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Introduction: Locating
dominating sets in graphs
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Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C
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Closed neighborhood:
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C: set of black
vertices

(1) A detector can monitor upto distance 1

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
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Definition

Locating dominating (LD) set: is a set C ⊆ V of a graph
G = (V,E) such that C is
(i) a dominating set of G; and
(ii) N(u) ∩ C ̸= N(v) ∩ C for all u, v ∈ V \ C.

F1 F2 F3 F4

u1 u2 u3 u4 u5 u6

Definition

Test Cover: Given a set U (of items) and a set F of subsets (called
tests) of U , the set F is called a test cover if given any pair of distinct
u, v ∈ U , there exists a set F ∈ F such that either u ∈ F , v /∈ F or
v ∈ F , u /∈ F .
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Decision version of finding the minimum LD-set in a graph:

Minimum LD-Set

Input: (G, k): A graph G and a positive integer k.
Question: Does there exist an LD-set C of G such that |C| ≤ k?

Minimum LD-Set is NP-hard!

What about Fixed Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k) · nO(1)? e.g. f(k) = 2k, 2k

2
, 22

k
. . .

Note: Minimum LD-Set is FPT when parameterized by solution size
k.
Reason: |V (G)| = O(2k). Thus brute force gives 2O(k2) ·nO(1) runtime.
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Theorem (C., Foucaud, Majumdar & Tale, 2024)

Minimum LD-Set admits an algorithm running in time
2O(vc log vc) · nO(1), where vc is the vertex cover number of the input
graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

Minimum LD-Set admits a kernel with O(fes) vertices and edges,
where fes is the feedback edge set number of the input graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

Minimum LD-Set does not admit a polynomial compression of size
O(n2−ϵ) for any ϵ > 0, unless NP ⊆ coNP/poly, where n denotes the
number of vertices of the input graph.
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FPT algorithms for locating dominating code
— joint work with Florent Foucaud, Diptapriyo Majumdar and Prafullkumar Tale

(Université Clermont Auvergne / IIIT Delhi / IISER Bhopal)

Vertex cover: A set S ⊂ V such that V \ S is an independent set.
Vertex cover number: vc = min{|S| : S is a vertex cover of G}

Theorem (C., Foucaud, Majumdar & Tale, 2024)

LD-Code admits an algorithm running in time 2O(vc log vc) · nO(1).

(Dipayan Chakraborty) 8 / 10



Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated
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Thank You!
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