

THE PARAMETERIZED COMPLEXITY OF COMPUTING THE VC-DIMENSION



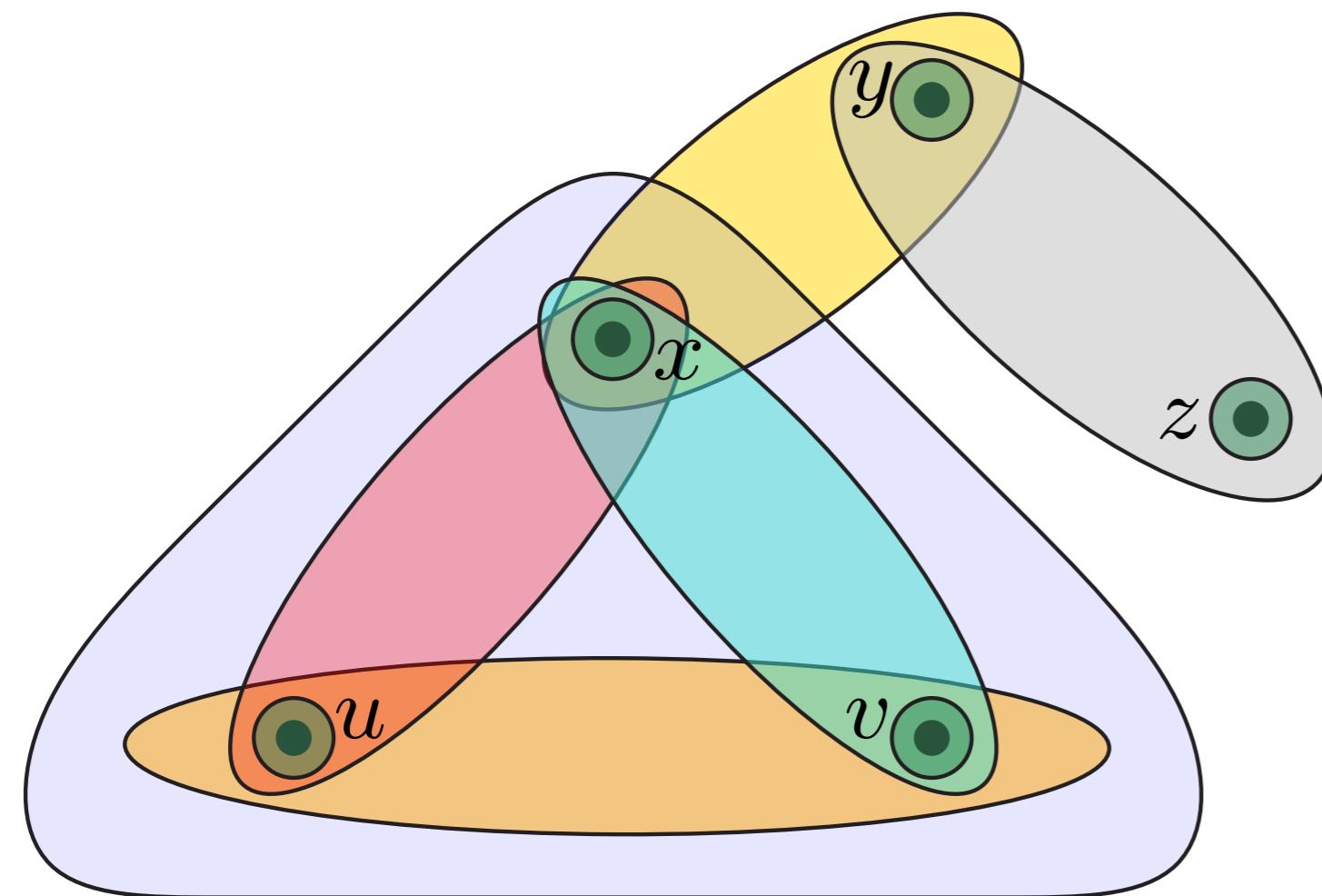
Florent Foucaud¹, Harmender Gahlawat¹, Fionn Mc Inerney², and Prafullkumar Tale³

¹Université Clermont Auvergne (France), ²Telefónica Scientific Research (Spain), ³IISER Pune (India)

VC-DIMENSION

Given a non-empty finite set \mathcal{V} and a set system $\mathcal{C} \subseteq 2^{\mathcal{V}}$, the **VC-dimension** of \mathcal{C} is the size of a **largest** subset $S \subseteq \mathcal{V}$ that is **shattered** by \mathcal{C} , i.e., such that $\{C \cap S : C \in \mathcal{C}\} = 2^S$.

Can be represented by a **hypergraph** $\mathcal{H} = (\mathcal{V}, \mathcal{E})$:



The VC-dimension of \mathcal{H} is 3 and $S = \{u, v, x\}$ is a shattered set:

$$\begin{array}{lll} \{y, z\} \cap S = \emptyset & \{u, v, x\} \cap S = \{u, v, x\} \\ \{u\} \cap S = \{u\} & \{v\} \cap S = \{v\} & \{x\} \cap S = \{x\} \\ \{u, v\} \cap S = \{u, v\} & \{u, x\} \cap S = \{u, x\} & \{x, v\} \cap S = \{x, v\} \end{array}$$

The VC-dimension is a fundamental complexity measure of set systems that is central to many areas of machine learning such as **ϵ -nets**, **sample compression schemes**, and **machine teaching**.

Known results for VC-DIMENSION:

- LogNP-hard and, assuming the Exponential Time Hypothesis (ETH), cannot be solved in $|\mathcal{H}|^{o(\log |\mathcal{H}|)}$ time (and this is tight) [Papadimitriou, Yannakakis, 1996];
- assuming the Gap-ETH, cannot be $o(\log |\mathcal{H}|)$ -approximated in polynomial time [Manurangsi, 2023];
- W[1]-hard parameterized by k [Downey et al., 1993] or the degeneracy of \mathcal{H} [Drange et al., 2023].

PROBLEM STATEMENTS

VC-DIMENSION

Input: A hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ and $k \in \mathbb{N}$.

Question: Does there exist a subset $S \subseteq \mathcal{V}$ such that $|S| \geq k$ and $\{S \cap e : e \in \mathcal{E}\} = 2^S$?

GRAPH VC-DIMENSION

Input: A graph $G = (V, E)$ and $k \in \mathbb{N}$.

Question: Does there exist a subset $S \subseteq V$ such that $|S| \geq k$ and $\{S \cap N(v) : v \in V\} = 2^S$?

GENERALIZED VC-DIMENSION (GEN-VC-DIM)

Input: A graph $G = (V, E)$, two subsets $X, Y \subseteq V$, and $k \in \mathbb{N}$.

Question: Does there exist a subset $S \subseteq X$ such that $|S| \geq k$ and $\{S \cap N(y) : y \in Y\} = 2^S$?

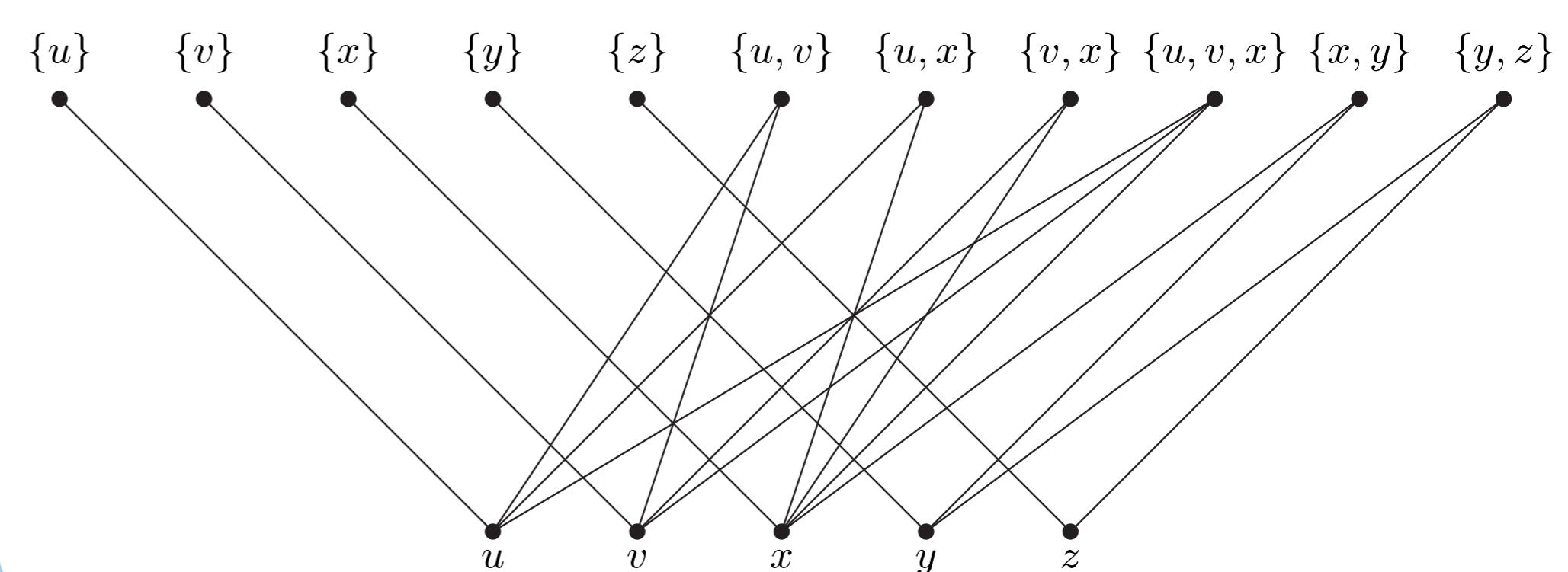
ACKNOWLEDGEMENTS

VC-DIMENSION IN GRAPHS

Any finite set system or hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ can be **equivalently represented** by a set of **open neighborhoods** in a **graph** G :

- for all $e \in \mathcal{E}$, there is a vertex x_e
- for all $v \in \mathcal{V}$, there is a vertex v
- x_e is adjacent to v if and only if $v \in e$
- the set of open neighborhoods is $\{N(x_e) : e \in \mathcal{E}\}$

For example, the hypergraph on the left can be equivalently represented by the open neighborhoods of the vertices in the top part of the following bipartite graph:



RESULTS

- Assuming the ETH, VC-DIMENSION does not admit an algorithm running in $2^{o(|\mathcal{V}|)} \cdot |\mathcal{H}|^{\mathcal{O}(1)}$ time (and this is tight).
- $2^{\mathcal{O}(\Delta \log \Delta)} \cdot |\mathcal{H}|^{\mathcal{O}(1)}$ time 1-additive FPT approximation algorithm for VC-DIMENSION.
- $2^D \cdot |\mathcal{H}|^{\mathcal{O}(1)}$ time FPT algorithm for VC-DIMENSION.
- VC-DIMENSION is LogNP-hard, even if \mathcal{H} is a hypertree with transversal number 1.
- $2^{\mathcal{O}(\text{tw} \log \text{tw})} \cdot |\mathcal{V}|$ time FPT algorithm for GEN-VC-DIM.
- Assuming the ETH, GRAPH VC-DIMENSION does not admit an algorithm running in $2^{o(\text{vcn}+k)} \cdot |\mathcal{V}|^{\mathcal{O}(1)}$ time.

ETH: Exponential Time Hypothesis

$|\mathcal{H}| := |\mathcal{V}| + |\mathcal{E}|$

Δ : maximum degree of \mathcal{H}

D : dimension of \mathcal{H}

tw : treewidth of G

vcn : vertex cover number of G

FUTURE DIRECTIONS

- Improve the FPT 1-additive approximation algorithm to an FPT algorithm for VC-DIMENSION parameterized by Δ ?
- Close the gap between the $2^{\mathcal{O}(\text{tw} \log \text{tw})} \cdot |\mathcal{V}|$ time FPT algorithm and the $2^{o(\text{vcn}+k)} \cdot |\mathcal{V}|^{\mathcal{O}(1)}$ ETH-based lower bound for GEN-VC-DIM.
- Consider the setting in which the set system is defined by a circuit, which allows the input size to be dependent only on the size of the domain in some cases.