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Labeled Contractions

Definition (Labeled contraction)
Let G be a graph and let uv ∈ E (G). The labeled contraction
(u, v) produces a graph G/(u, v) by:

adding edges between u and every vertex in NG(v) \ NG [u];
deleting vertex v and all its incident edges.
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Figure 1: Contraction along edge (2, 3)
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Problem Definition

Definition (Labeled Contractibility)
Input: Two graphs G and H with V (H) ⊆ V (G).
Question: Does there exist a sequence of contractions from graph
G to H?
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Figure 2: Shaded regions in G form the witness sets, each containing
exactly one representative vertex (circled). Contracting each witness set
yields H.
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Background

Graph modification problems have played a central role in the
development of parameterized complexity; see the survey by Crespelle et
al. [3].

Graph Modification Problems. Transform a graph G into a graph
belonging to a class F using a bounded number k of allowed op-
erations: vertex/edge deletion, edge addition, or edge contraction.

Such problems are NP-hard for many natural graph classes F .

For singleton classes F = {H}:
Vertex/edge deletion and edge addition are polynomial-time
solvable.
Edge contraction is NP-hard [1, 2].
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Parameterized Landscape
Lafond and Marchand initiated the systematic study of the parameterized
complexity of edge contraction problems on uniquely labeled graphs.

“The Parameterized Landscape of Labeled Graph Contractions”

Manuel Lafond and Bertrand Marchand
WADS 2025 [4]

Established several strong hardness results.
In particular, showed that even for labeled graphs, edge
contraction is W[1]-hard when parameterized by k.

This stands in sharp contrast to vertex/edge deletion or edge
addition, which are FPT whenever F admits a finite forbidden
structure.

Our work: A Finer View of the Parameterized Landscape of Labeled
Graph Contractions addresses and refines questions raised in this
framework.
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Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS’25 [4])
Labeled Contractibility is fixed parameter tractable when
parametererized by tw = max(tw(G), tw(H)).

Variation of Courcelle’s theorem leading to a non-elementary
dependence on the parameter.

Theorem (Exact bounds)
Labeled Contractibility

admits an algorithm running in time 2O(tw2) · |V (G)|O(1).
does not admit an algorithm running in time
2o(tw2) · |V (G)|O(1), unless the ETH fails.
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A Rare Complexity dependence on Treewidth

The majority of FPT algorithms on treewidth usually admit
(2O(tw)), (2O(tw log tw)) or (22tw) algorithms. But, our result
establishes a quadratic dependence on tw, (2O(tw2)), which
represents a much rarer complexity barrier in FPT.
The only other problems to our knowledge exhibiting
super-exponential dependence on treewidth are [7, 8, 9].
Moreover, [10, 11, 12] exhibit single-exponential but
polynomial dependence on pathwidth. Related phenomena for
parameterization by vertex cover are reported
in [6, 13, 14, 15].
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Existing Result and Our Contribution

Lafond and Marchand (WADS’25) observed that smaller
parameters such as degeneracy do not yield tractable results.

Theorem (Bounded Degeneracy δ(G), WABI’24 [5])
Labeled Contractibility is NP-hard even when the
degeneracy δ(G) is bounded.

Theorem (Strengthened Result)
Labeled Contractibility is NP-hard even when the
maximum degree ∆(G) is bounded.

These results suggest that tractability is unlikely when
parameterizing solely by the solution size k or the degeneracy
δ(G). Nevertheless, Lafond and Marchand showed the problem
becomes tractable for the combined parameter (k + δ(G))
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Existing Result and Our Contribution

Theorem (In parameter k + δ(G), WADS’25 [4])
Labeled Contractibility is fixed parameter tractable when
parametererized by (k + δ(G)) with running time
(δ(G) + 2k)knO(1).

We replace the bound δ(H) ≤ δ(G) + k with the tighter

δ(H) ≤ δ(G) · |V (G)|
|V (G)| − k .

If |V (G)| ≥ (1 + ϵ)k, then δ(H) ≤ δ(G) · cϵ for a constant cϵ,
yielding a faster algorithm.

Theorem (Improved bound)
Labeled Contractibility admits an algorithm running in time
(δ(H) + 1)k · |V (G)|O(1).
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Existing Result and Our Contribution

Theorem (Improved bound)
Labeled Contractibility admits an algorithm running in time
2O(k) · |V (G)|O(1), when degeneracy of G is a constant.

Open Question (WADS 2025 [4]). The existence of a sub-
exponential time algorithm for Labeled Contractibility
parameterized by k when δ(G) was left open.

Theorem (Our Contribution)
Assuming ETH, no algorithm can solve Labeled
Contractibility in time 2o(|V (G)|+|V (H)|) (and hence in time
2o(k) · |V (G)|O(1)), when δ(G) is constant.
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Existing Result and Our Contribution

Provided an algorithm running in time in time |V (H)|O(|V (G)|)

that iterates over all the possible functions from G to H and
showed the optimality of the same.

Theorem (Brute-force)
Labeled Contractibility cannot be solved in time
|V (H)|o(|V (G)|) under the Exponential Time Hypothesis (ETH).
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Conditional Lower Bound

Sub-Cubic Partitioned Vertex Cover (Sub-Cubic PVC)

Input: Sub-cubic graph G partitioned into P = {C1, . . . , Ct},
and budget ki for each Ci .
Question: Find a Vertex Cover X such that |X ∩ Ci | ≤ ki
for all i .

Hardness Basis [6]: Sub-Cubic PVC does not admit an
algorithm running in time 2o(n) unless ETH fails.
Input Structure Used: The instance satisfies t = O(

√
n)

and |Ci | = O(
√

n), which is key to bounding the treewidth.
We reduce an instance (G , {Ci}, {ki}) of Sub-Cubic PVC to an
instance (G ′, H ′) of Labeled Contractibility.
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Construction of G ′

Contains all vertices of G , along with auxiliary vertices.
For each clause Ci , we introduce auxiliary vertices
{xi , yi , zi} and a set Si .

Each vertex in Si represents a (ki + 1)-subset of Ci .

C1

S1
s1 s2 · · · sp

v1 · · · vn1

x1y1z1

C2

S2
s ′
1 s ′

2 · · · s ′
q

v1 · · · vn2

x2 y2 z2
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Construction of H ′

Vertex set defined as V (H ′) = V (G ′) \ V (G).
For each i , every vertex s ∈ Si is adjacent to yi .
All vertices xi form a clique in H ′.
These edges are present in H ′ but absent in G ′.

S1

s1 s2 · · · sp

x1y1z1

S2

s ′
1 s ′

2 · · · s ′
q

x2 y2 z2
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Correctness of the Reduction

C1

S1
s1 s2 · · · sp

v1 · · · vn1

x1y1z1

C2

S2
s ′
1 s ′

2 · · · s ′
q

v1 · · · vn2

x2 y2 z2

Graph G ′

S1

s1 s2 · · · sp

x1y1z1

S2

s ′
1 s ′

2 · · · s ′
q

x2 y2 z2

Graph H ′

(⇒) Reduction Rule
Given a PVC solution X ⊆ V (G),

contract (a, xi ) for all a ∈ X ∩ Ci , and
contract (b, yi ) for all b ∈ Ci \ X .
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Correctness of the Reduction

(⇒) Reduction Rule
Given a PVC solution X ⊆ V (G),

contract (a, xi) for all a ∈ X ∩ Ci , and
contract (b, yi) for all b ∈ Ci \ X .

For every i ̸= j ∈ [t], there exists one edge in G between Ci
and Cj . For (u, v) ∈ E (G), either u or v is in vertex cover X .
This guarantees that the vertices {x1, . . . , xt} form a clique.
For each i ∈ [t], the budget constraint |X ∩ Ci | ≤ ki implies
that no subset of Ci of size ki + 1 is entirely contracted to xi .
Hence, at least one vertex in this subset must be contracted
to yi , ensuring the presence of the edge (s, yi).
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Correctness of the Reduction

C1
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s1 s2 · · · sp
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x1y1z1

C2
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Graph H ′

(⇐) Construction of the PVC Solution
From a contraction sequence transforming G ′ into H ′,

define X ⊆ V (G) by including, for each i ∈ [t],
all vertices in Ci that are contracted to xi .
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Correctness of the Reduction

(⇐) Construction of the PVC Solution
From a contraction sequence transforming G ′ into H ′,

define X ⊆ V (G) by including, for each i ∈ [t],
all vertices in Ci that are contracted to xi .

Since V (H ′) = V (G ′) \ V (G), every contraction involves a
vertex from some block Ci . Further by construction, vertices
in Ci can only be contracted to xi or yi .
Each vertex s ∈ Si represents a subset C ′

i ⊆ Ci of size ki + 1
and is adjacent to yi in H ′. To preserve the edge (s, yi), at
least one vertex of C ′

i must be contracted to yi .

Conclusion: |X ∩ Ci | ≤ ki for all i ∈ [t].
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Correctness and Hardness

Consider an edge (u, v) ∈ E (G) with u ∈ Ci and v ∈ Cj , i ̸= j .
Since xi and xj are adjacent in H ′, and no edge (xi , xj) exists
in G ′, at least one of u or v must be contracted to xi or xj ,
respectively. Thus, either u ∈ X or v ∈ X , and every edge of
G is covered.

Conclusion: X is a valid vertex cover of G .

The reduction is polynomial-time and parameter-preserving.
Since Sub-Cubic PVC is ETH-hard, the hardness carries
over to Labeled Contractibility.
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Maximum Common Labeled Contraction

Definition (MCLC)
Input: Two vertex-labeled graphs G and H, and an integer k.
Question: Do there exist contraction sequences S1 for G and
S2 for H such that

G/S1 = H/S2 and |S1| + |S2| ≤ k ?

Key Observations
The problem is equivalent to finding a common labeled
contraction of G and H of size at least |V (H)|.
Consequently, complexity results for Labeled
Contractibility directly transfer to Maximum Common
Labeled Contraction.
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Open Problems

Extend DP framework to Maximum Common Labeled
Contraction.
Explore FPT algorithms for feedback vertex set or vertex
cover number.
Study practical implementations or heuristics for large/dense
graphs.
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THANK YOU!
Any Questions?



References I

T. Watanabe, T. Ae, A. Nakamura.
On the NP-hardness of edge-deletion and -contraction problems.
Discrete Applied Mathematics, 6(1):63–78, 1983.

T. Asano, T. Hirata.
Edge-Contraction Problems.
Journal of Computer and System Sciences, 26(2):197–208, 1983.

C. Crespelle, P. G. Drange, F. V. Fomin, P. A. Golovach.
A survey of parameterized algorithms and the complexity of edge
modification.
arXiv:2001.06867, 2020.

M. Lafond, B. Marchand.
The Parameterized Landscape of Labeled Graph Contractions.
In WADS 2025, LIPIcs, 2025.



References II

B. Marchand, N. Tahiri, O. Tremblay Savard, M. Lafond.
Finding Maximum Common Contractions Between Phylogenetic Networks.

In WABI 2024, LIPIcs, 2024.

A. Agrawal, D. Lokshtanov, S. Saurabh, M. Zehavi.
Split Contraction: The Untold Story.
ACM TOCT, 11(3), 2019.

D. Chakraborty, F. Foucaud, D. Majumdar, P. Tale.
Tight (Double) Exponential Bounds for Identification Problems.
In ISAAC 2024, LIPIcs.

F. Foucaud et al.
Problems in NP Can Admit Double-Exponential Lower Bounds.
In ICALP 2024, LIPIcs.



References III

P. Tale.
Double Exponential Lower Bound for Telephone Broadcast.
arXiv:2403.03501, 2024.

I. Sau, U. dos Santos Souza.
Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs.
Information and Computation, 281, 2021.

M. Pilipczuk.
Problems Parameterized by Treewidth Tractable in Single Exponential
Time.
In MFCS 2011.

M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk.
Hitting Forbidden Subgraphs in Bounded Treewidth Graphs.
Information and Computation, 256, 2017.



References IV

B. Bergougnoux, T. Korhonen, J. Nederlof.
Tight Lower Bounds for Rank-width.
arXiv:2210.02117, 2022.

D. Chakraborty et al.
Parameterized Complexity of Isometric Path Partition.
arXiv:2508.05448, 2025.

F. Foucaud et al.
Metric Dimension and Geodetic Set Parameterized by Vertex Cover.
In STACS 2025, LIPIcs.


