Revisiting Path Contraction and Cycle Contraction

R. Krithika ¹, V. K. Kutty Malu ¹, Prafullkumar Tale²

¹Indian Institute of Technology Palakkad, India

²Indian Institute of Science Education and Research Bhopal, India

20 June 2024

Edge Contractions

æ

(WG 2024)

Graph Contraction Problems

June 2024

< ∃→

Edge Contractions

(WG 2024)

Graph Contraction Problems

! / 29

æ

∃ →

Path and Cycle

• P_{ℓ} denotes path on ℓ vertices

• C_{ℓ} denotes cycle on ℓ vertices

PATH CONTRACTION **Input:** A connected undirected graph G on n vertices and an integer k. **Question:** Can one contract at most k edges in G to obtain a path? **Parameter:** k.

PATH CONTRACTION

 P_4 witness structure is (W_1, \ldots, W_4) .

(WG 2024)

Input: A connected undirected graph G on n vertices and an integer k. **Question:** Can one contract at most k edges in G to obtain a cycle? **Parameter:** k.

(WG 2024)

 C_5 witness structure (W_1, \ldots, W_4, W_5) W_1 and W_5 are regarded as consecutive witness sets.

- [Brouwer and Veldman, 1987]
 - NP-complete.
- [Heggernes et al., 2014a]
 - Exact algorithm running in $\mathcal{O}^*(2^n)$ time.
 - Kernel with at most 5k + 3 vertices.
 - FPT algorithm running in $2^{k+\mathcal{O}(\sqrt{k}\log k)}$ time.
- [Li et al., 2017]
 - Improved kernel of at most 3k + 4 vertices.
- [Agrawal et al., 2020]
 - Exact algorithm running in $\mathcal{O}^*(1.99987^n)$ -time.

- [Brouwer and Veldman, 1987], [Hammack, 2002].
 - NP-complete.
- [Belmonte et al., 2014]
 - Kernel with at most 6k + 6 vertices.
- [Sheng and Sun, 2019]
 - Improved kernel of at most 5k + 4 vertices.

• PATH CONTRACTION admits an algorithm running in $\mathcal{O}^*(2^k)$ time.

¹ [Heggernes et al., 2014b]There is an $\mathcal{O}(n^2 \cdot tw)$ -time algorithm for PATH CONTRACTION on chordal graphs where tw is the treewidth of the input graph.

Graph Contraction Problems

- PATH CONTRACTION admits an algorithm running in $\mathcal{O}^*(2^k)$ time.

Graph Contraction Problems

- PATH CONTRACTION admits an algorithm running in $\mathcal{O}^*(2^k)$ time.
- ② CYCLE CONTRACTION admits an algorithm running in $\mathcal{O}^*((2 + \epsilon_\ell)^k)$ time where 0 < ϵ_ℓ ≤ 0.5509 and ϵ_ℓ decreases as ℓ increases.
- Longest cycle to which a graph can be contracted to can be solved in *O*^{*}(2.5191ⁿ) time.

Graph Contraction Problems

- PATH CONTRACTION admits an algorithm running in $\mathcal{O}^*(2^k)$ time.
- ② CYCLE CONTRACTION admits an algorithm running in $\mathcal{O}^*((2 + \epsilon_\ell)^k)$ time where 0 < ϵ_ℓ ≤ 0.5509 and ϵ_ℓ decreases as ℓ increases.
- Over the second seco
- PATH CONTRACTION on planar graphs admits a polynomial-time algorithm.

Graph Contraction Problems

- PATH CONTRACTION admits an algorithm running in $\mathcal{O}^*(2^k)$ time.
- ② CYCLE CONTRACTION admits an algorithm running in $\mathcal{O}^*((2 + \epsilon_\ell)^k)$ time where 0 < ϵ_ℓ ≤ 0.5509 and ϵ_ℓ decreases as ℓ increases.
- Over the second seco
- PATH CONTRACTION on planar graphs admits a polynomial-time algorithm.
- PATH CONTRACTION on chordal graphs does not admit an algorithm running in time O(n^{2-ε} · 2^{o(tw)}) for any ε > 0 under the Orthogonal Vectors Conjecture.¹

PATH CONTRACTION WITH CONSTRAINED ENDS. **Input:** A connected graph G, two disjoint subsets $X, Y \subseteq V(G)$ and an integer k. **Question:** Can one contract at most k edges in G to obtain a path with witness structure (W_1, \ldots, W_ℓ) such that $X \subseteq W_1$ and $Y \subseteq W_\ell$? Parameter: k.

Theorem

PATH CONTRACTION WITH CONSTRAINED ENDS admits an algorithm running in time $\mathcal{O}^*(2^{k-|X|-|Y|})$.

Observe that PATH CONTRACTION WITH CONSTRAINED ENDS when $X = \emptyset$ and $Y = \emptyset$ is PATH CONTRACTION.

Corollary

PATH CONTRACTION admits an algorithm running in time $\mathcal{O}^*(2^k)$.

Contracting to path of length at least 6. i.e. $k \le n-6$.

Contracting to path of length at least 6. i.e. $k \le n-6$.

Suppose (G, X, Y, k) is a Yes instance.

Contracting to path of length at least 6. i.e. $k \le n-6$.

Suppose (G, X, Y, k) is a Yes instance.

$$\begin{pmatrix} W_1 \\ X \end{pmatrix} \cdots \begin{pmatrix} W_{i-1} \\ W_i \end{pmatrix} \cdots \begin{pmatrix} W_{i+1} \\ W_{\ell-1} \end{pmatrix} \cdots \begin{pmatrix} W_{\ell} \\ Y \end{pmatrix}$$

PATH CONTRACTION WITH CONSTRAINED ENDS

Each non-terminal witness set W_i is a connected set with $W_i \subseteq V(G) \setminus (X \cup Y)$

G - W_i has exactly two connected components C_X, C_Y containing X and Y, respectively.

②
$$|(N(W_i) \setminus (X \cup Y)| + |W_i| \le k + 5 - |X| - |Y|$$

For any $2 \le i \le \ell - 1$ $|W_1| - 1 + |W_{i-1}| - 1 + |W_i| - 1 + |W_{i+1}| - 1 + |W_\ell| - 1 \le k$

PATH CONTRACTION WITH CONSTRAINED ENDS

Potential k-witness Set

A connected set $W \subseteq V(G) \setminus (X \cup Y)$:

- G W has exactly two connected components C_X, C_Y containing X and Y, respectively.
- $(N(W) \setminus (X \cup Y)| + |W| \le k + 5 |X| |Y|$

$$X \subseteq C_X \qquad \qquad W \qquad \qquad Y \subseteq C_Y$$

Enumerating Potential k-witness sets

The number of potential k-witness sets in G is $\mathcal{O}^*(2^{k-|X|-|Y|})$ and these sets can be enumerated in $\mathcal{O}^*(2^{k-|X|-|Y|})$ time.

(WG 2024)

Graph Contraction Problems

June 2024

PATH CONTRACTION WITH CONSTRAINED ENDS

Potential k-prefix set

For a potential k-witness set W, the sets $S_X := C_X \cup W$ and $S_Y := C_Y \cup W$ are called the *potential k-prefix sets* associated with W.

Enumerating Potential k-prefix sets

The number of potential k-prefix sets is $\mathcal{O}^*(2^{k-|X|-|Y|})$ and these sets can be enumerated in $\mathcal{O}^*(2^{k-|X|-|Y|})$ time.

June 2024

Potential k-prefix set

For a potential k-witness set W, the sets $S_X := C_X \cup W$ and $S_Y := C_Y \cup W$ are called the *potential k-prefix sets* associated with W.

Potential k-prefix set

For a potential k-witness set W, the sets $S_X := C_X \cup W$ and $S_Y := C_Y \cup W$ are called the *potential k-prefix sets* associated with W.

(WG 2024)

Graph Contraction Problems

June 2024

< ∃⇒

19

э

$$\begin{split} \Gamma[W,S_X,k'] &= \texttt{True} \quad \text{if and only if } G[S_X] \text{ is } k'\text{-contractible to a path} \\ & \text{with witness structure } (W_1,\ldots,W_q=W) \\ & \text{for some } q \geq 2 \text{ such that } X \subseteq W_1 \end{split}$$

 $\Gamma[W, S_Y, k''] = \text{True if and only if } G[S_Y] \text{ is } k'' \text{-contractible to a path}$ with witness structure $(W'_1, \dots, W'_p = W)$ for some $p \ge 2$ such that $Y \subseteq W'_1$

(WG 2024)

Graph Contraction Problems

June 2024

∃ ⇒

≣ ≪. 20

(G, X, Y, k) is an YES instance if and only if $\exists W, k_1, k_2$ such that

- $\Gamma[W, S_X, k_1] =$ True
- $\Gamma[W, S_Y, k_2] = \text{True}$
- $k_1 + k_2 (|W| 1) \le k$

Theorem

PATH CONTRACTION WITH CONSTRAINED ENDS admits an algorithm running in time $\mathcal{O}^*(2^{k-|X|-|Y|})$.

(WG 2024)

June 2024

・ロト ・四ト ・ヨト ・ヨト

æ

(WG 2024)

Graph Contraction Problems

June 2024

- < ∃ →

22 /

æ

Once W_{i+1} , X and Y are known - solve a PATH CONTRACTION WITH CONSTRAINED ENDS instance.

Observation

If G is k-contractible to C_{ℓ} where $\ell \geq 4$ with witness structure $(W_1, W_2, \ldots, W_{\ell})$, then there is a set of three consecutive witness sets W_i , W_{i+1} , W_{i+2} such that $|W_i| + |W_{i+1}| + |W_{i+2}| \leq 3 + \frac{3k}{\ell}$.

The number of choices of (X, W_{i+1}, Y) is $\mathcal{O}^*(3^{\frac{3k}{\ell}})$ where $N(W_{i+1}) = X \cup Y$ and can be enumerated in same time.

(WG 2024)

Graph Contraction Problems

June 2024

Theorem

CYCLE CONTRACTION runs in $\mathcal{O}^*((2 + \varepsilon_\ell)^k)$ time where $0 < \varepsilon_\ell \leq 0.5509$ and ε_ℓ decreases as ℓ increases. PATH CONTRACTION and CYCLE CONTRACTION

- **(** $\mathcal{O}^*((2-\varepsilon)^k)$ -time algorithm for PATH CONTRACTION where $\varepsilon > 0$
- **2** $\mathcal{O}^*(2^k)$ -time algorithm for CYCLE CONTRACTION
- Parameterization by treewidth
- Faster algorithms in special graph classes

Thank you

(WG 2024)

Graph Contraction Problems

June 2024

イロト イヨト イヨト イヨト

≣ ৩৭ে 26/29

Agrawal, A., Fomin, F. V., Lokshtanov, D., Saurabh, S., and Tale, P. (2020).

Path contraction faster than 2ⁿ.

SIAM J. Discret. Math., 34(2):1302-1325.

Belmonte, R., Golovach, P. A., van 't Hof, P., and Paulusma, D. (2014).

Parameterized complexity of three edge contraction problems with degree constraints.

Acta Informatica, 51(7):473–497.

Brouwer, A. E. and Veldman, H. J. (1987).

Contractibility and np-completeness.

J. Graph Theory, 11(1):71–79.

Hammack, R. H. (2002).

A note on the complexity of computing cyclicity. *Ars Comb.*, 63.

Heggernes, P., van 't Hof, P., Lévêque, B., Lokshtanov, D., and Paul, C. (2014a).
Contracting graphs to paths and trees. *Algorithmica*, 68(1):109–132.

Heggernes, P., van 't Hof, P., Lévêque, B., and Paul, C. (2014b). Contracting chordal graphs and bipartite graphs to paths and trees. *Discret. Appl. Math.*, 164:444–449.

Li, W., Feng, Q., Chen, J., and Hu, S. (2017).

Improved kernel results for some fpt problems based on simple observations.

Theoretical Computer Science, 657:20–27. Frontiers of Algorithmics.

Sheng, B. and Sun, Y. (2019).

An improved linear kernel for the cycle contraction problem. Information Processing Letters, 149:14–18.

