
On the Structural Parameterizations of
Locating-Dominating Set and Test Cover

Dipayan Chakrabortya,b, Florent Foucauda, Diptapriyo Majumdarc

and Prafullkumar Taled

aUniversité Clermont Auvergne, CNRS, Mines Saint-Étienne, Clermont Auvergne INP,
LIMOS, 63000 Clermont-Ferrand, France

bDepartment of Mathematics and Applied Mathematics, University of Johannesburg,
Auckland Park, 2006, South Africa

cIndraprastha Institute of Information Technology Delhi, Delhi, India

dIndian Institute of Science Education and Research Pune, Pune, India

(Dipayan Chakraborty) 1 / 10

Introduction: Locating
dominating sets in graphs

(Dipayan Chakraborty) 2 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

(1) A detector can monitor upto distance 1

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

(2) A detector can distinguish between itself and a neighbor

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

{5}

{3}

{3,5}

{3,5}

{3,5,7}

{8,10}

{8}

{7,8}

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

(2) A detector can distinguish between itself and a neighbor

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

{5}

{3}

{3,5}

{3,5}

{3,5,7}

{8,10}

{8}

{7,8}

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

(2) A detector can distinguish between itself and a neighbor

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

{5}

{3}

{3,5}

{3,5}

{3,5,7}

{8,10}

{8}

{7,8}

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

(2) A detector can distinguish between itself and a neighbor

(Dipayan Chakraborty) 3 / 10

1

2 3 4

5

6

7

8

9

10

{5}

{3}

{3,5}

{3,5}

{3,5,7}

{8,10}

{8}

{7,8}

Graph G = (V,E)

Open neighborhood:
N(v) = {u : uv ∈ E}
N(7) = {6, 8, 10}

Closed neighborhood:
N [v] = N(v) ∪ {v}
N [7] = {6, 8, 10, 7}

C: set of black
vertices

Dominating set: A set C ⊆ V such that N [v] ∩ C ̸= ∅ for all v ∈ V

Locating set: A set C ⊆ V such that N(u) ∩ C ̸= N(v) ∩ C for all
u, v ∈ V \ C

(Dipayan Chakraborty) 3 / 10

Definition

Locating dominating (LD) set: is a set C ⊆ V of a graph
G = (V,E) such that C is
(i) a dominating set of G; and
(ii) N(u) ∩ C ̸= N(v) ∩ C for all u, v ∈ V \ C.

F1 F2 F3 F4

u1 u2 u3 u4 u5 u6

Definition

Test Cover: Given a set U (of items) and a set F of subsets (called
tests) of U , the set F is called a test cover if given any pair of distinct
u, v ∈ U , there exists a set F ∈ F such that either u ∈ F , v /∈ F or
v ∈ F , u /∈ F .

(Dipayan Chakraborty) 4 / 10

Decision version of finding the minimum LD-set in a graph:

Minimum LD-Set

Input: (G, k): A graph G and a positive integer k.
Question: Does there exist an LD-set C of G such that |C| ≤ k?

Minimum LD-Set is NP-hard!

What about Fixed Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k) · nO(1)? e.g. f(k) = 2k, 2k

2
, 22

k
. . .

Note: Minimum LD-Set is FPT when parameterized by solution size
k.
Reason: |V (G)| = O(2k). Thus brute force gives 2O(k2) ·nO(1) runtime.

(Dipayan Chakraborty) 5 / 10

Decision version of finding the minimum LD-set in a graph:

Minimum LD-Set

Input: (G, k): A graph G and a positive integer k.
Question: Does there exist an LD-set C of G such that |C| ≤ k?

Minimum LD-Set is NP-hard!

What about Fixed Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k) · nO(1)? e.g. f(k) = 2k, 2k

2
, 22

k
. . .

Note: Minimum LD-Set is FPT when parameterized by solution size
k.
Reason: |V (G)| = O(2k). Thus brute force gives 2O(k2) ·nO(1) runtime.

(Dipayan Chakraborty) 5 / 10

Decision version of finding the minimum LD-set in a graph:

Minimum LD-Set

Input: (G, k): A graph G and a positive integer k.
Question: Does there exist an LD-set C of G such that |C| ≤ k?

Minimum LD-Set is NP-hard!

What about Fixed Parameter Tractable (FPT) algorithms?
i.e. given a graph parameter k, can we find an algorithm to find a
minimum code in time f(k) · nO(1)? e.g. f(k) = 2k, 2k

2
, 22

k
. . .

Note: Minimum LD-Set is FPT when parameterized by solution size
k.
Reason: |V (G)| = O(2k). Thus brute force gives 2O(k2) ·nO(1) runtime.

(Dipayan Chakraborty) 5 / 10

Number
of Vertices

Solution
Size

Vertex
Cover

Max
Leaf Nr

Dist to
Clique

Min Clique
Cover

Twin
Cover
Nr

Distance
to Cluster

Neighbourhood
Diversity

Feedback
Edge
Set

Treedepth Bandwidth

Distance
to

Cograph

Dist to
Split

Dist to
Interval

Dist to
Permutation

Feedback
Vertex
Set

Pathwidth
Max

Degree

Treewidth

Cliquewidth Degeneracy

V-C Di-
mension

single-exp FPT slightly super-exp FPT double-exp FPT FPT para-NP-h.

no polynomial kernel(tight) quadratic kernellinear kernel

(Dipayan Chakraborty) 6 / 10

Theorem (C., Foucaud, Majumdar & Tale, 2024)

Minimum LD-Set admits an algorithm running in time
2O(vc log vc) · nO(1), where vc is the vertex cover number of the input
graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

Minimum LD-Set admits a kernel with O(fes) vertices and edges,
where fes is the feedback edge set number of the input graph.

Theorem (C., Foucaud, Majumdar & Tale, 2024)

Minimum LD-Set does not admit a polynomial compression of size
O(n2−ϵ) for any ϵ > 0, unless NP ⊆ coNP/poly, where n denotes the
number of vertices of the input graph.

(Dipayan Chakraborty) 7 / 10

FPT algorithms for locating dominating code
— joint work with Florent Foucaud, Diptapriyo Majumdar and Prafullkumar Tale

(Université Clermont Auvergne / IIIT Delhi / IISER Bhopal)

Vertex cover: A set S ⊂ V such that V \ S is an independent set.
Vertex cover number: vc = min{|S| : S is a vertex cover of G}

Theorem (C., Foucaud, Majumdar & Tale, 2024)

LD-Code admits an algorithm running in time 2O(vc log vc) · nO(1).

(Dipayan Chakraborty) 8 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

opt[i,P, S] = min |C|,
C ⊂ {r1, r2, . . . , ri},
C ; (P, S)

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Algorithm (by dynamic programming):

• Find a minimum vertex cover in time 1.2528vc · nO(1) [Harris &
Narayanaswamy, STACS 2024].

• Build optimum solution by the dynamic programming:

opt[i,P, S] = min


opt[i− 1,P, S],

1 + min
P′⋒P(ri)=P,
S′∪N(ri)=S

opt[i− 1,P ′, S′].

Running time:

P : 2vc log vc · |R|
S : 2vc

• Algorithm brute forces all partitions of vertex cover.

r1 r2 r3 r4 r5 r6 r7 r8 r9

B

R

undominated

(Dipayan Chakraborty) 9 / 10

Thank You!

(Dipayan Chakraborty) 10 / 10

	Part I. Introduction: Identification problems in graphs

