to can be solved in
O∗(2.5191n) time.

4 Path Contraction on planar graphs admits a polynomial-time
algorithm.

5 Path Contraction on chordal graphs does not admit an algorithm
running in time O(n2−ϵ · 2o(tw)) for any ϵ > 0 under the Orthogonal
Vectors Conjecture.1

1 [Heggernes et al., 2014b]There is an O(n2 · tw)-time algorithm for Path
Contraction on chordal graphs where tw is the treewidth of the input graph.
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Path Contraction With Constrained Ends

Path Contraction With Constrained Ends
Input: A connected graph G , two disjoint subsets X ,Y ⊆ V (G ) and an
integer k .
Question: Can one contract at most k edges in G to obtain a path with
witness structure (W1, . . . ,Wℓ) such that X ⊆ W1 and Y ⊆ Wℓ?
Parameter: k .
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Path Contraction

Theorem

Path Contraction With Constrained Ends admits an algorithm
running in time O∗(2k−|X |−|Y |).

Observe that Path Contraction With Constrained Ends when
X = ∅ and Y = ∅ is Path Contraction.

Corollary

Path Contraction admits an algorithm running in time O∗(2k).
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Path Contraction With Constrained Ends

Contracting to path of length at least 6. i.e. k ≤ n − 6.

Suppose (G ,X ,Y , k) is a Yes instance.
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Path Contraction With Constrained Ends

Each non-terminal witness set Wi is a connected set with
Wi ⊆ V (G ) \ (X ∪ Y )

1 G −Wi has exactly two connected components CX ,CY containing X
and Y , respectively.

2 |(N(Wi ) \ (X ∪ Y )|+ |Wi | ≤ k + 5− |X |− |Y |

For any 2 ≤ i ≤ ℓ− 1
|W1|− 1 + |Wi−1|− 1 + |Wi |− 1+ |Wi+1|− 1+ |Wℓ|− 1 ≤ k
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Path Contraction With Constrained Ends

Potential k-witness Set

A connected set W ⊆ V (G ) \ (X ∪ Y ) :

1 G −W has exactly two connected components CX ,CY containing X
and Y , respectively.

2 |(N(W ) \ (X ∪ Y )|+ |W | ≤ k + 5− |X |− |Y |

Enumerating Potential k-witness sets

The number of potential k-witness sets in G is O∗(2k−|X |−|Y |) and these
sets can be enumerated in O∗(2k−|X |−|Y |) time.
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Path Contraction With Constrained Ends

Potential k-prefix set

For a potential k-witness set W , the sets SX := CX ∪W and
SY := CY ∪W are called the potential k-prefix sets associated with W .

Enumerating Potential k-prefix sets

The number of potential k-prefix sets is O∗(2k−|X |−|Y |) and these sets can
be enumerated in O∗(2k−|X |−|Y |) time.
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Using Dynamic Programming

Γ [W , SX , k
′] = True if and only if G [SX ] is k

′-contractible to a path

with witness structure (W1, . . . ,Wq = W )

for some q ≥ 2 such that X ⊆ W1

Γ [W , SY , k
′′] = True if and only if G [SY ] is k

′′-contractible to a path

with witness structure (W ′
1 , . . . ,W

′
p = W )

for some p ≥ 2 such that Y ⊆ W ′
1
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Using Dynamic Programming

(G ,X ,Y , k) is an Yes instance if and only if ∃W , k1, k2 such that

Γ [W , SX , k1] = True

Γ [W , SY , k2] = True

k1 + k2 − (|W |− 1) ≤ k

Theorem

Path Contraction With Constrained Ends admits an algorithm
running in time O∗(2k−|X |−|Y |).
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Cycle Contraction
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Cycle Contraction

Once Wi+1, X and Y are known - solve a Path Contraction With
Constrained Ends instance.
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Cycle Contraction
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Cycle Contraction

Observation

If G is k-contractible to Cℓ where ℓ ≥ 4 with witness structure
(W1,W2, . . . ,Wℓ), then there is a set of three consecutive witness sets Wi ,
Wi+1, Wi+2 such that |Wi |+ |Wi+1|+ |Wi+2| ≤ 3+ 3k

ℓ .

The number of choices of (X ,Wi+1,Y ) is O∗(3
3k
ℓ )

where N(Wi+1) = X ∪ Y and can be enumerated in same time.
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Cycle Contraction

Theorem

Cycle Contraction runs in O∗((2+ ϵℓ)
k) time where 0 < ϵℓ ≤ 0.5509

and ϵℓ decreases as ℓ increases.
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Future Directions

Path Contraction and Cycle Contraction

1 O∗((2− ϵ)k)-time algorithm for Path Contraction where ϵ > 0

2 O∗(2k)-time algorithm for Cycle Contraction

3 Parameterization by treewidth

4 Faster algorithms in special graph classes
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