

A Finer View of the Parameterized Landscape of Labeled Graph Contractions

Yashaswini Mathur^{1,*}, Prafullkumar Tale²

¹IISER Bhopal ²IISER Pune

December 18, 2025

FSTTCS 2025

Labeled Contractions

Definition (Labeled contraction)

Let G be a graph and let $uv \in E(G)$. The *labeled contraction* (u, v) produces a graph $G/(u, v)$ by:

- adding edges between u and every vertex in $N_G(v) \setminus N_G[u]$;
- deleting vertex v and all its incident edges.

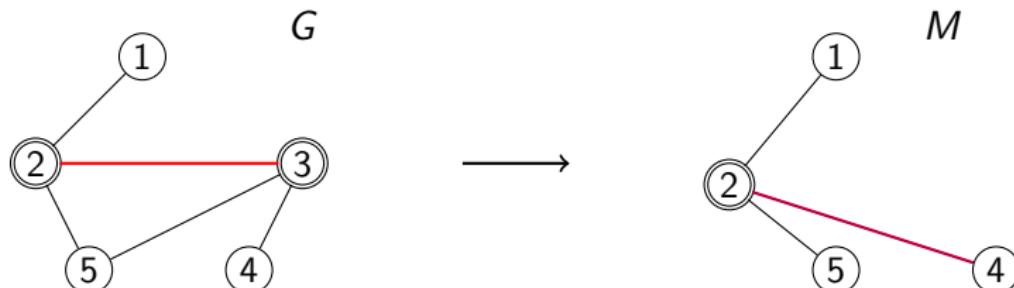


Figure 1: Contraction along edge $(2, 3)$

Problem Definition

Definition (Labeled Contractibility)

Input: Two graphs G and H with $V(H) \subseteq V(G)$.

Question: Does there exist a sequence of contractions from graph G to H ?

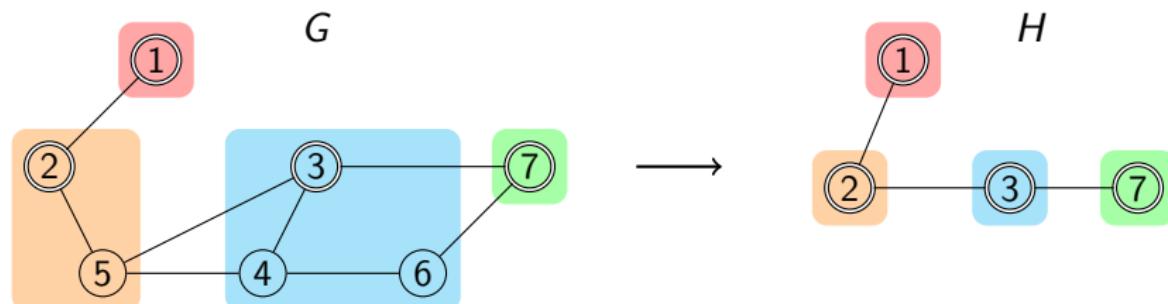


Figure 2: Shaded regions in G form the witness sets, each containing exactly one representative vertex (circled). Contracting each witness set yields H .

Background

Graph modification problems have played a central role in the development of parameterized complexity; see the survey by Crespelle et al. [3].

Graph Modification Problems. Transform a graph G into a graph belonging to a class \mathcal{F} using a bounded number k of allowed operations: vertex/edge deletion, edge addition, or edge contraction.

Background

Graph modification problems have played a central role in the development of parameterized complexity; see the survey by Crespelle et al. [3].

Graph Modification Problems. Transform a graph G into a graph belonging to a class \mathcal{F} using a bounded number k of allowed operations: vertex/edge deletion, edge addition, or edge contraction.

- Such problems are **NP-hard** for many natural graph classes \mathcal{F} .
- For singleton classes $\mathcal{F} = \{H\}$:
 - Vertex/edge deletion and edge addition are polynomial-time solvable.
 - **Edge contraction is NP-hard** [1, 2].

Parameterized Landscape

Lafond and Marchand initiated the systematic study of the parameterized complexity of **edge contraction problems** on *uniquely labeled graphs*.

“The Parameterized Landscape of Labeled Graph Contractions”

Manuel Lafond and Bertrand Marchand
WADS 2025 [4]

- Established several strong hardness results.
- In particular, showed that even for labeled graphs, **edge contraction is W[1]-hard when parameterized by k** .

Parameterized Landscape

Lafond and Marchand initiated the systematic study of the parameterized complexity of **edge contraction problems** on *uniquely labeled graphs*.

“The Parameterized Landscape of Labeled Graph Contractions”

Manuel Lafond and Bertrand Marchand
WADS 2025 [4]

- Established several strong hardness results.
- In particular, showed that even for labeled graphs, **edge contraction is W[1]-hard when parameterized by k** .
- This stands in sharp contrast to vertex/edge deletion or edge addition, which are FPT whenever \mathcal{F} admits a finite forbidden structure.

Parameterized Landscape

Lafond and Marchand initiated the systematic study of the parameterized complexity of **edge contraction problems** on *uniquely labeled graphs*.

“The Parameterized Landscape of Labeled Graph Contractions”

Manuel Lafond and Bertrand Marchand
WADS 2025 [4]

- Established several strong hardness results.
- In particular, showed that even for labeled graphs, **edge contraction is W[1]-hard when parameterized by k** .
- This stands in sharp contrast to vertex/edge deletion or edge addition, which are FPT whenever \mathcal{F} admits a finite forbidden structure.

Our work: *A Finer View of the Parameterized Landscape of Labeled Graph Contractions* addresses and refines questions raised in this framework.

Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABLED CONTRACTIBILITY *is fixed parameter tractable when parametererized by* $\text{tw} = \max(\text{tw}(G), \text{tw}(H))$.

Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABLED CONTRACTIBILITY *is fixed parameter tractable when parametererized by* $\text{tw} = \max(\text{tw}(G), \text{tw}(H))$.

Variation of Courcelle's theorem leading to a non-elementary dependence on the parameter.

Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABLED CONTRACTIBILITY *is fixed parameter tractable when parametererized by* $\text{tw} = \max(\text{tw}(G), \text{tw}(H))$.

Variation of Courcelle's theorem leading to a non-elementary dependence on the parameter.

Theorem (Exact bounds)

LABLED CONTRACTIBILITY

- *admits an algorithm running in time* $2^{\mathcal{O}(\text{tw}^2)} \cdot |V(G)|^{\mathcal{O}(1)}$.

Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABLED CONTRACTIBILITY *is fixed parameter tractable when parametererized by $\text{tw} = \max(\text{tw}(G), \text{tw}(H))$.*

Variation of Courcelle's theorem leading to a non-elementary dependence on the parameter.

Theorem (Exact bounds)

LABLED CONTRACTIBILITY

- *admits an algorithm running in time $2^{\mathcal{O}(\text{tw}^2)} \cdot |V(G)|^{\mathcal{O}(1)}$.*
- *does not admit an algorithm running in time $2^{o(\text{tw}^2)} \cdot |V(G)|^{\mathcal{O}(1)}$, unless the ETH fails.*

A Rare Complexity dependence on Treewidth

- The majority of FPT algorithms on treewidth usually admit $(2^{\mathcal{O}(\text{tw})})$, $(2^{\mathcal{O}(\text{tw} \log \text{tw})})$ or $(2^{2^{\text{tw}}})$ algorithms. But, our result establishes a quadratic dependence on tw , $(2^{\mathcal{O}(\text{tw}^2)})$, which represents a much rarer complexity barrier in FPT.
- The only other problems to our knowledge exhibiting *super-exponential* dependence on treewidth are [7, 8, 9].
- Moreover, [10, 11, 12] exhibit *single-exponential but polynomial* dependence on pathwidth. Related phenomena for parameterization by vertex cover are reported in [6, 13, 14, 15].

Existing Result and Our Contribution

Lafond and Marchand (WADS'25) observed that smaller parameters such as degeneracy do not yield tractable results.

Existing Result and Our Contribution

Lafond and Marchand (WADS'25) observed that smaller parameters such as degeneracy do not yield tractable results.

Theorem (Bounded Degeneracy $\delta(G)$, WABI'24 [5])

LABLED CONTRACTIBILITY *is NP-hard even when the degeneracy $\delta(G)$ is bounded.*

Existing Result and Our Contribution

Lafond and Marchand (WADS'25) observed that smaller parameters such as degeneracy do not yield tractable results.

Theorem (Bounded Degeneracy $\delta(G)$, WABI'24 [5])

LABELED CONTRACTIBILITY *is NP-hard even when the degeneracy $\delta(G)$ is bounded.*

Theorem (Strengthened Result)

LABELED CONTRACTIBILITY *is NP-hard even when the maximum degree $\Delta(G)$ is bounded.*

Existing Result and Our Contribution

Lafond and Marchand (WADS'25) observed that smaller parameters such as degeneracy do not yield tractable results.

Theorem (Bounded Degeneracy $\delta(G)$, WABI'24 [5])

LABLED CONTRACTIBILITY *is NP-hard even when the degeneracy $\delta(G)$ is bounded.*

Theorem (Strengthened Result)

LABLED CONTRACTIBILITY *is NP-hard even when the maximum degree $\Delta(G)$ is bounded.*

These results suggest that tractability is unlikely when parameterizing solely by the solution size k or the degeneracy $\delta(G)$. Nevertheless, Lafond and Marchand showed the problem becomes tractable for the combined parameter $(k + \delta(G))$

Existing Result and Our Contribution

Theorem (In parameter $k + \delta(G)$, WADS'25 [4])

LABLED CONTRACTIBILITY *is fixed parameter tractable when parametererized by $(k + \delta(G))$ with running time $(\delta(G) + 2k)^k n^{O(1)}$.*

Existing Result and Our Contribution

Theorem (In parameter $k + \delta(G)$, WADS'25 [4])

LABLED CONTRACTIBILITY *is fixed parameter tractable when parametererized by $(k + \delta(G))$ with running time $(\delta(G) + 2k)^k n^{O(1)}$.*

- We replace the bound $\delta(H) \leq \delta(G) + k$ with the tighter

$$\delta(H) \leq \delta(G) \cdot \frac{|V(G)|}{|V(G)| - k}.$$

- If $|V(G)| \geq (1 + \epsilon)k$, then $\delta(H) \leq \delta(G) \cdot c_\epsilon$ for a constant c_ϵ , yielding a faster algorithm.

Existing Result and Our Contribution

Theorem (In parameter $k + \delta(G)$, WADS'25 [4])

Labeled Contractibility is fixed parameter tractable when parameterized by $(k + \delta(G))$ with running time $(\delta(G) + 2k)^k n^{O(1)}$.

- We replace the bound $\delta(H) \leq \delta(G) + k$ with the tighter

$$\delta(H) \leq \delta(G) \cdot \frac{|V(G)|}{|V(G)| - k}.$$

- If $|V(G)| \geq (1 + \epsilon)k$, then $\delta(H) \leq \delta(G) \cdot c_\epsilon$ for a constant c_ϵ , yielding a faster algorithm.

Theorem (Improved bound)

Labeled Contractibility admits an algorithm running in time $(\delta(H) + 1)^k \cdot |V(G)|^{O(1)}$.

Existing Result and Our Contribution

Theorem (Improved bound)

LABLED CONTRACTIBILITY *admits an algorithm running in time $2^{\mathcal{O}(k)} \cdot |V(G)|^{\mathcal{O}(1)}$, when degeneracy of G is a constant.*

Existing Result and Our Contribution

Theorem (Improved bound)

LABLED CONTRACTIBILITY *admits an algorithm running in time* $2^{\mathcal{O}(k)} \cdot |V(G)|^{\mathcal{O}(1)}$, *when degeneracy of G is a constant.*

Open Question (WADS 2025 [4]). The existence of a sub-exponential time algorithm for LABLED CONTRACTIBILITY parameterized by k when $\delta(G)$ was left open.

Existing Result and Our Contribution

Theorem (Improved bound)

LABELED CONTRACTIBILITY *admits an algorithm running in time* $2^{\mathcal{O}(k)} \cdot |V(G)|^{\mathcal{O}(1)}$, *when degeneracy of G is a constant.*

Open Question (WADS 2025 [4]). The existence of a sub-exponential time algorithm for LABELED CONTRACTIBILITY parameterized by k when $\delta(G)$ was left open.

Theorem (Our Contribution)

Assuming ETH, no algorithm can solve LABELED CONTRACTIBILITY in time $2^{o(|V(G)|+|V(H)|)}$ *(and hence in time* $2^{o(k)} \cdot |V(G)|^{\mathcal{O}(1)}$ *), when* $\delta(G)$ *is constant.*

Existing Result and Our Contribution

- Provided an algorithm running in time in time $|V(H)|^{\mathcal{O}(|V(G)|)}$ that iterates over all the possible functions from G to H and showed the optimality of the same.

Existing Result and Our Contribution

- Provided an algorithm running in time in time $|V(H)|^{\mathcal{O}(|V(G)|)}$ that iterates over all the possible functions from G to H and showed the optimality of the same.

Theorem (Brute-force)

LABLED CONTRACTIBILITY *cannot be solved in time $|V(H)|^{\mathcal{O}(|V(G)|)}$ under the Exponential Time Hypothesis (ETH).*

Sub-Cubic Partitioned Vertex Cover (Sub-Cubic PVC)

Input: Sub-cubic graph G partitioned into $\mathcal{P} = \{C_1, \dots, C_t\}$, and budget k_i for each C_i .

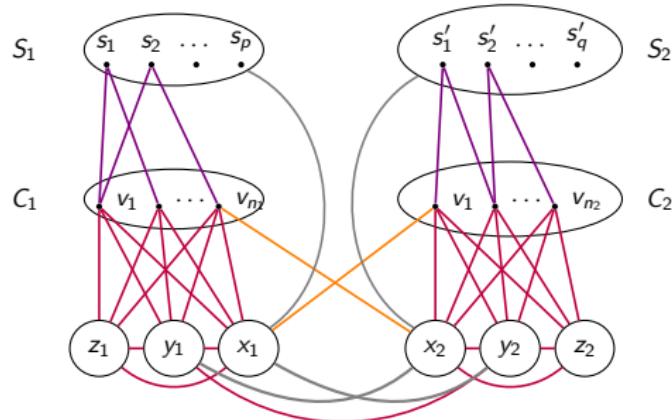
Question: Find a Vertex Cover X such that $|X \cap C_i| \leq k_i$ for all i .

- **Hardness Basis [6]:** SUB-CUBIC PVC does not admit an algorithm running in time $2^{o(n)}$ unless ETH fails.
- **Input Structure Used:** The instance satisfies $t = \mathcal{O}(\sqrt{n})$ and $|C_i| = \mathcal{O}(\sqrt{n})$, which is key to bounding the treewidth.

We reduce an instance $(G, \{C_i\}, \{k_i\})$ of SUB-CUBIC PVC to an instance (G', H') of LABELED CONTRACTIBILITY.

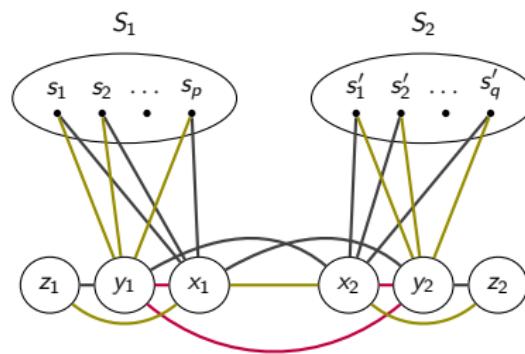
Construction of G'

- Contains all vertices of G , along with auxiliary vertices.
- For each clause C_i , we introduce auxiliary vertices $\{x_i, y_i, z_i\}$ and a set S_i .
- Each vertex in S_i represents a $(k_i + 1)$ -subset of C_i .

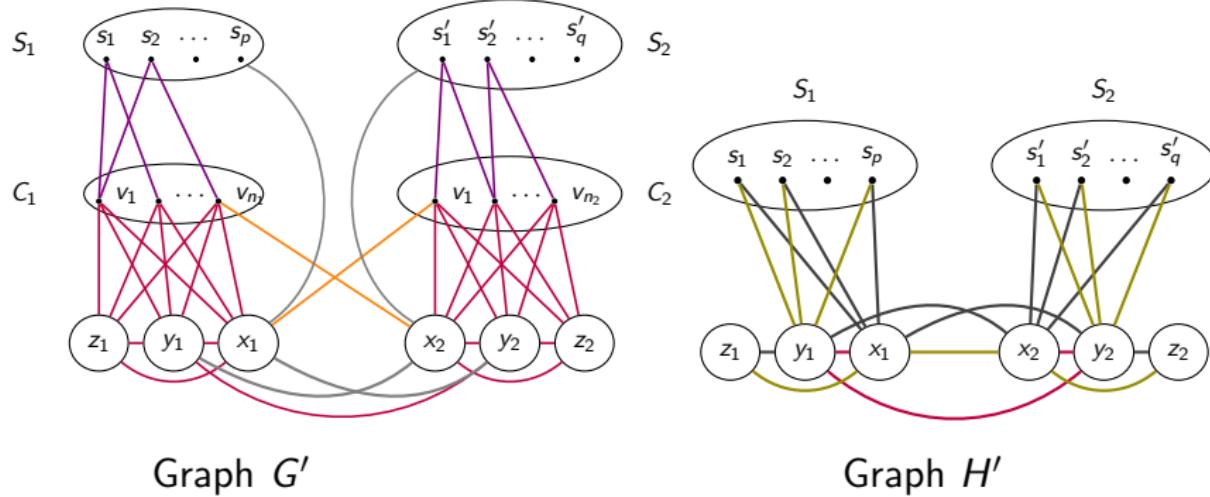


Construction of H'

- Vertex set defined as $V(H') = V(G') \setminus V(G)$.
- For each i , every vertex $s \in S_i$ is adjacent to y_i .
- All vertices x_i form a clique in H' .
- These edges are *present in H' but absent in G'* .



Correctness of the Reduction



(\Rightarrow) Reduction Rule

Given a PVC solution $X \subseteq V(G)$,
contract (a, x_i) for all $a \in X \cap C_i$, and
contract (b, y_i) for all $b \in C_i \setminus X$.

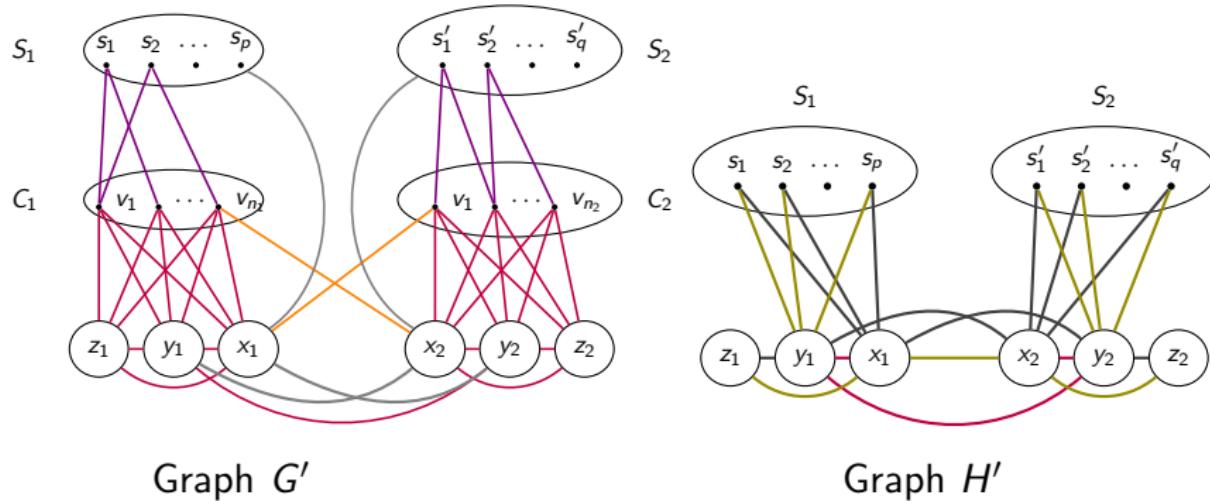
Correctness of the Reduction

(\Rightarrow) Reduction Rule

Given a PVC solution $X \subseteq V(G)$,
contract (a, x_i) for all $a \in X \cap C_i$, and
contract (b, y_i) for all $b \in C_i \setminus X$.

- For every $i \neq j \in [t]$, there exists one edge in G between C_i and C_j . For $(u, v) \in E(G)$, either u or v is in vertex cover X . This guarantees that the vertices $\{x_1, \dots, x_t\}$ form a clique.
- For each $i \in [t]$, the budget constraint $|X \cap C_i| \leq k_i$ implies that no subset of C_i of size $k_i + 1$ is entirely contracted to x_i .
- Hence, at least one vertex in this subset must be contracted to y_i , ensuring the presence of the edge (s, y_i) .

Correctness of the Reduction



(\Leftarrow) Construction of the PVC Solution

From a contraction sequence transforming G' into H' , define $X \subseteq V(G)$ by including, for each $i \in [t]$, all vertices in C_i that are contracted to x_i .

Correctness of the Reduction

(\Leftarrow) Construction of the PVC Solution

From a contraction sequence transforming G' into H' , define $X \subseteq V(G)$ by including, for each $i \in [t]$, all vertices in C_i that are contracted to x_i .

- Since $V(H') = V(G') \setminus V(G)$, every contraction involves a vertex from some block C_i . Further by construction, vertices in C_i can only be contracted to x_i or y_i .
- Each vertex $s \in S_i$ represents a subset $C'_i \subseteq C_i$ of size $k_i + 1$ and is adjacent to y_i in H' . To preserve the edge (s, y_i) , at least one vertex of C'_i must be contracted to y_i .

Conclusion: $|X \cap C_i| \leq k_i$ for all $i \in [t]$.

Correctness and Hardness

- Consider an edge $(u, v) \in E(G)$ with $u \in C_i$ and $v \in C_j$, $i \neq j$.
- Since x_i and x_j are adjacent in H' , and no edge (x_i, x_j) exists in G' , at least one of u or v must be contracted to x_i or x_j , respectively. Thus, either $u \in X$ or $v \in X$, and every edge of G is covered.

Conclusion: X is a valid vertex cover of G .

- The reduction is polynomial-time and parameter-preserving.
- Since SUB-CUBIC PVC is ETH-hard, the hardness carries over to LABELED CONTRACTIBILITY.

Maximum Common Labeled Contraction

Definition (MCLC)

- **Input:** Two vertex-labeled graphs G and H , and an integer k .
- **Question:** Do there exist contraction sequences S_1 for G and S_2 for H such that

$$G/S_1 = H/S_2 \quad \text{and} \quad |S_1| + |S_2| \leq k ?$$

Maximum Common Labeled Contraction

Definition (MCLC)

- **Input:** Two vertex-labeled graphs G and H , and an integer k .
- **Question:** Do there exist contraction sequences S_1 for G and S_2 for H such that

$$G/S_1 = H/S_2 \quad \text{and} \quad |S_1| + |S_2| \leq k ?$$

Key Observations

- The problem is equivalent to finding a *common labeled contraction* of G and H of size at least $|V(H)|$.
- Consequently, complexity results for **LABLED CONTRACTIBILITY** directly transfer to **Maximum Common Labeled Contraction**.

Open Problems

- Extend DP framework to MAXIMUM COMMON LABELED CONTRACTION.
- Explore FPT algorithms for feedback vertex set or vertex cover number.
- Study practical implementations or heuristics for large/dense graphs.

THANK YOU!

Any Questions?

References I

- T. Watanabe, T. Ae, A. Nakamura.
On the NP-hardness of edge-deletion and -contraction problems.
Discrete Applied Mathematics, 6(1):63–78, 1983.
- T. Asano, T. Hirata.
Edge-Contraction Problems.
Journal of Computer and System Sciences, 26(2):197–208, 1983.
- C. Crespelle, P. G. Drange, F. V. Fomin, P. A. Golovach.
A survey of parameterized algorithms and the complexity of edge modification.
arXiv:2001.06867, 2020.
- M. Lafond, B. Marchand.
The Parameterized Landscape of Labeled Graph Contractions.
In *WADS 2025*, LIPIcs, 2025.

References II

- B. Marchand, N. Tahiri, O. Tremblay Savard, M. Lafond.
Finding Maximum Common Contractions Between Phylogenetic Networks.
In *WABI 2024*, LIPIcs, 2024.
- A. Agrawal, D. Lokshtanov, S. Saurabh, M. Zehavi.
Split Contraction: The Untold Story.
ACM TOCT, 11(3), 2019.
- D. Chakraborty, F. Foucaud, D. Majumdar, P. Tale.
Tight (Double) Exponential Bounds for Identification Problems.
In *ISAAC 2024*, LIPIcs.
- F. Foucaud et al.
Problems in NP Can Admit Double-Exponential Lower Bounds.
In *ICALP 2024*, LIPIcs.

References III

- P. Tale.
Double Exponential Lower Bound for Telephone Broadcast.
arXiv:2403.03501, 2024.
- I. Sau, U. dos Santos Souza.
Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs.
Information and Computation, 281, 2021.
- M. Pilipczuk.
Problems Parameterized by Treewidth Tractable in Single Exponential Time.
In *MFCS 2011*.
- M. Cygan, D. Marx, M. Pilipczuk, M. Pilipczuk.
Hitting Forbidden Subgraphs in Bounded Treewidth Graphs.
Information and Computation, 256, 2017.

References IV

- B. Bergougnoux, T. Korhonen, J. Nederlof.
Tight Lower Bounds for Rank-width.
arXiv:2210.02117, 2022.
- D. Chakraborty et al.
Parameterized Complexity of Isometric Path Partition.
arXiv:2508.05448, 2025.
- F. Foucaud et al.
Metric Dimension and Geodetic Set Parameterized by Vertex Cover.
In *STACS 2025*, LIPIcs.