

On the Structural Parameterizations of Locating-Dominating Set and Test Cover

Dipayan Chakraborty^{a,b}, Florent Foucaud^a, Diptapriyo Majumdar^c
and Prafullkumar Tale^d

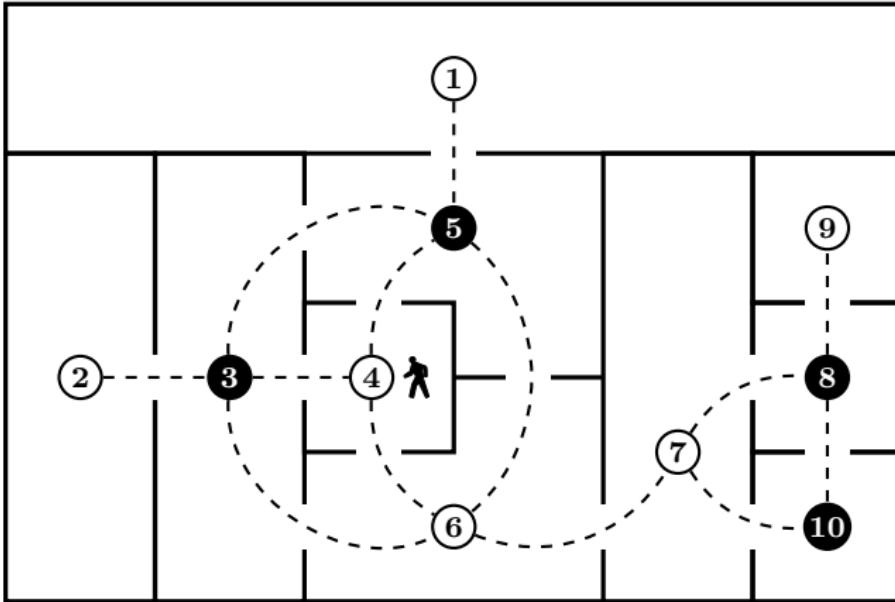
^aUniversité Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP,
LIMOS, 63000 Clermont-Ferrand, France

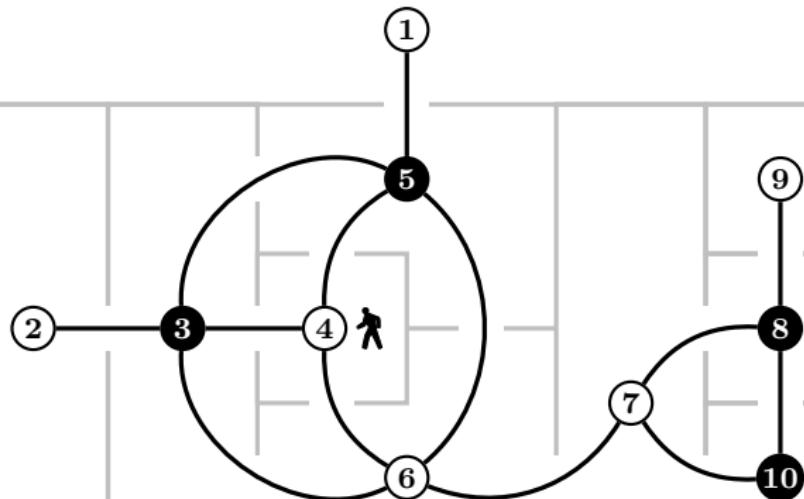
^bDepartment of Mathematics and Applied Mathematics, University of Johannesburg,
Auckland Park, 2006, South Africa

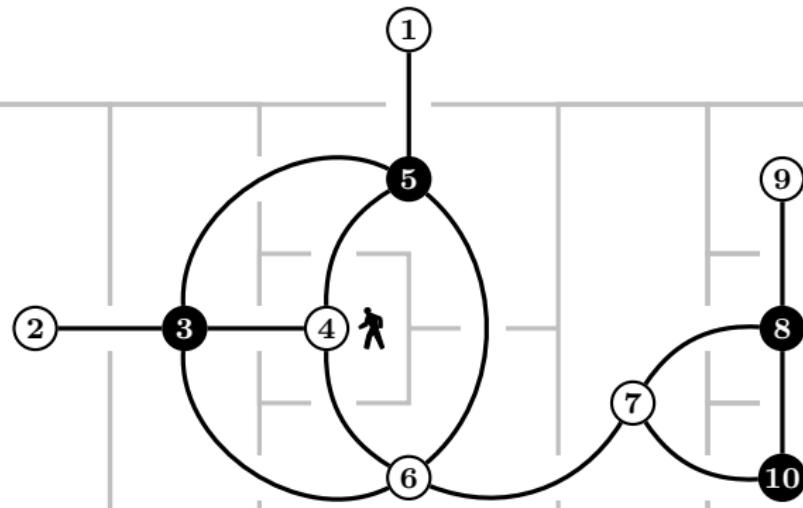
^cIndraprastha Institute of Information Technology Delhi, Delhi, India

^dIndian Institute of Science Education and Research Pune, Pune, India

Introduction: Locating dominating sets in graphs







Graph $G = (V, E)$

Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

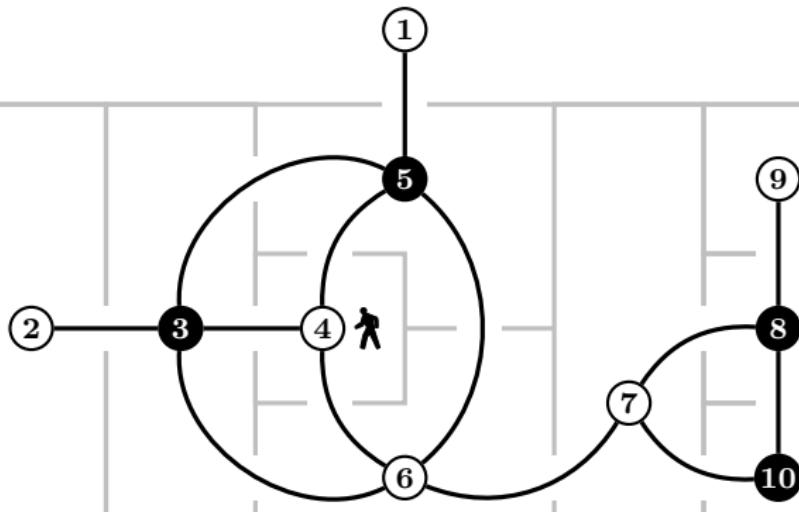
Closed neighborhood:

$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

Graph $G = (V, E)$



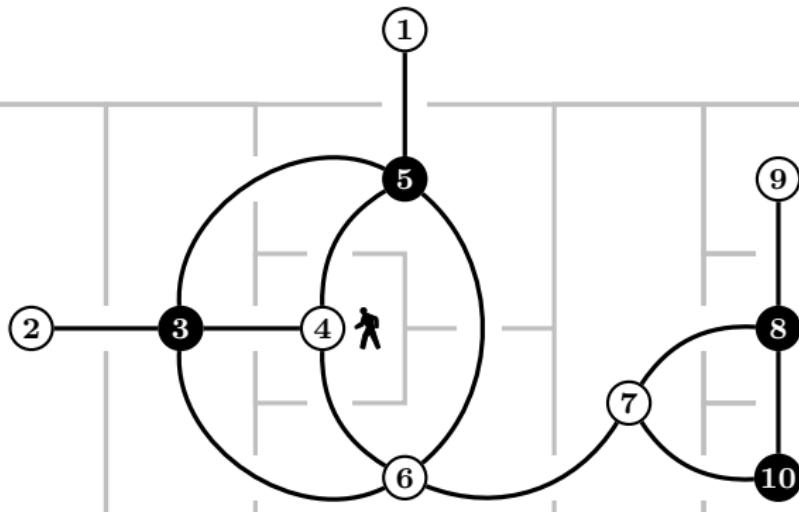
Open neighborhood:
 $N(v) = \{u : uv \in E\}$
 $N(7) = \{6, 8, 10\}$

Closed neighborhood:

C : set of black vertices

(1) A detector can monitor upto distance 1

Graph $G = (V, E)$



Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

Closed neighborhood:

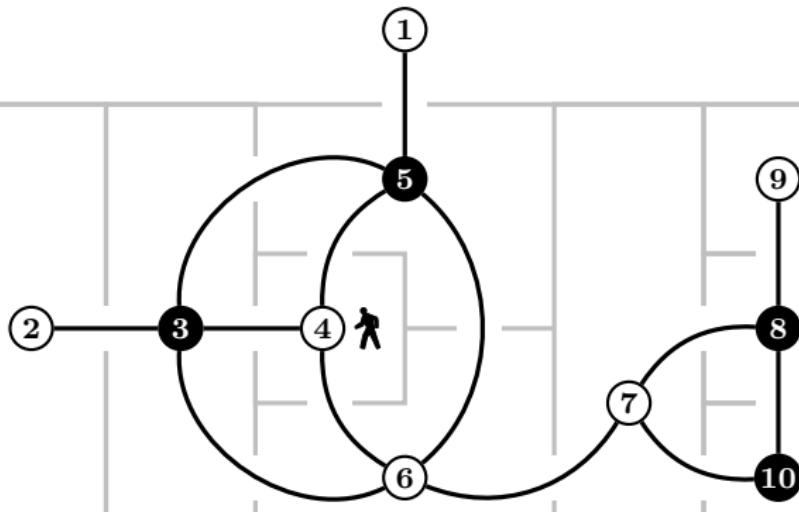
$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

Graph $G = (V, E)$



Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

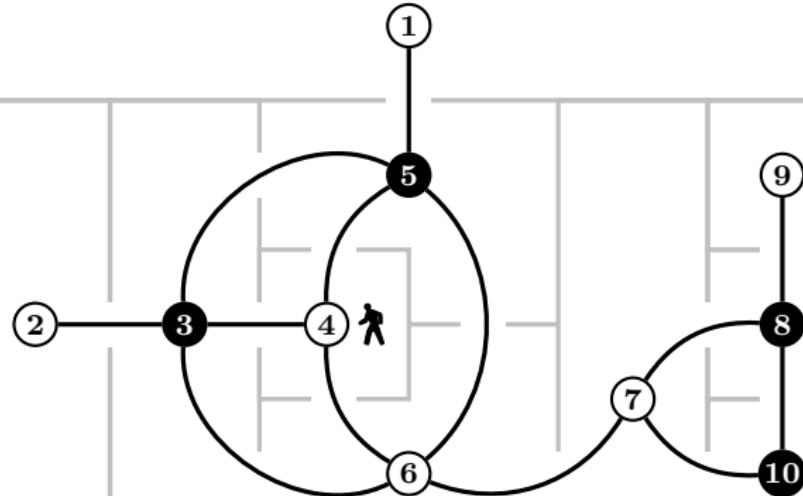
Closed neighborhood:

$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$



Graph $G = (V, E)$

Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

Closed neighborhood:

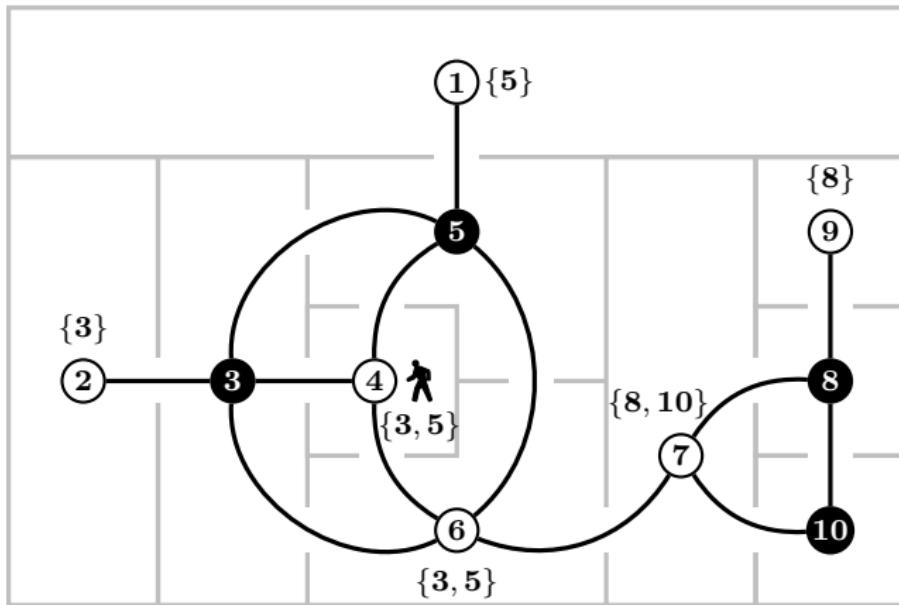
$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

(2) A detector can distinguish between itself and a neighbor



Graph $G = (V, E)$

Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

Closed neighborhood:

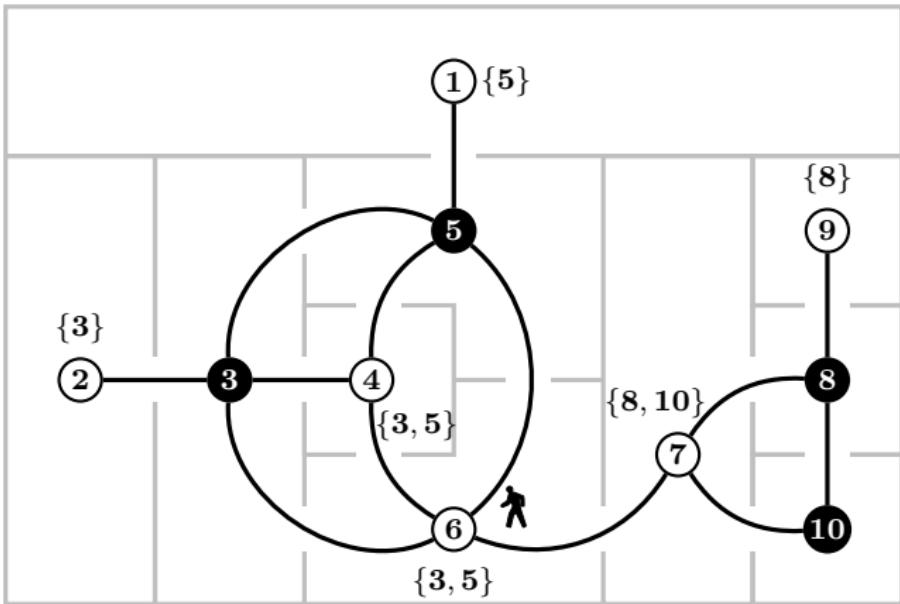
$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

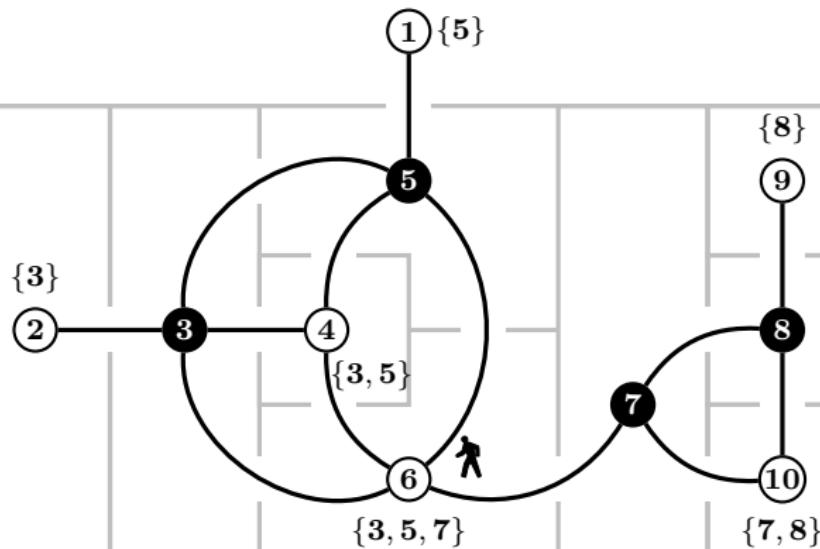
Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

(2) A detector can distinguish between itself and a neighbor



Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

(2) A detector can distinguish between itself and a neighbor



Graph $G = (V, E)$

Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

Closed neighborhood:

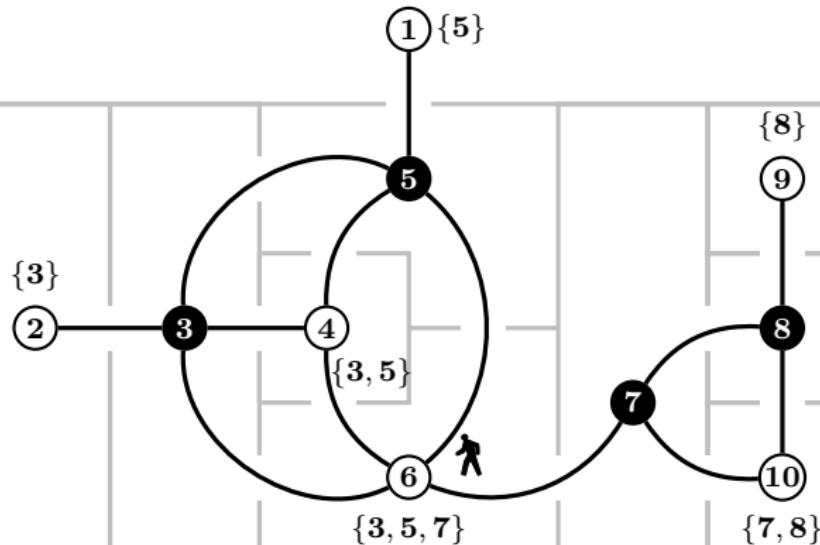
$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

(2) A detector can distinguish between itself and a neighbor



Graph $G = (V, E)$

Open neighborhood:

$$N(v) = \{u : uv \in E\}$$

$$N(7) = \{6, 8, 10\}$$

Closed neighborhood:

$$N[v] = N(v) \cup \{v\}$$

$$N[7] = \{6, 8, 10, 7\}$$

C : set of black vertices

Dominating set: A set $C \subseteq V$ such that $N[v] \cap C \neq \emptyset$ for all $v \in V$

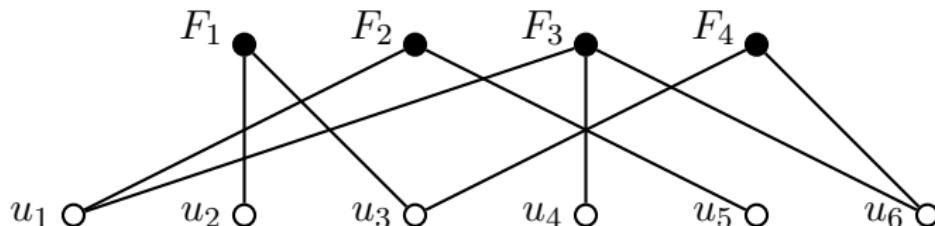
Locating set: A set $C \subseteq V$ such that $N(u) \cap C \neq N(v) \cap C$ for all $u, v \in V \setminus C$

Definition

Locating dominating (LD) set: is a set $C \subseteq V$ of a graph

$G = (V, E)$ such that C is

- (i) a dominating set of G ; and
- (ii) $N(u) \cap C \neq N(v) \cap C$ for all $u, v \in V \setminus C$.



Definition

Test Cover: Given a set U (of *items*) and a set \mathcal{F} of subsets (called *tests*) of U , the set \mathcal{F} is called a **test cover** if given any pair of distinct $u, v \in U$, there exists a set $F \in \mathcal{F}$ such that either $u \in F, v \notin F$ or $v \in F, u \notin F$.

Decision version of finding the minimum LD-set in a graph:

MINIMUM LD-SET

Input: (G, k) : A graph G and a positive integer k .

Question: Does there exist an LD-set C of G such that $|C| \leq k$?

MINIMUM LD-SET is NP-hard!

Decision version of finding the minimum LD-set in a graph:

MINIMUM LD-SET

Input: (G, k) : A graph G and a positive integer k .

Question: Does there exist an LD-set C of G such that $|C| \leq k$?

MINIMUM LD-SET is NP-hard!

What about *Fixed Parameter Tractable (FPT)* algorithms?

i.e. given a graph parameter k , can we find an algorithm to find a minimum code in time $f(k) \cdot n^{O(1)}$? e.g. $f(k) = 2^k, 2^{k^2}, 2^{2^k}, \dots$

Decision version of finding the minimum LD-set in a graph:

MINIMUM LD-SET

Input: (G, k) : A graph G and a positive integer k .

Question: Does there exist an LD-set C of G such that $|C| \leq k$?

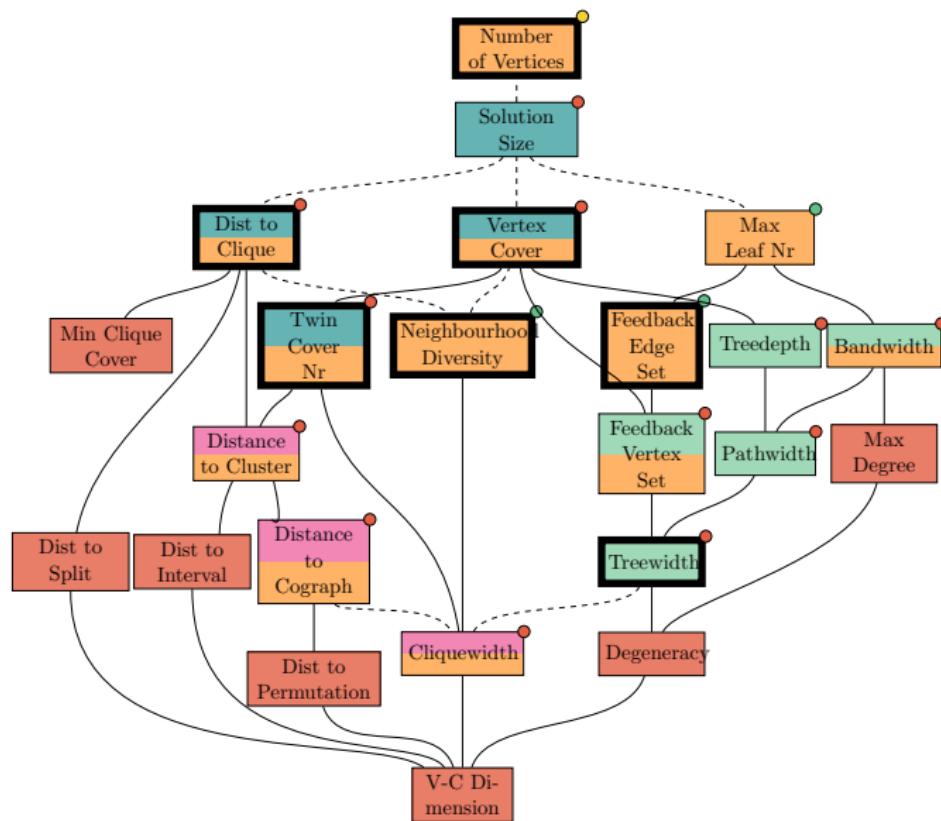
MINIMUM LD-SET is NP-hard!

What about *Fixed Parameter Tractable (FPT)* algorithms?

i.e. given a graph parameter k , can we find an algorithm to find a minimum code in time $f(k) \cdot n^{O(1)}$? e.g. $f(k) = 2^k, 2^{k^2}, 2^{2^k}, \dots$

Note: MINIMUM LD-SET is FPT when parameterized by solution size k .

Reason: $|V(G)| = O(2^k)$. Thus brute force gives $2^{O(k^2)} \cdot n^{O(1)}$ runtime.



single-exp FPT slightly super-exp FPT double-exp FPT FPT para-NP-h.

- linear kernel

● (tight) quadratic kernel

- no polynomial kernel

Theorem (C., Foucaud, Majumdar & Tale, 2024)

MINIMUM LD-SET *admits an algorithm running in time*
 $2^{O(\text{vc} \log \text{vc})} \cdot n^{O(1)}$, where vc is the vertex cover number of the input graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

MINIMUM LD-SET *admits a kernel with $\mathcal{O}(\text{fes})$ vertices and edges, where fes is the feedback edge set number of the input graph.*

Theorem (C., Foucaud, Majumdar & Tale, 2024)

MINIMUM LD-SET *does not admit a polynomial compression of size $\mathcal{O}(n^{2-\epsilon})$ for any $\epsilon > 0$, unless $\text{NP} \subseteq \text{coNP/poly}$, where n denotes the number of vertices of the input graph.*

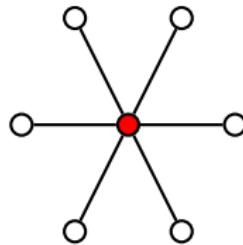
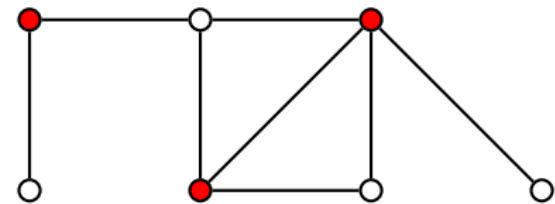
FPT algorithms for locating dominating code

— joint work with Florent Foucaud, Diptapriyo Majumdar and Prafullkumar Tale

(Université Clermont Auvergne / IIIT Delhi / IISER Bhopal)

Vertex cover: A set $S \subset V$ such that $V \setminus S$ is an independent set.

Vertex cover number: $\text{vc} = \min\{|S| : S \text{ is a vertex cover of } G\}$



Theorem (C., Foucaud, Majumdar & Tale, 2024)

LD-CODE *admits an algorithm running in time $2^{O(\text{vc} \log \text{vc})} \cdot n^{O(1)}$.*

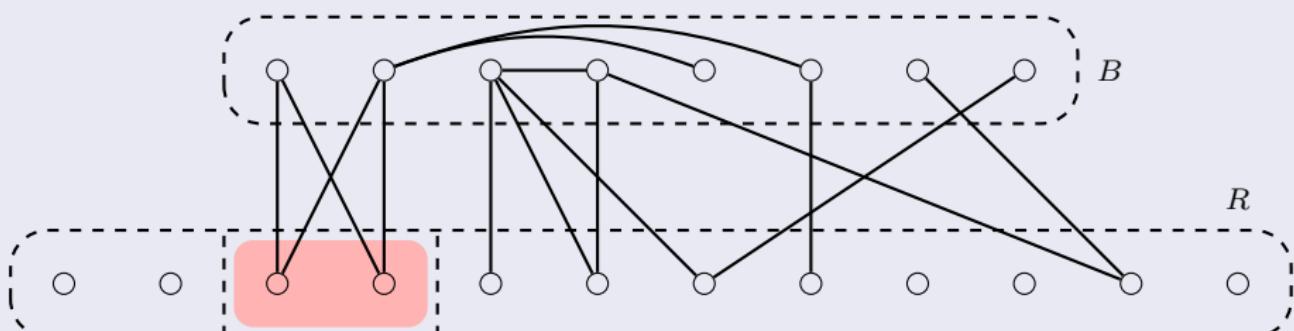
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$$\boxed{\begin{aligned} \text{opt}[i, \mathcal{P}, S] &= \min |C|, \\ C &\subset \{r_1, r_2, \dots, r_i\}, \\ C &\rightsquigarrow (\mathcal{P}, S) \end{aligned}}$$

- Algorithm **brute forces** all partitions of vertex cover.



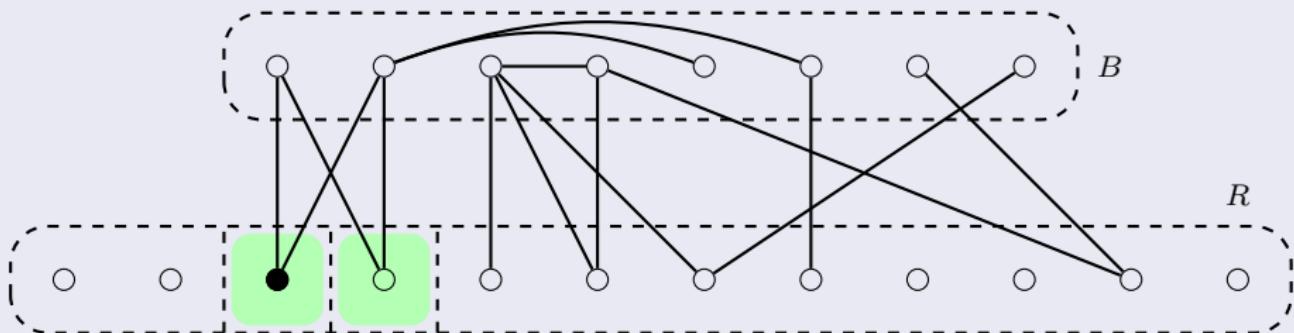
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$$\begin{aligned} \text{opt}[i, \mathcal{P}, S] &= \min |C|, \\ C &\subset \{r_1, r_2, \dots, r_i\}, \\ C &\rightsquigarrow (\mathcal{P}, S) \end{aligned}$$

- Algorithm **brute forces** all partitions of vertex cover.



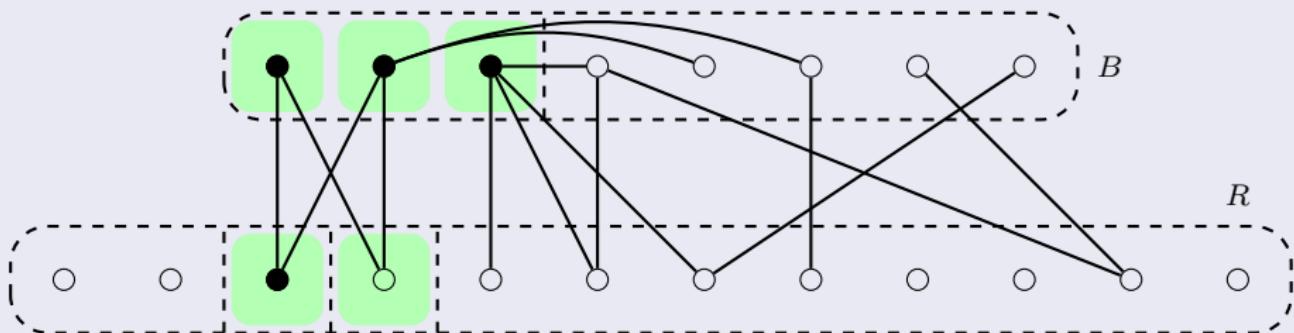
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$$\boxed{\begin{aligned} \text{opt}[i, \mathcal{P}, S] &= \min |C|, \\ C &\subset \{r_1, r_2, \dots, r_i\}, \\ C &\rightsquigarrow (\mathcal{P}, S) \end{aligned}}$$

- Algorithm **brute forces** all partitions of vertex cover.



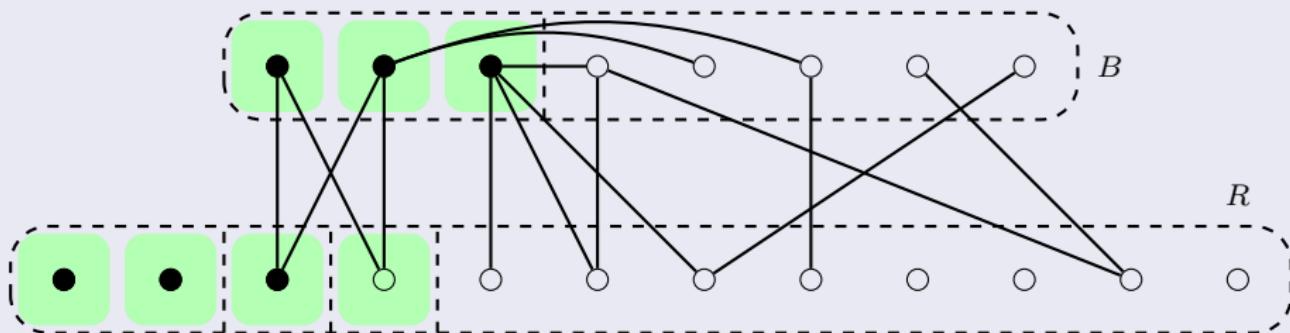
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$$\begin{aligned} \text{opt}[i, \mathcal{P}, S] &= \min |C|, \\ C &\subset \{r_1, r_2, \dots, r_i\}, \\ C &\rightsquigarrow (\mathcal{P}, S) \end{aligned}$$

- Algorithm **brute forces** all partitions of vertex cover.



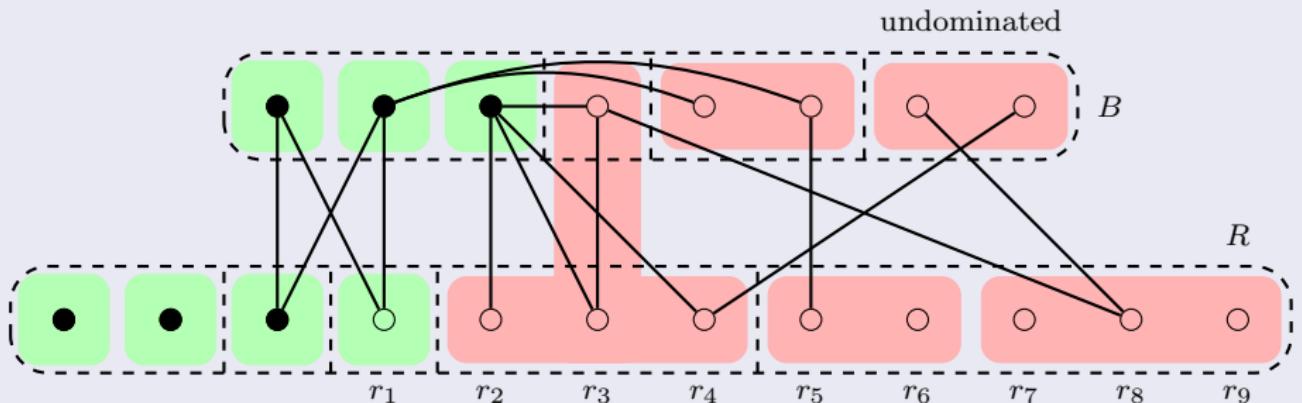
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$\text{opt}[i, \mathcal{P}, S] = \min |C|,$
 $C \subset \{r_1, r_2, \dots, r_i\},$
 $C \rightsquigarrow (\mathcal{P}, S)$

- Algorithm **brute forces** all partitions of vertex cover.



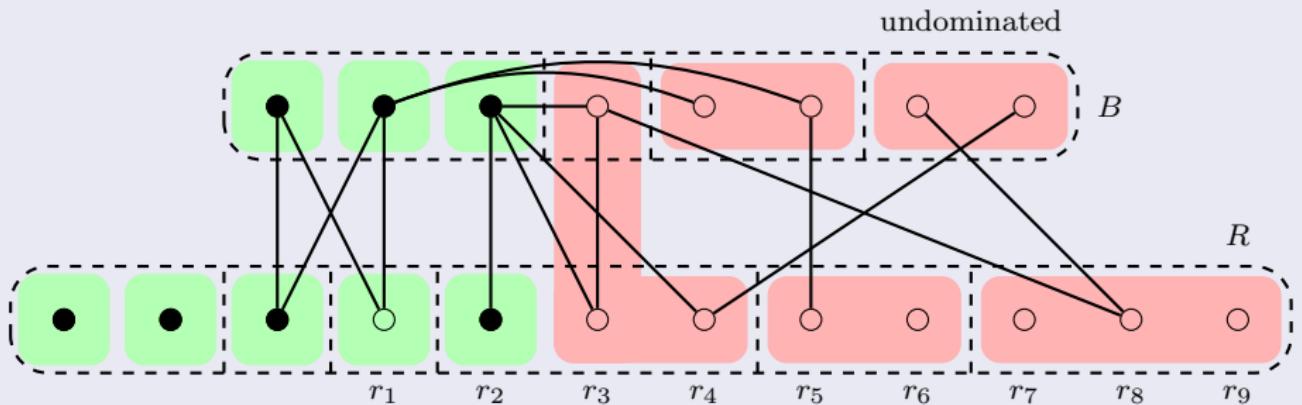
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{vc} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$\text{opt}[i, \mathcal{P}, S] = \min |C|,$
 $C \subset \{r_1, r_2, \dots, r_i\},$
 $C \rightsquigarrow (\mathcal{P}, S)$

- Algorithm **brute forces** all partitions of vertex cover.



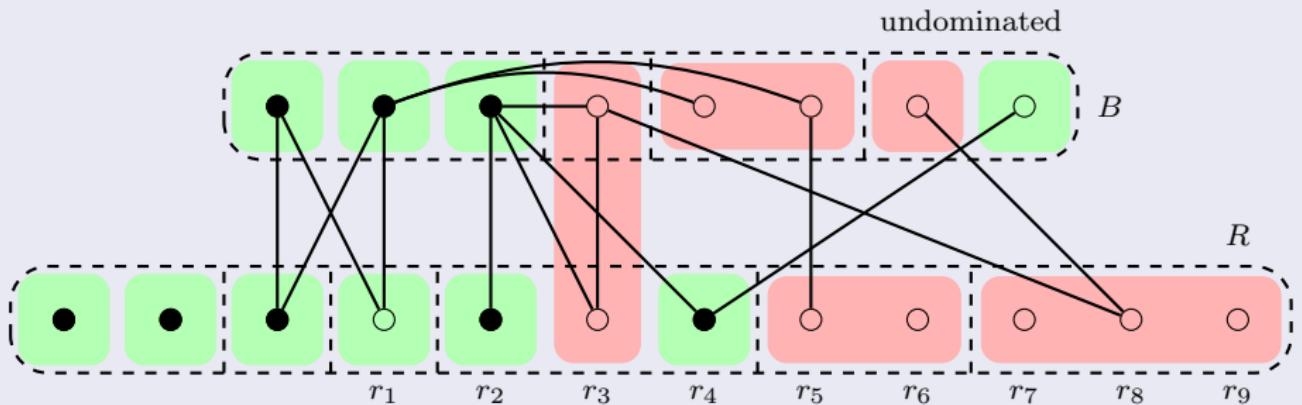
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$\text{opt}[i, \mathcal{P}, S] = \min |C|,$
 $C \subset \{r_1, r_2, \dots, r_i\},$
 $C \rightsquigarrow (\mathcal{P}, S)$

- Algorithm **brute forces** all partitions of vertex cover.



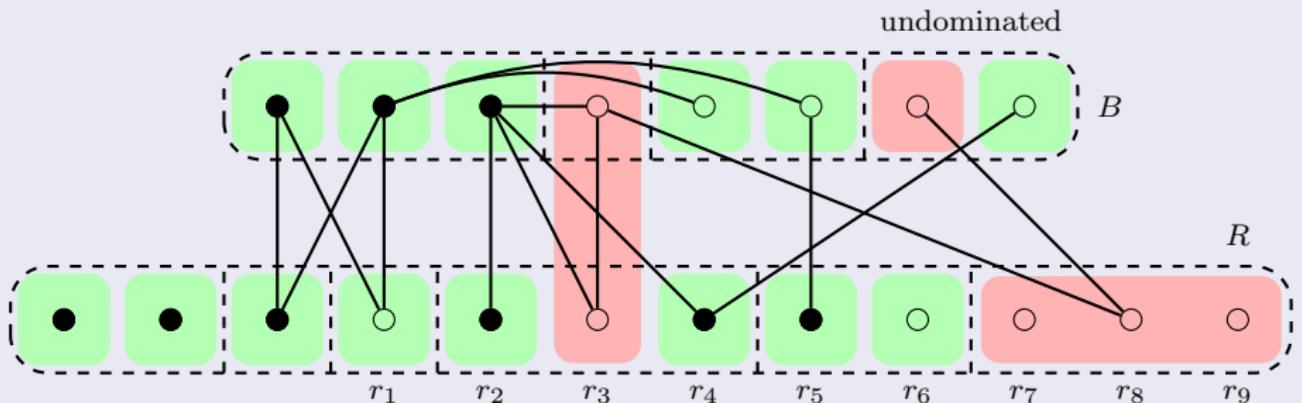
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$$\boxed{\begin{aligned} \text{opt}[i, \mathcal{P}, S] &= \min |C|, \\ C &\subset \{r_1, r_2, \dots, r_i\}, \\ C &\rightsquigarrow (\mathcal{P}, S) \end{aligned}}$$

- Algorithm **brute forces** all partitions of vertex cover.



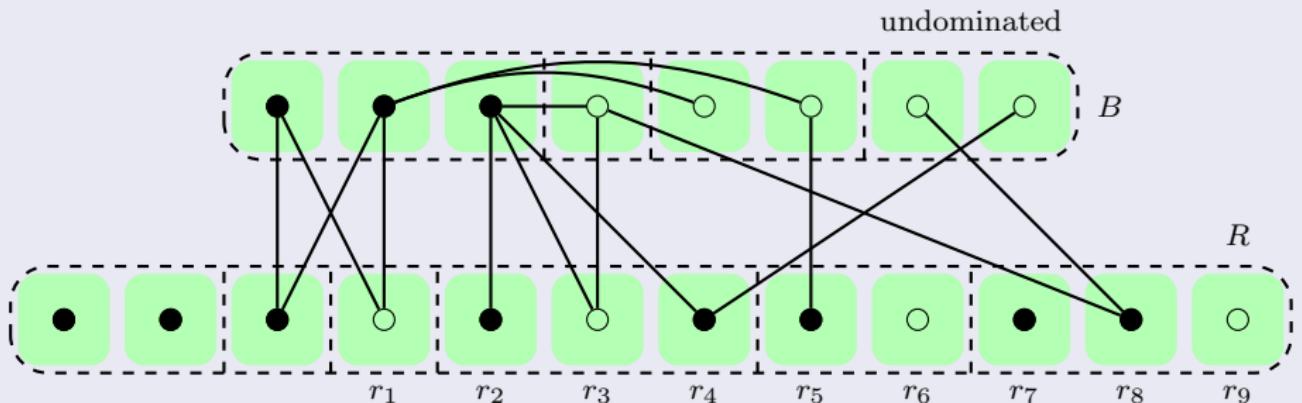
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

$\text{opt}[i, \mathcal{P}, S] = \min |C|,$
 $C \subset \{r_1, r_2, \dots, r_i\},$
 $C \rightsquigarrow (\mathcal{P}, S)$

- Algorithm **brute forces** all partitions of vertex cover.



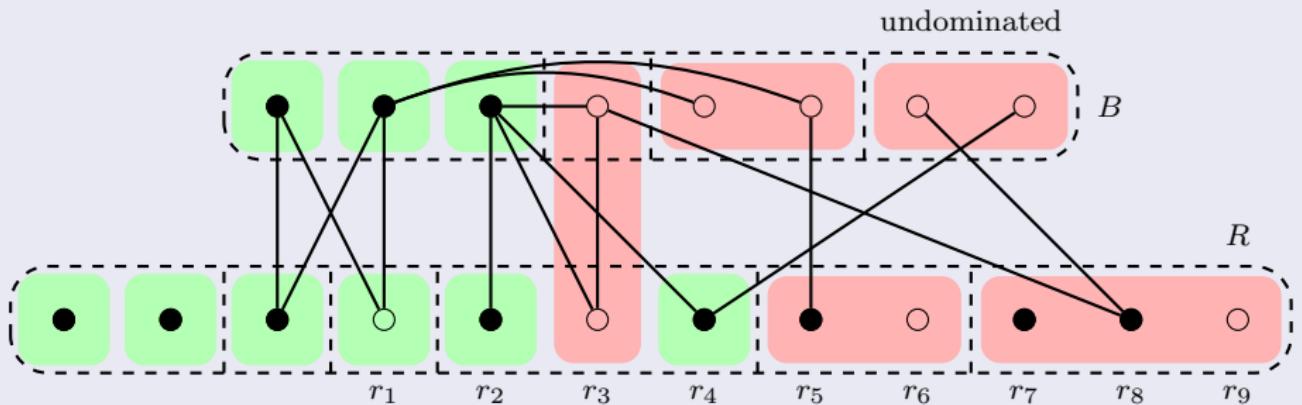
Algorithm (by dynamic programming):

- Find a minimum vertex cover in time $1.2528^{\text{vc}} \cdot n^{O(1)}$ [Harris & Narayanaswamy, STACS 2024].
- Build optimum solution by the **dynamic programming**:

$$\text{opt}[i, \mathcal{P}, S] = \min \begin{cases} \text{opt}[i-1, \mathcal{P}, S], \\ 1 + \min_{\substack{\mathcal{P}' \cap \mathcal{P}(r_i) = \mathcal{P}, \\ S' \cup N(r_i) = S}} \text{opt}[i-1, \mathcal{P}', S']. \end{cases}$$

Running time:
 $\mathcal{P} : 2^{\text{vc}} \log \text{vc} \cdot |R|$
 $S : 2^{\text{vc}}$

- Algorithm **brute forces** all partitions of vertex cover.



Thank You!