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Introduction: Locating
dominating sets in graphs
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Graph G = (V, E)

Open neighborhood:
N@w)={u:uv e E}
N(7) = {6,8,10}

Closed neighborhood:
N[v] = N(v) U{v}
N[7] ={6,8,10,7}

C': set of black

vertices
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Graph G = (V, E)

Open neighborhood:
N@)={u:uwv € E}
N(7) = {6,8,10}

Closed neighborhood:
Nv] = N(v) U {v}
N[7] ={6,8,10,7}

C': set of black
{3,5,7} {7,8} vertices

Dominating set: A set C C V such that Nv]NC # 0 for allv e V

Locating set: A set C CV such that N(u) N C # N(v) N C for all
u,v € V\C
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Definition

Locating dominating (LD) set: is a set C C V of a graph
G = (V, E) such that C is

(i) a dominating set of G; and

(ii) N(u)NC # N(v)NC for all u,v € V'\ C.

Fy Fy F3 Fy

U1

Definition

Test Cover: Given a set U (of items) and a set F of subsets (called
tests) of U, the set F is called a test cover if given any pair of distinct
u,v € U, there exists a set F' € F such that either u € F, v ¢ F or
veEF,u¢F.
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Decision version of finding the minimum LD-set in a graph:

MiNniMuM LD-SET
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an LD-set C' of G such that |C| < k?

MinimMmuM LD-SET is NP-hard!
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Decision version of finding the minimum LD-set in a graph:

MiNniMuM LD-SET
Input: (G,k): A graph G and a positive integer k.
Question: Does there exist an LD-set C' of G such that |C| < k?

MinimMmuM LD-SET is NP-hard!

What about Fized Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k) - n°M? e.g. f(k) = 2F, 2¥* 22"

Note: MINIMUM LD-SET is FPT when parameterized by solution size
k.
Reason: |V(G)| = O(2F). Thus brute force gives 20+ . nO1) runtime.

(Dipayan Chakraborty)



Feedback
Vertex
Set

Distance
to Cluster

Distance
to
Cograph

ewidth

Clique

[ single-exp FPT I slightly super-exp FPT [ double-exp FPT @ FPT [ para-NP-h.

O (tight) quadratic kernel @ no polynomial kernel

@linear kernel




Theorem (C., Foucaud, Majumdar & Tale, 2024)

MINIMUM LD-SET admits an algorithm running in time
90(velogve) . nOM) " yhere ve is the vertex cover number of the input
graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

MiINIMUM LD-SET admits a kernel with O(fes) vertices and edges,
where fes is the feedback edge set number of the input graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

MINIMUM LD-SET does not admit a polynomial compression of size
O(n*7¢) for any € > 0, unless NP C coNP/poly, where n denotes the
number of vertices of the input graph.
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FPT algorithms for locating dominating code

joint work with Florent Foucaud, Diptapriyo Majumdar and Prafullkumar Tale

(Université Clermont Auvergne / IIIT Delhi / IISER Bhopal)

Vertex cover: A set S C V such that V' \ S is an independent set.
Vertex cover number: vc = min{|S| : S is a vertex cover of G}

O

Theorem (C., Foucaud, Majumdar & Tale, 2024)

LD-CODE admits an algorithm running in time 20(velogve) . nOQ1),
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Algorithm (by dynamic programming):

e Find a minimum vertex cover in time 1.2528% - n©(1) [Harris &
Narayanaswamy, STACS 2024].

e Build optimum solution by the dynamic programming:

opt[i — 1,P,S], opt[i, P, S| = min |C],

opt[i, P, S]=min< 1+ min optli —1,P,S]. | C C{ri,r2,...,7i},
PP (ri)=P,
S'UN(r;)=S C ~ (va)

e Algorithm brute forces all partitions of vertex cover.
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Algorithm (by dynamic programming):

e Find a minimum vertex cover in time 1.2528% - n©(1) [Harris &
Narayanaswamy, STACS 2024].

e Build optimum solution by the dynamic programming:

optli — 1, P, 5], Running time:
opt[i, P,S]=min{ 14+ min  opt[i — 1,P’,S]. | P: 2vclosve. |R|
P'@P(r:i)=P, v

S'UN(r;)=S S: 2

e Algorithm brute forces all partitions of vertex cover.

undominated
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Thank Youl
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