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Labeled Contractions

Definition (Labeled contraction)

Let G be a graph and let uv € E(G). The labeled contraction
(u, v) produces a graph G/(u,v) by:
@ adding edges between u and every vertex in Ng(v) \ Ng[u];

@ deleting vertex v and all its incident edges.
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Figure 1: Contraction along edge (2, 3)



Problem Definition

Definition (Labeled Contractibility)

Input: Two graphs G and H with V(H) C V(G).
Question: Does there exist a sequence of contractions from graph
G to H?

Figure 2: Shaded regions in G form the witness sets, each containing
exactly one representative vertex (circled). Contracting each witness set
yields H.



Background

Graph modification problems have played a central role in the
development of parameterized complexity; see the survey by Crespelle et
al. [3].

Graph Modification Problems. Transform a graph G into a graph
belonging to a class F using a bounded number k of allowed op-
erations: vertex/edge deletion, edge addition, or edge contraction.
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Graph Modification Problems. Transform a graph G into a graph
belonging to a class F using a bounded number k of allowed op-
erations: vertex/edge deletion, edge addition, or edge contraction.

@ Such problems are NP-hard for many natural graph classes F.

@ For singleton classes F = {H}:

o Vertex/edge deletion and edge addition are polynomial-time
solvable.
o Edge contraction is NP-hard [1, 2].
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Parameterized Landscape

Lafond and Marchand initiated the systematic study of the parameterized
complexity of edge contraction problems on uniquely labeled graphs.

“The Parameterized Landscape of Labeled Graph Contractions”

Manuel Lafond and Bertrand Marchand
WADS 2025 [4]

@ Established several strong hardness results.

@ In particular, showed that even for labeled graphs, edge
contraction is W[1]-hard when parameterized by k.

@ This stands in sharp contrast to vertex/edge deletion or edge
addition, which are FPT whenever F admits a finite forbidden
structure.

Our work: A Finer View of the Parameterized Landscape of Labeled
Graph Contractions addresses and refines questions raised in this
framework.



Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABELED CONTRACTIBILITY is fixed parameter tractable when
parametererized by tw = max(tw(G), tw(H)).




Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABELED CONTRACTIBILITY is fixed parameter tractable when
parametererized by tw = max(tw(G), tw(H)).

Variation of Courcelle's theorem leading to a non-elementary
dependence on the parameter.



Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABELED CONTRACTIBILITY is fixed parameter tractable when
parametererized by tw = max(tw(G), tw(H)).

Variation of Courcelle's theorem leading to a non-elementary
dependence on the parameter.

Theorem (Exact bounds)

LABELED CONTRACTIBILITY
o admits an algorithm running in time 20(™*) . |V(G)|®(),




Existing Result and Our Contribution

Theorem (In parameter of tree-width, WADS'25 [4])

LABELED CONTRACTIBILITY is fixed parameter tractable when
parametererized by tw = max(tw(G), tw(H)).

Variation of Courcelle's theorem leading to a non-elementary
dependence on the parameter.

Theorem (Exact bounds)

LABELED CONTRACTIBILITY

o admits an algorithm running in time 20(™*) . |V(G)|®(),

@ does not admit an algorithm running in time
20(%*) .| V(G)|PW), unless the ETH fails.




A Rare Complexity dependence on Treewidth

@ The majority of FPT algorithms on treewidth usually admit
(20(tw)) (20(twlogtw)) o (22™) algorithms. But, our result
establishes a quadratic dependence on tw, (29(™), which
represents a much rarer complexity barrier in FPT.

@ The only other problems to our knowledge exhibiting
super-exponential dependence on treewidth are [7, 8, 9].

@ Moreover, [10, 11, 12] exhibit single-exponential but
polynomial dependence on pathwidth. Related phenomena for
parameterization by vertex cover are reported
in [6, 13, 14, 15].
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Theorem (Bounded Degeneracy §(G), WABI'24 [5])

LABELED CONTRACTIBILITY is NP-hard even when the
degeneracy 6(G) is bounded.

.

Theorem (Strengthened Result)

LABELED CONTRACTIBILITY is NP-hard even when the
maximum degree A(G) is bounded.

A

These results suggest that tractability is unlikely when
parameterizing solely by the solution size k or the degeneracy
d(G). Nevertheless, Lafond and Marchand showed the problem
becomes tractable for the combined parameter (k + §(G))



Existing Result and Our Contribution
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(6(G) + 2k)knO(®).
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Theorem (In parameter k + §(G), WADS'25 [4])

LABELED CONTRACTIBILITY is fixed parameter tractable when
parametererized by (k + 0(G)) with running time

(6(G) + 2k)knO(®).
@ We replace the bound 6(H) < 6(G) + k with the tighter
V(G
d(H) <4(G)- \V‘(G()\)—‘k

o If |[V(G)| > (14 €)k, then 6(H) < 6(G) - ¢, for a constant c,
yielding a faster algorithm.

Theorem (Improved bound)

LABELED CONTRACTIBILITY admits an algorithm running in time
(8(H) + 1) - [V(G)[°D).
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Existing Result and Our Contribution

Theorem (Improved bound)

LABELED CONTRACTIBILITY admits an algorithm running in time
2009 . 1V(G)|°M), when degeneracy of G is a constant.

Open Question (WADS 2025 [4]). The existence of a sub-
exponential time algorithm for LABELED CONTRACTIBILITY
parameterized by k when §(G) was left open.

Theorem (Our Contribution)

Assuming ETH, no algorithm can solve LABELED
CONTRACTIBILITY in time 22UV(GIFHIVIM)) (and hence in time
2°(k) . |V(G)|°M), when 6(G) is constant.

10 /21



Existing Result and Our Contribution

@ Provided an algorithm running in time in time |V (H)|C(IV(€))

that iterates over all the possible functions from G to H and
showed the optimality of the same.
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Existing Result and Our Contribution

e Provided an algorithm running in time in time |V/(H)|CUV(G)])

that iterates over all the possible functions from G to H and
showed the optimality of the same.

Theorem (Brute-force)

LABELED CONTRACTIBILITY cannot be solved in time
|V (H)|°UV(CD) under the Exponential Time Hypothesis (ETH).
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Conditional Lower Bound

Sub-Cubic Partitioned Vertex Cover (Sub-Cubic PVC)
Input: Sub-cubic graph G partitioned into P = {Cy, ..., C¢},
and budget k; for each C;.

Question: Find a Vertex Cover X such that [X N G| < k;
for all i.

e Hardness Basis [6]: SuB-CuBICc PVC does not admit an
algorithm running in time 2°(" unless ETH fails.

@ Input Structure Used: The instance satisfies t = O(1/n)
and |Cj| = O(y/n), which is key to bounding the treewidth.

We reduce an instance (G, {C;}, {ki}) of SuB-CuBic PVC to an
instance (G’, H') of LABELED CONTRACTIBILITY.



Construction of G’

@ Contains all vertices of G, along with auxiliary vertices.

@ For each clause C;, we introduce auxiliary vertices
{xi,yi,zi} and a set S;.
e Each vertex in S; represents a (kj + 1)-subset of ;.
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Construction of H’

o Vertex set defined as V(H') = V(G')\ V(G).
@ For each i, every vertex s € S; is adjacent to y;.
@ All vertices x; form a clique in H'.

@ These edges are present in H' but absent in G'.
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Correctness of the Reduction

(=) Reduction Rule
Given a PVC solution X C V(G),
contract (a, x;) for all a € XN C;, and
contract (b, y;) for all b € G\ X.
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Correctness of the Reduction

(=) Reduction Rule
Given a PVC solution X C V(G),
contract (a, x;) for all a € XN C;, and
contract (b, y;) for all b € G\ X.

@ For every i # j € [t], there exists one edge in G between C;
and Cj. For (u,v) € E(G), either u or v is in vertex cover X.
This guarantees that the vertices {x1,...,x:} form a clique.

e For each i € [t], the budget constraint | X N C;| < k; implies
that no subset of C; of size k; + 1 is entirely contracted to x;.

@ Hence, at least one vertex in this subset must be contracted
to y;, ensuring the presence of the edge (s, y;).
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Correctness of the Reduction

(<«=) Construction of the PVC Solution

From a contraction sequence transforming G’ into H’,
define X C V/(G) by including, for each i € [t],
all vertices in C; that are contracted to x;.
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Correctness of the Reduction

(<) Construction of the PVC Solution
From a contraction sequence transforming G’ into H’,
define X C V(G) by including, for each i € [t],
all vertices in C; that are contracted to x;.

e Since V(H') = V(G’)\ V(G), every contraction involves a
vertex from some block C;. Further by construction, vertices
in C; can only be contracted to x; or y;.

e Each vertex s € S; represents a subset C/ C C; of size k; + 1
and is adjacent to y; in H'. To preserve the edge (s, y;), at
least one vertex of C/ must be contracted to y;.

Conclusion: | X N G| < k; for all i € [t].

18 /21



Correctness and Hardness

e Consider an edge (u,v) € E(G) with u € C;and v € C;, i # .
@ Since x; and x; are adjacent in H’, and no edge (x;, X;) exists
in G', at least one of u or v must be contracted to x; or Xj,
respectively. Thus, either v € X or v € X, and every edge of

G is covered.

Conclusion: X is a valid vertex cover of G.

@ The reduction is polynomial-time and parameter-preserving.

@ Since SuB-CuBICc PVC is ETH-hard, the hardness carries
over to LABELED CONTRACTIBILITY.
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Maximum Common Labeled Contraction

Definition (MCLC)

@ Input: Two vertex-labeled graphs G and H, and an integer k.

@ Question: Do there exist contraction sequences S; for G and
S, for H such that

G/Sl = H/Sg and |51| aF ’52| < k?
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Maximum Common Labeled Contraction

Definition (MCLC)
@ Input: Two vertex-labeled graphs G and H, and an integer k.

@ Question: Do there exist contraction sequences S; for G and
S, for H such that

G/Sl = H/Sg and |51| aF ’52| < k?

Key Observations

@ The problem is equivalent to finding a common labeled
contraction of G and H of size at least |V (H)|.

@ Consequently, complexity results for LABELED
CONTRACTIBILITY directly transfer to Maximum Common
Labeled Contraction.

20 /21



Open Problems

o Extend DP framework to MAXIMUM COMMON LABELED
CONTRACTION.

@ Explore FPT algorithms for feedback vertex set or vertex
cover number.

e Study practical implementations or heuristics for large/dense
graphs.

21 /21



THANK YOU!

Any Questions?
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